(D) $0^{\text {Pa }}$

Software for Design, Optimization and Analysis of Optical Systems, Thin Films and Illumination Systems

Reference Manual

Version 12.00

Optenso
info@optenso.com
http://www.optenso.com/

February 2024

Copyright

Copyright 1986-2024 by Opt ϵ nso ${ }^{\circledR}$. All rights reserved worldwide. No part of this manual and the software may be copied, distributed, transcribed, transmitted, or stored in a retrieval system by any means without express written permission from the author. The information in this manual and the software it describes are subject to change without notice.

Trademarks

Optenso ${ }^{\circledR}$ is a registered trademark of Optenso, Optical Engineering Software.
OpTaliX ${ }^{\circledR}$ is a registered trademark of Optenso ${ }^{\circledR}$.
Microsoft Windows, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10 and Windows 11 are trademarks of Microsoft Corporation.
OSLO is a registered trademark of Lambda Research Corp.
ZEMAX is an Ansys company.
CODE V is a registered trademark of Synopsis, Inc.
ProSource is a registered trademark of Radiant Vision Systems
POV-Ray ${ }^{T M}$ is Copyright by the POV-Ray Team ${ }^{T M}$

Disclaimer

Optenso ${ }^{\circledR}$ reserves the right to modify its software and publications with no obligation to notify any person or organization of such modifications. The software is provided as is without any guarantees or warranty. Although Optenso ${ }^{\circledR}$ has attempted to find and correct any bugs in the package, in no event shall Optenso ${ }^{\circledR}$ be liable for any loss of profit or any commercial damage, included but not limited to special, consequential or other damages.

OptEnso

Optenso, Optical Engineering Software
Herbstweg 9
86859 Igling
Germany
E-mail : info@optenso.com
Web : https://www.optenso.com/

Contents

1 Starting and Exiting OpTaliX 19
1.1 Starting OpTaliX from the Program Group 19
1.2 Starting OpTaliX from Windows Explorer 19
1.3 Starting OpTaliX from a DOS Window 20
1.4 Normal Exit from OpTaliX 20
1.5 Forced Exit from OpTaliX 20
2 Notational Conventions 21
3 Program Preferences 23
3.1 Paths 23
3.2 Operations 24
3.3 Windows 25
3.4 Colours 25
3.5 Miscellaneous 25
4 File Locations 27
4.1 Windows XP 27
4.2 Windows Vista / Windows 7 / Windows 10 / Windows 11 27
4.3 Description of user-specific Files 27
5 Definitions 29
5.1 Sign Conventions 29
5.2 Coordinate System(s) 29
5.2.1 Global Coordinate System 29
5.2.2 Object Coordinate System 29
5.2.3 Tilt Angles 30
5.3 Paraxial Conventions 30
5.4 Ray Coordinates 31
6 The Command Line 35
6.1 General 35
6.2 Command Syntax 35
6.2.1 Qualifiers 35
6.2.2 Special Surface Qualifiers 36
6.2.3 Variable Qualifiers 36
6.2.4 Entering and Changing Data 37
6.3 Surface Pointer 37
6.4 Surface Qualifiers and Arithmetic Expressions 38
6.5 Functions and Arithmetic Expressions 39
6.6 Lens Database Items 40
6.7 The Question Mark Symbol (?) 40
6.8 Rules for Command Entry 41
7 Configuration and System Data 43
7.1 Setting up a new lens system 43
7.2 Saving and Restoring Lens Data 43
7.3 General Lens Data (Configuration Data) 44
7.3.1 Fields / Object Points 44
7.3.2 Astigmatic Objects 47
7.3.3 Wavelength Definition 48
7.3.4 Optical Spectrum 49
7.3.5 System Aperture 50
7.3.6 Pupil Apodization 53
7.3.7 Defocus 54
7.3.8 Remarks and Comments 56
7.4 Ray Aiming Methods 56
7.4.1 ENP: Paraxial entrance pupil mode: 57
7.4.2 STO: Stop Surface Mode 58
7.4.3 TEL: Telecentric Mode 58
7.4.4 OMN: Omni-directional Mode 58
7.5 Afocal Systems 60
7.6 Vignetting 60
8 Surface Data 63
8.1 Surface Editor 63
8.2 Undo and Redo of Surface Parameter 64
8.3 Surface Parameters 64
8.4 Infinity Values 67
8.5 Surface Shorthand Entry 67
8.6 Surface Type 67
8.7 Aspheric Surfaces 69
8.7.1 "EVEN" Power Asphere 70
8.7.2 "ODD9" Power Asphere 71
8.7.3 Ellipse at major or minor Axis in the EVEN and ODD9 Asphere Models 72
8.7.4 "ODD30" Power Asphere 73
8.7.5 "XY" Polynomial Asphere 74
8.7.6 Anamorphic (Biconic) Asphere 75
8.7.7 Cylindrical Surfaces 77
8.7.8 Toroidal Surfaces 78
8.7.9 Q-Type Polynomials 79
8.7.10 Qbfs Polynomial (SPS QBF) 79
8.7.11 Qcon Polynomial (SPS QCN) 81
8.8 Alternate Intersection Point 82
8.9 Axicon 83
8.9.1 Axicon modelled by "EVEN" Power Asphere 83
8.9.2 Axicon modelled by "ODD30" Power Asphere 84
8.10 Hologram Surface 84
8.10.1 Asymmetric Phase Function 87
8.10.2 Symmetric Phase Function 87
8.10.3 Sweatt Model 88
8.10.4 Two-Point Hologram 89
8.11 Diffraction Grating Surface 90
8.11.1 Variable Line Spacing (VLS) Grating Surface 91
8.11.2 Conversion of Coefficients for a VLS Grating 92
8.11.3 Diffraction Efficiency Calculation 93
8.11.3.1 Sawtooth Profile (Kinoform) 94
8.11.3.2 Sinusoidal Profile 94
8.11.3.3 Step Approximation 94
8.11.3.4 Diffraction Efficiency Example 95
8.12 Fresnel Surface 96
8.13 Total Internal Reflection (TIR) Surface 96
8.14 Non-Sequential Surface 99
8.14.1 Converting Sequential Surfaces to Non-sequential Surfaces 100
8.14.2 Non-Sequential Coordinate System 101
8.14.3 Glass Specification for Non-Sequential Surfaces 101
8.14.4 Transfer between Non-Sequential Surfaces 101
8.14.5 Absorbing (obstructing) Surface Property 102
8.14.6 General Notes on Non-Sequential Ray Tracing 102
8.15 Pickup Surfaces 102
8.15.1 Group Pickups 104
8.15.2 Individual Pickups 105
8.15.3 Pickups vs. Solves 105
8.15.4 Listing Pickups 105
8.16 Solves 106
8.17 Tilted and Decentered Surfaces 108
8.17.1 Sign convention for tilted surfaces: 110
8.18 Tilt Modes 110
8.18.1 Tilt Modus 0 : Decenter and Return (DAR) 111
8.18.2 Tilt Modus 1 : Surface Normal defines new Axis (NAX) 112
8.18.3 Tilt Modus 2 : Bend Surface (BEN) 112
8.18.4 Compound Tilts on a BENd Surface 112
8.18.5 Reverse Decenter and Tilts (REV) 113
8.19 Tilt Sequence 113
8.20 Transformation Matrix 114
8.20.1 Entering Transformation Matrices: 115
8.21 Tilting GRIN Material Properties 115
8.22 Global Referencing 116
8.23 "No-Raytrace" (NOR) Surface 118
8.24 Gradient Index Surface 119
8.24.1 Editing GRIN Coefficients on a Surface 123
8.24.2 Ray-Tracing Method 124
8.24.3 SELFOC $^{T M}$ Lens (SEL) 124
8.24.4 Gradient Lens Corporation (GLC) 125
8.24.5 Grintech Radial Gradient (GRT) 125
8.24.6 Grintech Cylindrical Gradient (GRC) 126
8.24.7 Linear Axial Gradient (AXG) 126
8.24.8 LightPath Technologies Gradient (LPT) 126
8.24.9 University of Rochester Gradient (URN) 127
8.24.10 Luneberg Gradient (LUN) 127
8.24.11 Spherical Gradient (SPG) 127
8.24.12 Maxwells's Fisheye (MAX) 127
8.24.13 User-Defined Gradient Index (UDG) 128
8.24.14 Default usergrn Subroutine 129
8.24.15 Compiling and Linking usergrn 130
8.24.16 GRIN - Coefficients Overview 130
8.25 Light Pipe, Step Index Fiber 131
8.26 Array Element 133
8.27 Radial Spline Deformation Surfaces 136
8.28 Two-Dimensional Interferometric Deformation on Surfaces 138
8.28.1 Saving Deformation Data 139
8.28.2 Sign Conventions 141
8.28.3 Interferometric Deformation Data 141
8.28.4 Wavefront Perturbations 141
8.28.5 Surface Intensity Apodization (Intensity Filter) 142
8.28.6 Deformations from Orbscan II Topography System 143
8.28.7 Behaviour of Rays in Regions of No Data 144
8.28.8 Display Interferometric Deformation 144
8.29 Zernike Surface 145
8.29.1 Zernike Spreadsheet Editor 149
8.29.2 Definition of Zernike Polynomials 149
8.29.3 Fringe Zernike Polynomial Terms (ZFR) 150
8.29.4 Extended Fringe Zernike Polynomial Terms (ZFE) 151
8.29.5 Standard Zernike Polynomial Terms (ZRN) 152
8.30 Zernike Phase Surface 154
8.31 User-Defined Surface (UDS) 155
8.31.1 Creating a User-Defined Subroutine 155
8.31.2 Languages and Compilers Supported 157
8.31.3 Compiling with Lahey/Fujitsu Fortran 90 157
8.31.4 Compiling with Intel Fortran 90 and Compaq Visual Fortran 158
8.31.5 Compiling with Intel FORTRAN Parallel Studio and Intel oneAPI Fortran 159
8.31.6 Compiling with Microsoft Visual Studio 2012 and higher 161
8.32 Lens Modules 163
8.33 Surface Apertures 164
8.33.1 Polygon Apertures 167
8.33.1.1 Dialog-based editing of polygon apertures 167
8.33.1.2 Reading polygon apertures from a file 167
8.33.2 Hole Aperture 168
8.33.3 Fixed Apertures (Heights) 169
8.33.4 Editing Fixed Apertures in the Surface Editor 170
8.34 Surface Comments 171
8.35 Insert, Invert, Copy, Move and Delete Surfaces 171
8.36 Coatings / Multilayer Stacks 172
8.36.1 Attach Coatings to Surfaces 172
8.36.2 Coating Orientation 173
8.37 Image Surface Definition 174
9 Listings, Reports 177
9.1 List Prescription Data 177
9.2 List Alternative Glasses 179
9.3 Description of Standard Listing Output 180
9.4 List Global Coordinates and Global Matrices 181
9.5 List User-Defined Variables 182
9.6 List User-Defined Functions 183
10 Lens Layout Plot 185
10.1 Using POV Rendering Engine 187
10.2 Plot Rays 188
11 Zoom and Multi-Configuration 191
11.1 Number of Zoom Positions 191
11.2 Define Zoom Parameter 191
11.3 Spreadsheet Zoom Editor 193
11.4 Insert, Copy, Delete Zoom Positions 194
11.5 Text based Zoom Editor 195
11.6 Solves in Zoom Systems 195
12 Tools and Utilities 197
12.1 Autofocus 197
12.2 Scaling 198
12.3 Invert System 198
12.4 Convert fictitious Glasses to real Catalogue Glasses 198
12.5 Find Alternative Glasses 199
12.6 Weight and Volume 200
12.7 Maximum Incidence Angles 202
12.8 Optimal Coating Indices for Gradient Index Surfaces 203
12.9 Surface Sag 203
12.10User Defined Graphics (UGR) 204
12.10.1 Variable Parameters in User-defined Graphics 206
12.10.2 Functions and Macros in User-defined Graphics 207
12.10.3 UGR Command Example 208
12.11 Analytical Setup 208
12.11.1 Lens of best Form 209
12.11.2 Achromatic Doublet 209
12.11.3 Lurie-Houghton Telescope 209
12.11.4 Reflecting Telescopes 210
12.11.4.1 Classical Cassegrain and Gregory Form 211
12.11.4.2 The Aplanatic Telescope and its Ritchey-Chretien Form 211
12.12Slider Control 211
12.13ECHO Command Line 213
12.14CLS (Clear Screen) 213
12.15 Time 213
12.16Date 213
12.17File Name 213
12.18File Path 213
12.19Operating System Command 214
12.20Logging Ray Data 214
13 Materials, Glasses 217
13.1 Dispersion 219
13.1.1 Old Schott (Laurent) Formula 219
13.1.2 Sellmeier Formula 219
13.1.3 Extended Sellmeier Formulas 219
13.1.4 Reduced Sellmeier Formulas 220
13.1.5 Nikon Dispersion Formula 220
13.1.6 Herzberger Formula 220
13.1.7 Hartmann Formula 220
13.1.8 Cauchy Formula 220
13.1.9 Conrady Formula 221
13.1.10 Handbook of Optics 1 Formula 221
13.1.11 Handbook of Optics 2 Formula 221
13.1.12 Primary Dispersion 221
13.1.13 Partial Dispersion 221
$13.2 \mathrm{dn} / \mathrm{dT}$ 222
13.3 Pre-defined Glass Catalogues 222
13.4 User-defined (external) Glass Catalogues 223
13.5 Private Glasses 224
13.5.1 Private Glass defined by Wavelength-Data Pairs 224
13.5.2 Private Glass defined by Laurent Dispersion Coefficients 224
13.5.3 Private Glass defined by Sellmeier Dispersion Coefficients 224
13.5.4 Private Glass defined by Hartmann Dispersion Coefficients 225
13.5.5 Private Glass defined by Cauchy Dispersion Coefficients 225
13.6 Fictitious Glasses 227
13.7 Special Materials 227
13.7.1 Infra-red Materials, Plastics 228
13.7.2 Schott Filter Glasses 231
13.7.3 Schott Radiation Resistant Glasses 231
13.7.4 Gradient Index (GRIN) Glasses 232
13.7.5 Liquids and Gels 233
13.8 Air, Vacuum 234
13.9 Index and Dispersion Offsets 235
13.10Partial Dispersion Offsets 236
14 Image Evaluation 237
14.1 Geometrical Analysis 237
14.1.1 Paraxial Analysis 237
14.1.2 Single Ray Tracing 238
14.1.3 Ray Aiming 240
14.1.4 Single Ray Longitudinal Aberration 240
14.1.5 Fan Aberration Curves (RIM Rays) 240
14.1.6 Spot Diagrams 241
14.1.7 Spot Gravity Center 242
14.1.8 Surface Ray Intersection Plot 243
14.1.9 Pupil Intensity Map 243
14.1.10 Distortion 245
14.1.11 Grid Distortion Plot 247
14.1.12 Field Aberrations - Astigmatism and Distortion Analysis 247
14.1.13 First Order Analysis 248
14.1.14 Third Order Analysis (Seidel Aberrations) 249
14.1.15 Secondary Spectrum 252
14.1.16 Lateral Colour 253
14.1.17 Ghost Image Analysis 253
14.1.17.1 Notes on paraxial ghost analysis: 256
14.1.17.2 Photo-realistic rendering of Ghost Effects: 257
14.1.17.3 Writing Ghost Data to Files (ASCII or Excel 258
14.1.18 Vignetting Analysis 259
14.1.19 Geometric Modulation Transfer Function 260
14.1.20 Geometric Point Spread Function (GPSF) 261
14.1.21 Encircled Energy (Geometric) 262
14.1.22 Quadrant Detector Analysis 263
14.1.23 Biocular Analysis 265
14.2 Diffraction Analysis 268
14.2.1 Diffraction Modulation Transfer Function (MTF) 268
14.2.2 Point Spread Function (PSF) 271
14.2.2.1 Patch Size 272
14.2.2.2 Exporting PSF-Data 274
14.2.3 PSF Diameter in X and Y, Ellipticity 274
14.2.4 Diagonal Field PSF 274
14.2.5 Grid Field PSF 275
14.2.6 X/Y Cross Sections of PSF 276
14.2.7 Extended Objects (Fourier Method) 276
14.2.8 Knife Edge Function (KEF) 280
14.2.9 Encircled / Ensquared Energy (Diffraction based) 281
14.2.10 Strehl Ratio 281
14.2.11 Wavefront Aberration (Optical Path Difference) 282
14.2.12 Conrady D-d Chromatic Aberration 283
14.2.13 Single-Path Interferogram 284
14.2.14 Dual-Path Interferogram 284
14.3 Gaussian Beams 286
14.4 Fiber Coupling Efficiency 290
14.4.1 Single-Mode Fibers 295
14.4.2 Multi-Mode Fibers 295
14.4.3 Display Fiber Modes 297
14.4.4 Fiber Coupling Example 1 297
14.4.5 Fiber Coupling Example 2 299
15 Illumination Analysis 301
15.1 Commands for Defining Illumination Sources 301
15.2 Illumination Sources Coordinate Definition 305
15.3 Defining Illumination Sources in the GUI 305
15.3.1 Controlling Source Emittance Characteristics 306
15.3.2 Controlling Source Rays in the Lens Layout Plot 306
15.3.3 Flat emitting Sources 307
15.3.4 Flat Source with Gaussian Profile 307
15.3.5 Sources defined by Rays 308
15.3.6 Source Rays aimed to System Entrance Pupil 308
15.3.7 Ray Source Viewer 309
15.3.8 Transforming Ray Data 310
15.4 Illumination Analysis Options 310
16 Physical Optics Propagation 317
16.1 Propagation of the Angular Spectrum 317
16.2 Propagation using the Fresnel Approximation 319
16.3 Propagation through Optical Interfaces 320
16.3.1 Converting Field into Rays 320
16.3.2 Transfer at Optical Interfaces 320
16.3.3 Converting Rays into Field 321
16.4 Propagation Control 321
16.5 Command Overview 323
16.6 Propagation Parameters 323
16.7 Examples 326
16.7.1 Free-Space Propagation 326
16.7.2 Talbot Imaging 327
16.7.3 Coupling Efficiency Example 328
16.8 Restrictions 329
17 Transmission Analysis 331
17.1 Effect of Coatings/Cement on Transmission 332
17.2 Transmission along Chief Ray 333
17.3 Transmission integrated over Aperture 335
17.4 Relative Irradiance 336
17.5 Colour Contribution Index 337
18 Polarization Analysis 339
18.1 Tracing a Polarization Ray 339
18.2 Defining Input Polarization 340
18.2.1 Completely unpolarized (natural) light: 341
18.2.2 Completely polarized light: 341
18.2.3 Some equivalent representations: 341
18.3 The Degree of Polarization: 342
18.3.1 Polarzation expressed by Coherence Matrix 342
18.3.2 Polarization expressed by Stokes Vectors 342
18.4 Total Internal Reflection 342
19 Optimization 345
19.1 KT-Optimization 345
19.2 LM-Optimization 346
19.3 Global Optimization (GO) 347
19.4 Editing Variables 348
19.5 Definition of Variables (VAR) 349
19.6 Targets and Constraints (TAR) 350
19.6.1 Defining Targets/Constraints in the Command Line 351
19.6.2 Dialog based editing of Targets/Constraints 352
19.6.3 Include Targets from File 352
19.6.4 Targets using Lens Database Items 353
19.6.5 User-defined Constraints 354
19.6.6 Default Constraints 354
19.6.7 Weights on Error Functions 355
19.6.8 Weighted Constraints 356
19.7 Targets/Constraints Overview 357
19.8 Controlling Contrast vs. Resolution 362
19.9 Glass Optimization and Glass Map Boundary Points 363
19.10Run the Local Optimization (OPT) 367
19.10.1 Selecting the appropriate local Optimization Method 367
19.10.2 MTF Optimization 368
19.11 Optimizing for Tolerance Sensitivity 369
19.11.1 Tolerance Sensitivity Items 369
19.11.2 Using Tolerance Sensitivity Items in Optimization 372
19.12Description of Output 372
19.12.1 List of Active Constraints 374
19.13 Terminating Optimization 374
19.14Undo Optimization 375
19.15 Optimization Parameters 375
19.15.1 Optimization Parameters for local Optimizers KT and LM 375
19.15.2 Optimization Parameters for Global Optimizer GO 376
19.16Global Optimization: A worked Example 377
20 Coatings 381
20.1 Editing Coating Data 381
20.2 Coating Configuration 381
20.3 Coating Command Line: 382
20.4 Composing a new Coating 386
20.5 Specifying Coatings on Surfaces (Coating Attachment) 387
20.5.1 Default (Single Layer $M_{g} F_{2}$) Coating 387
20.6 Phase Changes introduced by Coatings 388
20.7 Coating Thickness Variation 388
20.7.1 Radial Thickness Variation 388
20.7.2 Non-symmetrical Thickness Variation 390
20.8 Accounting for the Phase in an Optical Coating 390
20.9 Thin Film Optimization (Refinement) 390
20.9.1 Variables 391
20.9.2 Targets 391
20.9.3 Run Coating Optimization 392
20.10Coating Material Editor 392
20.11 Coating Index Profile 393
20.12Export Coating Performance Data 393
20.13Basic Relations 393
21 Environmental Analysis 397
21.1 Temperature 397
21.1.1 Temperature Effects on "zoomed" Parameters (Multiconfiguration) 399
21.1.2 Expansion Coefficients on Global References 399
21.2 Pressure 400
22 Tolerancing 401
22.1 Surface Tolerance Items 401
22.1.1 Tolerance Editor 404
22.1.2 Default Tolerances 405
22.1.3 Tolerance on Test-Plate Fit (DLF) 405
22.1.4 Tolerance on Irregular Surface Deviation (IRR) 406
22.1.5 Tolerance on Symmetrical Aspherical Surface Deviation (SYM) 406
22.1.6 Tolerance on axial Thickness (DLT) 406
22.1.7 Tolerance on global Thickness (DTR) 407
22.1.8 Tolerance on Surface Tilt (DLA, DLB, DLG) 407
22.1.9 Tolerance on Homogeneity (HOM) 407
22.2 Tolerance/Performance Criteria 408
22.3 Tolerance Compensators 408
22.3.1 Back Focus Compensator 409
22.3.2 Compensation using Optimization 409
22.4 Sensitivity Analysis 409
22.5 Tolerance Sensitivity in Optimization 411
22.6 Inverse Tolerancing 412
22.7 Monte Carlo Analysis 412
22.7.1 Statistical Parameters and Distributions 412
22.7.1.1 Even Distribution 413
22.7.1.2 Gaussian Distribution 413
22.7.1.3 Beta Distribution 413
23 Manufacturing Support 415
23.1 Footprint Analysis 415
23.2 Aspheric Deformation 416
23.2.1 Aspherization in radial Direction 417
23.2.2 Aspherization as 2D Surface Deformation 419
23.3 Hologram Phase 420
23.3.1 Converting Symmetric Hologram Coefficients to other Programs 421
23.3.1.1 To Code V 421
23.3.1.2 To Zemax 421
23.3.2 Hologram Zone Calculation 421
23.4 Edge Thickness 421
23.4.1 Calculating edge thickness at tilted/decentered surfaces 422
23.5 Test Plate Fitting 422
23.6 Adding a Test Plate List 423
23.7 ISO Element Drawing 423
23.8 CAM Calculation 426
24 Glass Manager 431
24.1 Use of Glass Catalogs 431
24.2 Glass Map 431
24.3 Partial Dispersion Plots 432
24.4 Athermal Map 432
24.5 Athermal Glass Selection 433
24.6 Glass Selection for Thin-Lens Apochromats 435
24.6.1 Two-Glass Apochromats 435
24.6.2 Three-Glass Apochromats 436
24.7 Gradient Index Profile 437
24.8 View and Edit Glass Catalogues 438
24.9 Melt Glasses 439
25 Printing and Plotting 443
25.1 Printing and Plotting from the Command Line 443
25.2 Printer and Plotter Device Units 444
25.2.1 Printing/Plotting Graphics 444
25.2.2 Controlling Bitmap Size 445
25.2.3 Printing Text Output 446
25.3 Printing/Plotting from the GUI 446
25.3.1 Printing Text from the GUI 446
25.3.2 Printing Graphics from the GUI 446
25.3.3 Examples 446
26 Macro Language 451
26.1 RUN Statement 452
26.2 Arithmetic Expressions 452
26.3 Lens Database Items 454
26.4 PRINT Statement 454
26.5 Formatted Output 455
26.6 READ Statement 457
26.7 Format Statements defined in Variables 457
26.8 CONCATENATION of Strings 458
26.9 Evaluate Statement "EVA" 458
26.10File Inclusion 459
26.11 Variables 459
26.11.1 Assignment Statement 460
26.12INPUT Statement 460
26.13OPEN Statement 461
26.14CLOSE Statement 462
26.15SELECT Statement 463
26.16User-defined Functions 464
26.17Control Statements 464
26.17.1 DO Construct 464
26.17.2 WHILE Construct 465
26.17.3 IF Construct 466
26.18Return 468
26.19Comments 468
26.20Logical Line Separation 468
26.21 Logical Line Continuation 468
27 Lens Database Reference 471
28 Colour Names 483
28.1 Predefined colours 483
28.2 Default Colours in Field Plots 483
28.3 Default Colours in Coating Analysis 484
28.4 Default Colours in Encircled Energy Geometric (ECG) Analysis 484
29 Importing Lens and Coating Data 485
29.1 Import of CODE-V Sequential Files 485
29.2 Import of ZEMAX Files 485
29.3 Import of OSLO Files 485
29.4 Import of MODAS Files 486
29.5 Import of ATMOS Files 486
29.6 Import of WinLens Files 486
29.7 Import of Accos Files 487
29.8 Import of Sigma Files from Kidger-Optics 487
29.9 Import Coatings from "The Essential MacLeod" Thin-Film Package 487
29.10Import Coatings from the "TFCalc" Thin-Film Package 487
29.11 Import Coatings from the "Optilayer" Thin-Film Package 488
29.12 Import from Lens Catalogs 488
30 Exporting Lens Data 491
30.1 Export to Code V 491
30.2 Export to ZEMAX 491
30.3 Export to OSLO 491
30.4 Export to ASAP 492
30.4.1 Exporting Special Surfaces to ASAP 492
30.5 Export to MODAS 492
30.6 Export to ATMOS 493
30.7 Export of Wavefront to ABERRATOR 493
30.8 Export to Persistence of Vision (POV) 493
30.9 Export to IGES 494
30.9.1 Illustration of IGES Export Options 494
30.9.2 Supported IGES Entities 495
30.9.3 IGES Export Limitations 495
30.9.4 IGES Trouble Shooting 496
30.10Export to Microsoft ${ }^{T M}$ Excel File 496
31 Examples Library 499
32 File Formats 501
32.1 OpTaliX Configuration File "optix.cfg" 501
32.2 Lens Prescription Format ".otx" 502
32.3 Multilayer File Format ".otc" 508
32.4 Zernike Deformation File Format ".zrn" 510
32.5 Radial Spline Deformation File Format 511
32.6 Test Plate File Format ".tpl" 511
32.7 Glass Catalogue File Format ".csv" 512
32.8 Melt Glass File Format ".ind" 514
32.9 GRIN Dispersion Coefficients File Format 515
32.10GRIN Catalogue Glasses File Format (grin.asc) 516
32.11 INT File Format ".int" 516
32.12PSF File Format 517
32.13 Ray File Format 519
32.13.1 General Ray Format 519
32.13.2 Ray Data in ASCII Format 519
32.13.3 Ray Data in Binary Format 520
Bibliography 520
Index 524

Starting and Exiting OpTaliX

OpTaliX can only be started from within Microsoft Windows. Within Windows, OpTaliX can be run by clicking on the $O p T a l i X$ menu item in the Program Group, double clicking on the OpTaliX desktop shortcut icon, double clicking on a lens file in Windows Explorer, or it can be run from a DOS prompt within a DOS window.

1.1 Starting OpTaliX from the Program Group

To start OpTaliX in Windows XP/Win7/Win10, click the Start button, click Programs, click the OpTaliX program group, and then click the OpTaliX menu item, as shown in Figure 1.1.

Figure 1.1: OpTaliX program group menu.

The OpTaliX program group also includes menu items for HTML-Help, Reference Manual, Tutorial and uninstalling OpTaliX . Note that two menu items for OpTaliX are found: OpTaliX-Pro and OpTaliX-Pro-I. Both versions, OpTaliX-Pro and OpTaliX-Pro-I, are functionally identical, except for the style of the windows.

1.2 Starting OpTaliX from Windows Explorer

The $O p T a l i X$ file format has been registered in Windows during program installation. This allows you to launch $O p T a l i X$ with a specific lens, by double clicking on the file (extension .otx) in Windows Explorer.

1.3 Starting OpTaliX from a DOS Window

Open a DOS Window by clicking on the MS-DOS prompt menu item in the Program Group accessed by using Start $->$ Programs. From the DOS prompt on a 64 -bit operating system, start OpTaliX by typing

```
C:> C:\Program Files\optalix-pro\optalix64p mylens.otx
```

respectively, if you have a network license, enter
C:> c:\Program Files\optalix-pro\optalix64pn mylens.otx

If $O p T a l i X$ was installed in a different directory than $\mathrm{c}: \backslash$ Program Files $\backslash o p t a l i x-p r o$, the path to the OpTaliX executable must be modified accordingly. Specification of an OpTaliX lens file (mylens.otx) is optional. If omitted, $O p T a l i X$ starts with the recently used lens (i.e. the optical design which was in use during the last session). If specified, $O p T a l i X$ is launched and "mylens.otx" is automatically loaded.

1.4 Normal Exit from OpTaliX

- From the File menu, select Exit or click on the close window button \mathbf{X} in the upper right corner of the OpTaliX main window.
- Select the main window (click on the title bar of the main window) and press the ESC-key.
- In the command line, type EXI or QUIT and press Return.

In all cases, you will be asked to confirm the exit. After you exit $O p T a l i X$, you are returned to the operating system.

1.5 Forced Exit from OpTaliX

Normally an exit request invokes a dialog box asking to confirm exit. Immediate exit by bypassing the confirmation dialog box is accomplished from the command line or from a macro by

```
EXI Y
```

or
EXI Yes
The program is then terminated immediately.

2

Notational Conventions

The following conventions are used throughout this manual:

- In syntax descriptions, [brackets] enclose optional items.
- In syntax descriptions, the vertical line | separates optional parameters within an option list.
- The apostrophe ' character encloses character strings which contain blanks. If there is no blank character contained in a string, the apostrophe may be omitted.
- OpTiX commands are emphasized by courier typeset.
- ITALICS refer to menue items of the GUI (graphical user interface)
- An ellipsis, ". . .", following an item indicates that more items of the same form may appear.
- The question mark "?" character, used within a command, activates additional dialog box information and/or settings.
- The semicolon ";" character separates command entries in the command line, i.e. it allows several command strings in a single line. A detailed description is given in the Macro section.
- The vertical bar " \mid " is not typed in any command, it means' or' as in Yes |No, that is, you type Yes or No.
- The Dollar sign "\$" followed by a character denotes a short form of a directory path or part of it. These directories are created during installation.
\$i is the installation path, i.e. \$i may direct to c: \optalix or c: \programs $\backslash o p t a l i x$ $\$ \mathrm{t}$ is a temporary directory, e.g. c: \optalix \backslash temp
\$c refers to the directory where coating files are stored, e.g. c: \optalix\coatings $\$ g$ refers to the directory where glasses are stored, e.g. c:\optalix\glasses
- The asterix " $*$ " performs wildcard pattern matching in a given string.

3

Program Preferences

Preferences are data associated with the program, not the lens. Change these settings only, if you know what you are doing. In particular, the directories must exist. Changes take effect immediately and it is not required to restart the program.
Preference settings are accessed from the main menu under File $-->$ Preferences, or in the command line by entering "EDI PREF" (without the quotes). The settings are grouped into several categories, such as defining paths, behavior of the program (operations), windows, colours and other miscellaneous parameters.

3.1 Paths

The path information entered in the preferences section is used as a reference where files are searched first. Fig. 3.1 shows the corresponding dialog box.

POV Render Engine:

OpTaliX provides an interface to the POV-Ray (Persistence of Vision) renderer, which is used to create almost photorealistic images of the optical system. POV-Ray is a separate program, which must be downloaded from http://www.povray.org and must also be separately installed. Once installed, the path where the executable of POV-ray resides must be entered into the path field. Use the "browse" button in the preferences dialog to select the path.

User Glass Catalogues:

Specifies the path to user defined glass catalogues. These are typically Zemax AGF-glass catalogues that were converted to comma separated files (*.csv) that are compatible to OpTaliX and using the CONVAGF command tool described in sect. 13.4.

Coatings:

This field has been already defined during the installation of OpTaliX . It contains all thin-film coating files.

Temp Dir:

Defines the path to a working directory used by $O p T a l i X$ for storage of intermediate data and other purposes. All files in this directory are normally used during runtime of the program only, however, these files are not deleted after program termination.

Macros:

Defines the path to the directory containing the macro files. The default extension is *.mac. If empty, the macros will be stored and loaded by default from the currently active directory (i.e. the directory of the current system).

User defined graphics:

Defines the path to the directory containing the files for user defined graphics (UGR). The default extension is *.ugr. If empty, user defined graphics (UGR) will be stored and loaded by default from the currently active directory (i.e. the directory of the current system).

3.2 Operations

The settings in the "operations" tab determine the behaviour of the program (Fig.3.2).

Save current design as default on exit:

When the program is terminated, the current system is automatically stored as the "default" system. It is restored into memory at the next program start. This preserves design data between subsequent sessions.

Put text output window to foreground ... :

Each time new output is written to the text window it will be raised to the foreground if this option is checked. This is particularly useful if many windows are opened and are obscuring the text window and the output contained in it.

Warn if glasses are obsolete:

Issues a warning message when obsolete glasses are entered. These are glasses, which are no longer produced by a designated glass manufacturer.

Align ray fans horizontally:

Normally transverse ray aberration fans and OPD fans are plotted with the pupil coordinate vertical. It is also possible to plot the pupil coordinate horizontal by checking the appropriate box. Selecting this option is merely a matter of personal preference rather than providing more detailed information.

Refer fan aberrations to the physical coordinates of the stop surface:

When plotting ray aberration fans and OPD fans, the pupil coordinates are referred to the entrance pupil by default, that is where the rays intercept at the (fictitious) entrance pupil. Check this box if you want the plot coordinates to be referred to the physical ray intercept coordinates on the stop surface.

Adjust surface apertures automatically:

It is sometimes required to adjust surface apertures, for example when system parameters (fields, system aperture) have changed or when the optical layout has changed after optimization. Apertures can be set manually on all surfaces as required by the beams going through the optical system using the SET MHT command. This task can be performed automatically such that surface apertures are always large enough. The oversize factor determines how much larger the apertures are set. For example, a factor 1.05 will oversize the apertures by 5% in relation to the required apertures.

Blank command lines are mirrored in Text Output Window:

If this check box is enabled, entering a blank (empty) line in one of the two command lines produces a blank line in the text output window. This way, the user input in a command line is mirrored in the text output window, which allows adding extra blank (empty) in the text output window. This option has no effect on the command history window. The default setting of this option is disabled, i.e. blank command lines have no effect on text output.

Selected surfaces in surface editor are highlighted in lens layout plot:

Check this box to highlight surfaces in the lens layout plot according to the focus in the surface editor. That is, clicking into any row (=surface) in the surface editor will show the corresponding surface in the layout plot in a different colour (typically blue). This feature helps identifying surfaces in the surface editor.

3.3 Windows

Save position and size of windows on exit:

As windows can be interactively changed in size, position and can be minimized or maximized, checking this button saves the current settings of all windows if the program is terminated. The window settings will be restored at the next run of the program.

Put text window to foreground when new output is generated:

Optical analyses may generate additional numerical output respectively informational or warning messages in the text window. If this check box is enabled, the text window will be put to foreground to immediately alert the user about a conflicting situation or simply to have additional information readily visible (i.e. in the foreground without needing to click on a particular window).

Close all open windows on restoring a new optical system:

Prior to restoring a new optical system all currently open windows are automatically closed.

3.4 Colours

Graphics window background colour:

This is an option which suits the personal taste of an user. Setting the background colour of all graphics windows to a different colour that the default (white) may help to reduce contrast or to make faint colours (like yellow) more visible.

3.5 Miscellaneous

Spot marker size:

Adjusts the size of markers used in spot diagrams. Marker size is defined in plot units (in mm) referred to the size of a standard A4 paper. See also theSPMS command for temporarily changing spot marker size within a session.

Contour Style

Chose between two styles how contour plots are rendered: "lines only" or "lines + area fill". Since we consider this option a matter of personal preference, it is found in the general preferences rather than adjustable for each plot individually.

Figure 3.1: Preferences: Program default path settings.

Figure 3.2: Preferences: Operations, determining the behaviour of the program.

4

File Locations

During operation OpTaliX creates intermediate files which are stored in the following directories, specific to each operating system:

4.1 Windows XP

User specific data are stored under Windows XP at:
c:\Documents and Settings\All Users \backslash Application Data

4.2 Windows Vista / Windows 7 / Windows 10 / Windows 11

User specific data are stored under Windows Vista ${ }^{T M}$, Windows $7^{T M}$, Windows $10^{T M}$ and Windows $11^{T M}$ at:
c:\ProgramData\OpTaliX

4.3 Description of user-specific Files

In each of the user directories, depending on the operating system, a basic installation of OpTaliX contains the following files:

default	Without extension, this files contains the prescription data of the optical system in use after OpTaliX was terminated. Upon restarting $O p T a l i X$, this system is automatically reloaded. The file format is ASCII.
optix.cfg	OpTaliX configuration file (ASCII format). Stores user-defined preferences as described in sect. 32.1.
coatp.asc	Standard ASCII file storing private (user-defined) coating mate- rials. A detailed description of the coating file format is given in sect. 32.3.
osp_priv.dat	ASCII file storing private (user-defined) optical spectra (i.e. spec- tral weights for calculating image performance).

5

Definitions

5.1 Sign Conventions

Conventions are important because they define the frame of reference used for the results. These conventions are applied uniformly throughout the $O p T a l i X$ package. It is also important to adhere to strict sign conventions for curvatures and thicknesses (separations), which are determined according to the following rules:

- The radius of curvature of a surface is positive if the center of curvature lies to the right of the surface, otherwise it is negative. This rule is independent on the direction of the light, i.e. if the light travels from left to right (the default condition) or if it travels from right to left (after reflection from a mirror).
- The thickness (separation) of two consecutive surfaces is positive if (in axial direction) the next surface lies to the right of the current surface. If it lies to the left, it is negative.
- In case of tilted and decentered surfaces, the sign conventions apply to the local coordinate system of the current surface.
- A positive tilt means a rotation in counter-clockwise direction, a negative tilt is in clockwise direction.

5.2 Coordinate System(s)

The coordinate system used in OpTaliX is a left-handed system, with the Z-axis being the optical axis in most cases as shown in Fig. 5.1. The vertex of each surface is assumed to lie exactly on the Z-axis. The separation from one surface to the next is along the Z -axis.

5.2.1 Global Coordinate System

The global coordinate system is always located at the vertex of surface 1 . Decenter/tilts applied to surface 1 do not change the global coordinate system. Fig. 5.2 illustrates this condition.

5.2.2 Object Coordinate System

The object coordinate system is a derived coordinate system of theglobal coordinate system. Object points ("fields"), for example, are always referred to the coordinate system defined by the object

Figure 5.1: Left-handed coordinate system used in $O p T a l i X$
surface. In this way, the position and orientation of objects can be altered by changing position and orientation of the object surface (use XDE, YDE, ZDE, ADE, BDE, CDE commands applied to surface 0).
Using the object coordinate system may also be useful in defining extended sources (as opposed to point-like sources) in illumination calculations.
Note that the object coordinate system may be considered like the local coordinate system of any arbitrary surface. It is explained here to emphasize the its meaning for defining illumination sources.

5.2.3 Tilt Angles

The tilt angles in a tilted coordinate system are always given in degree. The sign of the tilt angles follows mathematical convention, i.e. it is positive for counter-clockwise rotation and negative for clockwise rotation. An Euler angle system is used in which each of the three tilt angles α, β, γ takes place in the tilted coordinate system of the preceding tilt. Thus, tilting is non-commutative and undoing tilts must be applied in the reverse order.
Tilts and decenters are always applied to the local coordinate system of a surface.

5.3 Paraxial Conventions

The term paraxial means "near the axis". In this region, the linearized version of Snells' law is used:

$$
\begin{equation*}
n^{\prime} \cdot u^{\prime}=n \cdot u \tag{5.1}
\end{equation*}
$$

with $n=$ index of refraction and $u=$ angle to the optical axis in radians. The computation of the paraxial entities (e.g. focal length, magnification, etc.) is performed using the ABCD matrix, which is defined as (see also Fig. 5.5):

$$
\binom{n^{\prime} u^{\prime}}{h^{\prime}}=\left[\begin{array}{ll}
A & B \tag{5.2}\\
C & D
\end{array}\right] \cdot\binom{n u}{h}
$$

There are a few optical components (e.g. gradient index lenses, generalized aspheres) which are not well described by first order theory respectively very complex equations would result. In these cases, OpTaliX uses "parabasal" rays. These are real rays with very small angles to the optical axis (or the reference ray). The definition of the paraxial entities is given in Fig.5.5.

Figure 5.2: The global coordinate system is always referred to the vertex of surface 1 . If decenter and/or tilts are applied to surface 1 , they are ignored (see right part of this figure).

5.4 Ray Coordinates

Rays are described by unit vectors with a starting point ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and direction coordinates ($\mathrm{CX}, \mathrm{CY}, \mathrm{CZ}$). The incidence angle i is always referred to the local surface normal at the ray intersection point.

Figure 5.3: Object coordinate system with reference to the global coordinate system.

Figure 5.4: Tilt angles and sign conventions for rotations about x -, y - and z -axis.

Figure 5.5: Definition of paraxial entities.

Figure 5.6: Definition of rays.

The Command Line

6.1 General

OpTaliX has two modes of operation, either from the menu bar in the main window or from the command line. Although the menu provides an easy to use and easy to learn interface, the command line, which is found underneath the menu bar and in the text (output) window, offers a wider range of options and greater flexibility. All parameters and actions are accessible from the command line.
The syntax of the command line is universal throughout the program, since it is used for program control, for definition of optimization constraints and also in the macro language.

By default commands entered in the command line are reflected in the history window. Commands can also be "echoed" in the text window, if enabled by the 'ECHO Y" command.

Any number of commands may appear in the command line, separated by semicolons ";". For example, two simple commands, which list the system data and plot a ray aberration fan, are:

> lis
fan
or, written in a single command line, separated by semicolons ";"
lis ; fan

6.2 Command Syntax

To a maximum possible extent, the command syntax used in OpTaliX is compatible with CODE-V commands. In addition, there are a few commands not found in CODE-V which describe dedicated OpTaliX features.

6.2.1 Qualifiers

Many of the commands accept parameters for surfaces, field, wavelength, zoom positions, rays, coefficients, pupils, sources, etc. The generic syntax is :

```
sk|si..j Surface (sk) or surface range (surfaces i to j),
                also defines light source number. Distinction between surface number and light
                        source number is made within command context.
fk|fi..j Field (fk) or field range (field numbers i to j)
wk | wi . . j Wavelength (wk) or wavelength range (color numbers i to j)
zk|zi..j Zoom position (zk) or zoom range (zoom position i to j)
ck | ci . . j Coefficient (ck) or coefficients range (range i to j, used for holograms (HOE),
        user-defined surfaces (UDC), and user-defined gradients (UDG).)
pk|pi..j Pupil number (pk) or range of pupils (= surface aperture) i to j
lk|li..j Coating Layer (lk) or range of layers i to j
gi Global reference surface number i
```

Thus, surface number, wavelength number, field number, zoom number, pupil number, coating layer, etc. must be preceded by its proper qualifier without spaces (e.g. s for surface, w for wavelength, f for field, z for zoom, etc.). A range of either surfaces, fields, wavelengths, rays, coefficients or pupils is specified by two consecutive dots ". .".
If a range is specified on either surface, field, wavelength, zoom position, etc., the parameters are applied to all command items within the given range, e.g.

```
rdy s1..3 10.0 ! sets radii of surfaces 1 to 3 to 10.0
yan f2..4 2.5 ! sets Y-angle of fields 2 to 4 to 2.5 (degree)
spd f3 w2 z3..4 ! analyzes the (RMS) spot diameter at field 3, wavelength number 2
    and zoom positions 3 to 4.
Y s7 f1 w1 g2 0 1 ! Outputs Y coordinate of a ray at surface 7, field 1, wavelength 1, in
    global coordinates referred to local coordinate system of surface 2
```


6.2.2 Special Surface Qualifiers

There are special surface qualifiers for object surface, stop surface, image surface and all surfaces, which may be specified as

```
so for object surface,
ss for stop surface,
si for image surface,
sa all surfaces.
```

The following commands are synonymous:

```
thi s0 100 thi so 100
cir s5 12 cir ss 12 ! assuming surface 5 is the stop.
rdy s8 -300 rdy si -300 ! assuming surface 8 is the image.
```


6.2.3 Variable Qualifiers

Qualifiers for surface, field, wavelength or zoom position may also be combined withvariables. For example, thickness on surface s2 may also be defined by

```
$x = 2
thi s$x ...
```

This feature may be understood as concatenating "s" (without the quotes) and the value of \$x. With the example given above,
$\mathrm{s} \$ \mathrm{x}$ is interpreted as s 2
$\mathrm{f} \$ \mathrm{x}$ is interpreted as f 2
$\mathrm{w} \$ \mathrm{x}$ is interpreted as w2
$z \$ x$ is interpreted as $z 2$
These constructs are available in commands, macros and within lens database items (LDI).

6.2.4 Entering and Changing Data

Entering and changing data is accomplished by a free format command syntax which is similar to CODE-V commands in many (but not all) respects. The main features of the command syntax are:

- It is uniform throughout $O p T a l i X$ and to a maximum possible extent compatible to CODE-V,
- it is flexible to support future needs,
- it uniformly uses blanks as delimiters,
- the command parameters can be used in any sequence,
- commands can be annotated by semicolon (;) separator.

All commands are case insensitive, i.e. the commands

```
RDY S1 34.5
rdy s1 34.5
Rdy S1 34.5
```

are interpreted in the same manner. All parameters are separated at least by one blank. Multiple blanks are treated as a single blank, i.e. the commands

```
RDY S1 34.5
rdy S1 34.5
```

are identical.

6.3 Surface Pointer

As the name implies, a surface pointer directs to a designated surface in the optical system. Use of a surface pointer allows simplified entry of construction data (such as radii of curvatures, thicknesses, etc). The surface pointer is set by the command
sk
where k denotes a surface number. Thus, sk means you should type s 4 or s 17 , where 4 or 17 is the desired surface number. The actual position of the surface pointer is indicated in the prescription listing (see LIS command) by the $>$ character right to the surface number. For example, the commands
produce the output

\# TYPE	RADIUS	DISTANCE	GLASS	INDEX	APE-Y		CP	DP	TP	MP	GLB
1 S	31.9354	4.90200	LAK9	1.694019	17.00* C		0	0	0	0	0
2 S	95.0214	0.22600		1.000000	16.36	C	0	0	0	0	0
$3>S$	18.9471	5.42100	LAK9	1.694019	13.38	C	0	0	0	0	0
4 S	51.7823	2.82700	SF8	1.694169	12.29	C	0	0	0	0	0
5 S	12.8019	6.84900		1.000000	8.58	C	0	0	0	0	0

In second and succeeding references to the same surface number the surface qualifier can now be omitted, if desired. For example,

```
s3
rdy 100
thi 5.2
```

is fully equivalent to

```
rdy s3 100
thi s3 5.2
```

That is, in absence of a surface qualifier, the surface specified by a previous sk command is used. Note that the surface pointer is set to surface 1 on restoring a new optical system.
The current setting of the surface pointer can be queried by the command
s?

6.4 Surface Qualifiers and Arithmetic Expressions

Surface qualifiers (NOT field, wavelength, zoom or pupil qualifiers) also accept arithmetic operators, $"+", "-", " * "$ and " l ". This is particularly useful in conjunction with the special qualifiers so, ss and si but also works for regular surface qualifiers, like s3 or s16. The following examples indicate valid usage of arithmetic operations on surface qualifiers:

```
si-1 surface before the image surface,
ss+1 surface after the stop surface,
so+2 denotes the second surface (object surface = surface 0 plus two surfaces),
s3..i-1 denotes a range from surface 3 to the surface before the image surface,
s2..s+1 denotes a range from surface 2 to stop surface plus one surface.
ss-1..s+1 denotes a range from the surface before the stop surface to the surface after
    the stop surface.
ss-1..ss+1 same as above
s4..7-2 surfaces 4 to 5
s3..s4*2 invokes multiplication on surfaces, resulting in surfaces 3 to 8.
s4/2..i-2 invokes division, resulting in surfaces 2 to image surface less 2.
s3-2+4 multiple operators are permitted.
s3+sqret(4) functions may be used, here resulting in surface 5. Note that only integer
    value should be used. Float numbers (albeit permitted) may lead to unpre-
    dictable results due to rounding effects.
```

Invalid surface or surface range qualifiers:

ss+-2	operator follows operator.
s3.5	surface range requires two consecutive dots.

6.5 Functions and Arithmetic Expressions

Numbers entered in the command line can also be arithmetic expressions or functions. In this way, it acts like a pocket calculator. For example, the entries

```
rdy s1 100
rdy s1 2* (40+20)-20
rdy s1 sqrt(10**4)
```

are all equivalent. Note that blank characters are not allowed in arithmetic expressions, except where enclosed in brackets. Expressions may also be copied from the clipboard directly to the command line. The functions and operators recognized are shown in table6.1:

Functions	Operators
cos	+
sin	-
tan	$*$
exp	$/$
log	$* *$
log10	\wedge
logn	
sqrt	
acos	
asin	
atan	
cosh	
sinh	
tanh	
besj0	
besj1	
besjn	
anint	
aint	
abs	

Table 6.1: Functions and operators recognized by OpTaliX . See also section 26.2

In the command line brackets and correct order of operation are also recognized. In trigonometric functions, the argument must always entered in radians and inverse trigonometric functions report angles in radians. For example to compute $\sin \left(30^{\circ}\right)$, it must be entered as $\sin (30 * 3.14159 / 180)$. This form can be simplified by defining constants or variables and using them in arithmetic expressions

```
#define rad 3.14159/180
sin(30*rad)
or
@rad == 3.14159/180
sin(30*@rad)
```

Further details are given in chapter 26 (Macro Language).

6.6 Lens Database Items

Lens database items (LDI) are specifications of values which may be retrieved from the current optical system. Virtually anything that can be entered in the command line has a corresponding lens database item (see also chapter 27). All references to lens database items must be enclosed in rectangular brackets [], even if there are no qualifiers. Within the brackets, the syntax for database items is identical to the syntax used for command line input.
Examples:

```
thi s2 [EPD] ! sets thickness s2 equal to entrance pupil diameter
cuy s3 -[cuy s4] ! curvature on surface 3 is equal to minus the
    ! curvature on surface 4
```

Database items can be combined with arithmetic operators to form an arithmetic expression anywhere a numeric data entry is expected.

```
fno [EFL]/[EPD] ! sets F-number
thi s3 2*sqrt(3)*[thi sl]
```

Note that pre-defined functions (sin, tan, sqrt,...) and specification of lens database item references are case insensitive. For example, the following expression given in upper case, lower case or mixed case are valid:

```
thi s3 2*sqrt(3)*[thi sl]
THI S3 2*SQRT(3)*[THI S1]
thi S3 2*SqrT(3)*[thi S1]
```

See also a detailed explanation of the macro capabilities in chapter26 and the lens database reference in chapter 27.

6.7 The Question Mark Symbol (?)

Most of the commands accept the "question mark" symbol "?", which allows a dialog based modification of relevant parameter. For instance, the fan (rim ray) plot may be entered in two ways:

$$
\begin{array}{ll}
\text { FAN } & \begin{array}{l}
\text { plots the fan (rim ray) aberrations without asking for a scaling parameter } \\
\text { (the default or previously applied scaling factor is used). }
\end{array} \\
\text { Fan ? } \quad \begin{array}{l}
\text { invokes a dialog box to edit the aberration scaling factor prior to plotting } \\
\text { the fan aberrations. }
\end{array}
\end{array}
$$

6.8 Rules for Command Entry

- Always separate parts of OpTaliX instructions with one or more blank characters (blanks).
- Never put spaces between command words, qualifiers, ranges or numbers. For example, LIS or S3 are valid entries, L IS or S 3 (with blanks enclosed) are not.
- Upper and lower case letters can be used. OpTaliX ignores cases such as $\mathrm{THI}=\mathrm{tHi}=$ thi.
- Arithmetic expressions such as $2 \star 3+5$ must not contain blanks, except where enclosed in parentheses (). For example, $2 * 3+5$ and $(2 * 3+5)$ are equivalent, whereas $2 * 3+5$, (without the parentheses) are interpreted as two separate expressions.
- No spaces are permitted within numerics.
- Numeric input is defined as follows: Integers or floating point values with or without leading $\operatorname{sign}(+,-)$ or leading zeros, such as $+0.5, .5,5 E-1,-2 D-10$, etc. (see also section 26.2).
- Always precede a surface number, field number, zoom number, wavelength number, etc. with its corresponding qualifier prefix (S for surface, W for wavelength, Z for zoom position, etc.), without spaces. For example, S3, W5 are valid entries, S 3 (with blanks) is not. O, S and I (for object, stop and image) are valid surface numbers. Examples: SO, SI, SS. Addition, subtraction, multiplication and division can be used on surface qualifiers only as in SI-1, $S S+4, s 3 * 2$, etc.
- Never add additional characters to command or qualifier words. For example, LIS is correct, LIST is not.
- Strings containing spaces, semi-colons ";" or ampersands "!" must be enclosed in single or double quotes.
- Continuation of commands with the ampersand character "\&" is only possible in macros. This feature is not available in the command line.
- Multiple commands within a command line must be separated by the semicolon character ";".

7

Configuration and System Data

In the terminology used throughout the manual, system or configuration data are data that pertain to the whole lens or describe its conditions of use. For example, typical system/configuration data, among others, are aperture, field of view and wavelength. These are attached to the lens data and are saved with the surface data.

7.1 Setting up a new lens system

Setting up a new lens system from scratch means that the previous system is deleted from memory, all old lens data is destroyed. An "empty" system is created which contains only two surfaces, the object surface and the stop surface. Reasonable default values are initialized. The command LEN is not necessary prior to restoring a lens from the library. This is done internally by the program. Optical surfaces may be added appropriately by the INS-command.

LEN	Set up a new lens. Initializes all surface parameter and defaults for a new lens. All old lens data is destroyed.
DIM I/M	Dimensional System. M = millimeter (default), I = inch
RDM yes/no	Select radius or curvature mode. Use radii (yes) instead of curvature (no) as the basic shape representation of a surface (default = yes). This option only works in command mode. In the surface spreadsheet editor only radii are accepted.

7.2 Saving and Restoring Lens Data

RES [file_spec]	Restore lens data from file_spec. Example: res c:/optix/test.otx
SAV [file_spec]	Save lens data in file_spec. The complete path (directory and file name) must be specified. If file_spec is omitted, the existing file will be overwritten. Examples: sav c:/optix/test. otx sav !overwrites existing file.
WRL file_spec	Save lens data in Code V sequential format. See also sect. 30.1.

7.3 General Lens Data (Configuration Data)

General lens data (or configuration data) define the usage of an optical system. These include specifications on fields, wavelengths and aperture, as well as a few special data such as afocal switches or methods of ray aiming.

The commands for editing/defining system configuration data are:

EDI CNF, or EDI CFG	Edit Configuration Parameter. A dialog box is opened.
EDI FLD	Edit Field Parameter. A dialog box is opened.
EDI LAM	Edit Wavelength Parameter. A dialog box is opened.
EDI ZOO	Edit Zoom Parameter. A spreadsheet is opened.
AFO yes \| no	Afocal switch. Specifies that this is an afocal system where the exiting beam is nominally parallel (image is at infinity). This model assumes that a perfect lens is placed after the last surface (although the user does not explicitly need to specify this ideal lens, this is automatically done internally). The focal length of the ideal lens is pre-set to 1000mm, i.e. an aberration of 1 mm is equivalent to 1 mrad in image space.
TIT 'string'	Enters a title (max. 256 characters). The title is displayed in the lens layout plots and the system prescription.
RDM yes \|no	Select radius or curvature mode. Use radii (yes) instead of cur- vature (no) as the basic shape representation of a surface. (de- fault = yes)
SET MAG mag-value	Set magnification. Changes the object distance required to sat- isfy paraxial magnification of mag_value. This is a static (one-time) adjustment. In order to adjust magnification perma- nently (dynamically as the system changes), use the RED solve (page 107).

7.3.1 Fields / Object Points

In optical design, the term "fields" describes the entity of object points used for calculating the performance of an optical system. Thus, a "field", or field point, is just the location of an (infinitesimally small) object point defined at the object surface (respectively referred to theobject coordinate system (page 29)). For reference see also the object coordinate system.
Another way to specifying objects is by defining extended emitting sources, which are mainly used in illumination analysis. See chapter 15, page 301 for a detailed treatment of this type of sources.
Resorting to point objects, the number of field points (objects) is unlimited. Initially, a maximum number of 30 field points is assumed, however, this value can always be increased to any arbitrary value using the MAXFLD command. Fields can be specified independently in X- and Y-direction in terms of object height (XOB, YOB), paraxial image height (XIM, YIM), real image height (XRI, YRI) or angles (XAN, YAN) in the object space. Fig. 7.1 shows the four types of defining fields.

Figure 7.1: Relationships between different forms of field specification. Shown are Y-objects only.

EDI FLD	Invokes a dialog box to enter X-field, Y-field, field type, and number of field points. Command line input is given by the commands below.
NFLD num_fields_used	Number of field points in use for performance analysis. This command must not confused with MAXFLD (see below). Also note that you should set NFLD to the maximum number of fields before saving the system, otherwise field data larger than num_fields_used will be lost.
MAXFLD max_fields	Maximum number of field points (objects). This command does not affect the number of fields in use for performance analysis (see NFLD command), it merely sets the maximum number of allocated fields.
XAN [fi..j] x_angle1 x_angle2 ... x_angle_n	Field angle (in degree) in X-direction, referred to ZAxis. The number of entered field angles also sets the number of fields during performance analysis.
YAN [fi..j] y_angle1 y_angle2 ... y_angle_n	Field angle (in degree) in Y-direction, referred to ZAxis. The number of entered field angles also sets the number of fields during performance analysis.
$\begin{aligned} & \text { XOB [fi..j] x_obj1 x_obj2 } \\ & \ldots \quad \text { x_obj_n } \end{aligned}$	Object coordinates (X) for finite object distances. The number of entered field angles also sets the number of fields during performance analysis. XOB data will be interpreted as \mathbf{X}-field angles if the object is at infinity. See also notes below.
$\begin{array}{ll} \text { YOB } & \text { [fi..j] Y_obj1 Y_obj2 } \\ \text {... } & \text { Y_obj_n } \end{array}$	Object coordinates (Y) for finite object distances. The number of entered field angles also sets the number of fields during performance analysis. YOB data will be interpreted as Y-field angles if the object is at infinity. See also notes below.
	continued on next page

continued from previous page	
$\begin{aligned} & \hline \text { XIM [fi..j] } \quad \text { x_image1 } \\ & \text { x_image2 ... } \quad \text { x_image_n } \end{aligned}$	Image coordinates (X), defined in the paraxial domain. The number of entered fields also sets the number of fields during performance analysis.
YIM [fi..j] y-image1 y_image2 ... y_image_n	Image coordinates (Y), defined in the paraxial domain. The number of entered fields also sets the number of fields during performance analysis.
XRI fi..j x_real_img_ht n	Compute X-object height based on real image height. Object heights are continuously adjusted as the lens changes. Ensures that the real chief rays (at the reference wavelength) hit the image surface at the specified image heights. Not applicable in afocal (AFO Y) systems.
YRI fi..j y_real_img_ht n	Compute Y-object height based on real image height. Object heights are continuously adjusted as the lens changes. Ensures that the real chief rays (at the reference wavelength) hit the image surface at the specified image heights. Not applicable in afocal (AFO Y) systems.
FTYP field_type	Field type. This is a complementary command to change the field type specification (i.e. XAN, YAN, XOB,YOB, XIM,YIM). Field type is defined as : $1=$ specifies angles (XAN,YAN) $2=$ specifies object coordinates (XOB,YOB) $3=$ specifies paraxial image coordinates (XIM,YIM) $4=$ specifies real image coordinates (XRI,YRI). Computational intensive!
```FWGT [fi..j] fweight1 fweight2 ... or WTF [fi..j] fweight1 fweight2 ...```	Field weight, an integer value between 0 and 100.
FACT [fi..j] 0/1	Field activation. A particular field point may be excluded from analysis, i.e. it is not active. $0=$ inactive, 1 $=$ active.
	continued on next page


| continued from previous page |
| :--- | :--- |
| CLS FLD [fk\|fi..j] <br> $[\mathrm{Colour} \ldots \mathrm{n}]$ <br> ical output (e.g. VIE). Input of fewer colours <br> than the number of fields uses the last colour <br> entered for the rest of the fields. With no <br> colours specified, colours are set to default <br> settings. <br> Examples: <br> cls fld red gre blu ! defines red, <br> green and blue for the first three fields. <br> cls fld! no colours specified, default field |
| colours are selected. |
| cls fld f3 red! change plot colour for |
| field 3 to red. |
| See also names of predefined colours and |
| their definition in sect. 28.1, page 483. |

## Notes:

- For objects at infinity (i.e. object distance is $\geq 10^{20}$ ), object coordinates (either entered by XOB, YOB commands or defined by 'FTYP 2' command) are specially handled. Field values are then interpreted as field angles instead of real object coordinates. It is obvious that object coordinates must also be very large for infinitely distant objects (i.e. THI s0 is $\geq 1$.E20). For example, an apparent field angle of $30^{\circ}$ would require an object height (OBY) of $\tan (30) *$ $10^{20}=5.77 E 19$. This may lead to a loss of internal computational accuracy and the program therefore interprets field values for infinitely distant objects as field angles (in degree).
- Field specifications can be entered in any order. It is not required that they be ascending or descending values.
- If the system is rotationally symmetric, only Y-field specifications should be used, i.e. X-field components are zero. The program checks for symmetry condition about the Y -axis to reduce computing time.
- Object space field specification (XOB/YOB or XAN/YAN) are recommended for systems with decentered surfaces.
- Paraxial image space field specification (XIM/YIM) is useful for zoom systems with constant image size across zoom positions. This eliminates the need to zoom field specifications.
- Real image space field specification (XRI/YRI) is useful when exact image points are desired. Includes effects of distortion, which is particularly useful in zoom systems where distortion can vary across zoom position.


### 7.3.2 Astigmatic Objects

Simulates an astigmatic shift in the emitted light which some sources, such as laser diodes, have. This option is only available for finite object conjugates.

ASF delta_f_microns	Astigmatic focus shift in microns. Shift of sagittal source   (i.e. X/Z-plane) from the tangential source (Y/Z-plane). If   0 is entered for ASF, the astigmatic shift is disabled. The   astigmatic focus is always defined in microns and is always   measured along the chief ray.
ASO angle_degree	Orientation (in degrees) of astigmatic focus shift. 0 corre-   sponds to shifted source oriented with X-axis.

In gain guided laser diodes, light appears to diverge from different points, depending on the orientation considered. Light perpendicular to the active layer emits from the front face of the diode, whereas light in the plane of the active layer is emitted from a virtual point located between $20 \mu \mathrm{~m}$ to $30 \mu \mathrm{~m}$ behind the emitting window (in negative Z-direction).


Figure 7.2: Geometry of astigmatic focus shift in a laser diode.

### 7.3.3 Wavelength Definition

The number of wavelength is limited to 11 . The order and sequence of the wavelengths may be arbitrary. There is always one specific wavelength which serves as reference wavelength. It is used to define first order (paraxial) properties, pupil definition, image plane location, etc.

EDI LAM	Invokes a dialog box to enter wavelength, weights, number   of wavelength and reference wavelength. The dialog box is   shown in Fig. 7.3.
WL lam1 lam2 lam3 ...	Wavelength definition. Enter up to 11 wavelengths (in $\mu m$ )   in any order. The number of entered wavelength values also   sets the number of wavelength during performance analy-   sis.   Example: wl $0.546 \quad 0.48 \quad 0.7 \quad$ sets 3 wavelength   (colours).


continued from previous page	
NWL no_of_wavelengths	Sets the number of wavelengths used in the system.
REF ref_w	Sets the reference wavelength. It designates which of the   WL wavelengths is to serve as the reference wavelength for   all first order properties and monochromatic aberrations.   Example: REF 2
WTW weight	Weights for corresponding wavelengths. ( Specifies relative   spectral intensities). The values given are integer numbers   and range from 0 to 100.   Example: WTW 50 100 75   Note: the wavelength weights may also be edited in a dialog   box using the command EDI LAM (see above).

### 7.3.4 Optical Spectrum

Rather than enter wavelength/weight pairs explicitly you can store wavelength data as an optical spectrum. An optical spectrum is the collection of wavelengths, weights, and reference wavelength stored with a user-definable name for later retrieval. This feature is particularly useful in zoom/multiconfiguration systems utilizing different spectral channels. Different optical spectra (i.e. wavelength/weight combinations) may be assigned to each zoom position in a single command.

	Loads a predefined optical spectrum and automatically sets   wavelengths, corresponding wavelength weights and refer-   ence wavelength. The number of wavelength to be used   must be previously set by the NWL command (see above).   A list of available optical spectra is given below.   Examples:   osp photopic ! selects visible (daylight, photopic)   spectrum.   osp ? ! invokes a dialog box to interactively set the   optical spectrum (see Fig. 7.3).
OSP PLANCK temp_degK $\quad$	Sets the optical spectrum according to the spectral radiance   of a black body using Planck's law. A third parameter,   the temperature of the black body in Kelvin is expected.   This command uses the currently defined wavelengths and   only sets wavelength weights! This option is currently only   available from the command line.   Example:   osp planck 6000 ! Sets wavelength weights ac-   cording to a black body spectrum at 6000K.
SAV OSP spectrum_name	Save optical spectrum (wavelengths, weights and ref-   erence wavelength) under spectrum_name. Use OSP   command to assign a saved spectrum to the system con-   figuration data.

## List of predefined optical spectra:

Spectrum name	Description
Pan	Spectral sensitivity of a typical panchromatic film.   Relative sensitivity of the human eye for daylight illumination (photopic   vision).   Photopic
Scotopic	Rensive sensitivity of the human eye under conditions of dark adapta-   tion (scotopic vision)
MWIR	Medium wave infrared, 3 $\mu m-5 \mu m$ waveband   Same as "Photopic"

## Dialog based editing of optical spectra:

Wavelengths, weights and reference wavelength can also be edited in a dialog box which is accessed from the main menu Edit/Configuration and then selecting the wavelengths tab (see Fig. 7.3). The ensemble of wavelengths and corresponding weights constitutes an "optical spectrum". It defines the wavelength range and also the relative spectral intensities (weights) within that range. Weights are given by integer numbers, preferably between 0 and 100, but any other positive number is also accepted.
A set of predefined optical spectra may also be directly selected from the combo box in the right part of the dialog. Choosing one of the predefined spectra avoids entering each wavelength/weight pair manually. Once an appropriate spectrum has been selected, pressing the "Set" button underneath the graphical display of the spectrum will automatically set wavelengths, weights and reference wavelength.


Figure 7.3: Wavelength and optical spectrum editing.

## Freeze optical spectrum:

When an optical spectrum is selected and applied to the system configuration, all wavelengths will normally be equidistantly scaled within the spectrum limits. If you wish to apply wavelengths exactly as defined and stored, check the "Freeze optical spectrum" check box in the wavelengths tab.

### 7.3.5 System Aperture

The system aperture defines the aperture used for the whole lens. This definition must not be confused with surface apertures (see 8.33 on page 164).

The system aperture may be defined in various ways, for example by

- NA, the numerical aperture in the image space,
- NAO, the numerical aperture in the object space,
- EPD, the entrance pupil diameter,
- FNO, the F-number,
- or by the physical stop semi-diameter.

Fig. 7.4 illustrates these options.


Figure 7.4: Defining system apertures.

## Commands:

FNO $[z i \ldots j \mid z k]$ F_number	Define aperture by F-number in the image space. The stop   diameter is adjusted to satisfy the F-number when the lens is   changed. Note: The F-number is calculated by definition at   magnification = (object at infinity).
DEL FNO	Delete previous F-number setting, so the stop diameter is no   longer automatically adjusted.
EPD [zi..j\|zk]   entrance_pupil_diam	Entrance Pupil Diameter (EPD). This command sets the stop   surface aperture dimensions to satisfy the entrance pupil diam   condition. In case of a rectangular aperture, the EPD is defined   as the diagonal of the rectangle, i.e. the surrounding circle. In   case of an elliptical aperture, the EPD is the maximum value   of the ellipse axes.
DEL EPD	Delete previous EPD (entrance pupil diameter) setting, so there   is no subsequent adjustment of the stop diameter.


continued from previous page	
NA [zi..j\|zk] num_aperture_image	Define aperture by numerical aperture in the image space (at working magnification).It adjusts the stop diameter to satisfy the num_aperture_image requirement when the lens is changed.
DEL NA	Delete previous numerical aperture setting, so there is no subsequent stop diameter adjustment.
NAO [zi..j\|zk] num_aperture_object	Define aperture by numerical aperture in the object space (at working magnification). It adjusts the stop diameter to satisfy the num_aperture_object requirement when the lens is changed.
DEL NAO	Delete previous numerical aperture setting (in object space)
POF oversize_factor	Increases the dimension of the system aperture by a factor oversize_factor for the ray grid. The default factor is 1 . POF only needs to be modified in systems showing significant pupil distortion, for example in wide-angle retrofocus systems.
Related Command	
NRD num_rays_diam	Number of rays across pupil diameter. Defines the size of the (rectangular) ray grid in the entrance pupil. NRD is adjustable in $2^{n}$ steps, i.e. the ray grid may have sizes of $4^{2}$, $8^{2}, 16^{2}, 32^{2}, 64^{2}, 128^{2}, 256^{2}, 512^{2}$ and $1024^{2}$. The higher num_rays_diam is, the more accurate the results will be. However, the computing time will increase quadratically with increasing num_rays_diam. Although $1024^{2}$ rays are accepted by the program, practical memory limitations make this option unlikely. Practice has shown, that grid sizes of $64^{2}$ or $128^{2}$ rays are very rarely required and $32 \times 32$ rays (the default in $O p$ TaliX ) are the best compromise between accuracy and speed. The ray grid is used in geometrical and diffraction analysis, e.g. spot, wavefront, PSF, MTF, etc.

Note: The aperture definitions (NA, NAO, EPD, FNO) permanently adjust the stop diameter when system parameters change, unless aperture adjustment is deactivated by any of the commands DEL NA, DEL NAO, DEL EPD or DEL FNO. The stop aperture then remains fixed.
In case of non-circular system apertures, i.e. rectangular, elliptical or polygon system apertures, specifications of NA, NAO, FNO or EPD are always defined by the surrounding circle of the noncircular system aperture. This convention is illustrated in Fig. 7.5 on the examples of rectangular and polygon system apertures.


Rectangular aperture


Polygon aperture

Figure 7.5: Definition of system aperture (not surface aperture!). Similarly, this also applies to elliptical apertures. NA, NAO, FNO and EPD are always referred to the surrounding circle of the complex system aperture shape.

### 7.3.6 Pupil Apodization

Gaussian intensity distribution across the entrance pupil. In most cases, this feature is required to simulate a laser beam which is clipped at a certain level at the paraxial entrance aperture.

PUI intensity	Apodization of intensity across the (paraxial) entrance pupil   with a gaussian distribution. intensity defines the intensity   at the relative pupil coordinates of PUX,PUY. The peak inten-   sity is 1 at the aperture center (PUX=PUY=0). The default is   PUI 1.0 which corresponds to a flat (unapodized) intensity   distribution.
PUX rel_ape_radius_X	Relative X pupil coordinate (normalized to the entrance pupil   radius) at which the PUI value is reached. The default is PUX   1.0
PUY rel_ape_radius_Y	Relative Y pupil coordinate (normalized to the entrance pupil   radius) at which the PUI value is reached. The default is PUY   1.0

An elliptical intensity distribution may be defined with different values for PUX and PUY . A gaussian intensity apodization, defined by the commands PUI, PUX, PUY, is evaluated by:

$$
\begin{equation*}
I\left(x_{p}, y_{p}\right)=e^{\left(\ln \text { PUI) }\left[\left(\frac{x_{p}}{X}\right)^{2}+\left(\frac{y_{p}}{Y}\right)^{2}\right]\right.} \tag{7.1}
\end{equation*}
$$

with

$I\left(x_{p}, y_{p}\right)$	Intensity
$x_{p}, y_{p}$	entrance pupil coordinate
$X$	PUX * (entrance pupil radius)
$Y$	PUY * (entrance pupil radius)

Eq. 7.1 normalizes the Gaussian apodization to 1 at the center $\left(x_{p}=y_{p}=0\right)$ and at the value of PUI at the elliptical contour defined by PUX, PUY. Equal values for PUX and PUY designate a circular
apodization. PUX and PUY may have any value, except 0 .

## Examples:

A circular gaussian intensity distribution, with intensity 0.135 at the rim of the entrance pupil, is specified as

```
PUI 0.135
PUX 1.
PUY 1.
```

An elliptical gaussian intensity distribution, with intensity 0.5 at relative pupil coordinates $\mathrm{X}=1, \mathrm{Y}$ $=0.7$ is specified as

```
PUI 0.5
PUX 1.
PUY 0.7
```


## Notes on entrance pupil apodization:

- Entrance pupil apodization should be regarded as a property of the incoming beam rather than the lens.
- Apodizing that occurs at surfaces inside the lens should be represented by surface intensity filters' stored in INT-files as described in section 8.28.5.
- Entrance pupil (and surface-based INT) apodization is included in all geometrical and diffraction analysis options.
- PUX, PUY are defined on a plane perpendicular to the chief ray at a given field. For an on-axis object point, the apodizing plane is also perpendicular to the optical axis, however, for offaxis field points the apodizing plane tilts in the same direction and by the same amount as the corresponding chief ray for that field.


### 7.3.7 Defocus

	Defocus value. The defocus defines the offset of the physical image   plane from the paraxial focus. A negative value of DEF means that   the physical focus is intrafocal (left) from the paraxial focus, and vice   versa.   Defocus is only taken into account for ’PIM yes". If paraxial im-   age solve is turned off (PIM no), DEF (defocus) has no effect.   The distance to the paraxial image, however, is still displayed for   information only! See also Figs. 7.6 and 7.7 for a representation of   THI si defocus   DEF and the associated data BFL and IMD.   Note that the defocus may also be defined as the distance on the im-   age surface (THI si). That way, DEF and THI si are identical.

Typically 'defocus' is used to account for (spherical) aberrations in an optical system for finding the optimum focus. As shown in Fig. 7.6 below, the lens exhibits significant amount of spherical aberration. Selecting the exact paraxial image plane apparently does not yield the optimum focus for


Figure 7.6: Representation of 'defocus' with respect to paraxial image. Defocus (DEF) is always measured from the paraxial image to the physical image surface at used conjugation. The image distance (IMD) is always measured from the last surface to the physical image surface.
which aberrations are minimized. Introducing an appropriate defocus term moves the physical image surface away from the paraxial image surface to the location of minimum circle of confusion.

Image distance (IMD) and defocus (DEF = THI si) are displayed in the surface editor (invoked by EDI SUR) as shown in Fig. 7.7. The defocus value can only be modified if "PIM $Y$ " is set, otherwise (PIM N ) defocus settings have no effect.


Figure 7.7: Display of image distance (IMD) and defocus (DEF) in the surface editor.

### 7.3.8 Remarks and Comments

REM	The REM command allows entry of up to 4 lines of text   which are stored with the lens system. The comments are   displayed with the system data listing and with the lens   cross sectional view.
TIT 'string'	A title of the lens system, enclosed in apostrophes, can be   entered. Up to 256 characters are allowed for 'string'.
COM si..j comment_string	Enter a descriptive text (up to 80 characters) per surface(s)   si..j.
SLB si..j comment_string	As above, enter a descriptive text (comment) containing up   to 80 characters per surface(s) si..j. This command is   equivalent to the COM command, but has been added for   Code V compatibility.

### 7.4 Ray Aiming Methods

Ray aiming is the method of determining start coordinates for selected fields. Ray aiming can be controlled by three parameters, RAIM, RAIT and RAIS. The RAIO command is obsolete (though still available) but use is discouraged. In general, the default settings for these three parameters need not be altered, but may accelerate ray generation in a few special cases.

$\begin{aligned} & \text { RAIM [ } \\ & \text { ENP\|STO\|TEL\|OMN ] } \end{aligned}$	Ray aiming modes:   ENP Rays are aimed at the paraxial entrance pupil.   STO Rays are aimed to the physical stop surface. This is the default mode.   TEL Telecentric ray aiming.   OMN Omni-directional, i.e. rays are launched from a point source into arbitrary directions within $4 \pi$ directional space. See also the commands OMN MIN and OMN MAX below.   A detailed description on ray aiming methods is given below.
RAIT tolerance	Ray aiming tolerance. Only applicable for RAIM STO. The default ray aiming tolerance is 0.001 and is understood as a fraction of the aperture radius. For example, RAIT 0.001 on a 5 mm aperture terminates ray iteration if the error on the desired ray coordinate is $<0.001 \cdot 5 \mathrm{~mm}$, i.e. $<0.005 \mathrm{~mm}$.
RAIS max_search_step	Ray aiming maximum step. Limits the step size during iteration for finding the start coordinates of a ray. max_search step is defined in fractions of the entrance aperture, i.e. 1.0 corresponds to a step equal to the entrance pupil radius. Smaller values improve the probability of successful ray finding, in particular for systems with large pupil aberrations (for example wide-angle systems), however, speed of convergence may be reduced. Larger values accelerate ray iteration speed but ray aiming may fail on unusual systems. Reduce RAIS in such cases. The default value of RAIS is 5 .
	continued on next page


continued from previous page	
RAIO 0\|1	Ray aiming option, now obsolete (but still available). RAIO 1 is equivalent to RAIS 0.2. This allows switching between normal ray aiming mode (RAIO 0) and a more accurate (but significantly slower) mode (RAIO 1). The default setting is RAIO 0. The mode RAIO 1 should only be enabled if the 'normal' ray iteration mode fails, which is very rarely the case. RAIO 1 does a finer search and also checks for false convergence conditions. For example, in some wide-angle systems, it may be advisable to switch to RAIO 1. Use this switch with care! This setting is saved with the prescription data.
OMN MIN\|MAX angle_deg	Specifies minimum (MIN) and maximum (MAX) angles in degrees at which rays can be launched in the omni-directional ray aiming mode. Requires that RAIM OMN is set, otherwise this command has no effect.   Examples:   OMN MIN - 80 ! minimum omni-directional angle is $-80^{\circ}$   OMN MAX 130! maximum omni-directional angle is $130^{\circ}$
EPX Y ${ }^{\text {N }}$	Ray aiming could fail when decentered or tilted surfaces in front of the stop surface could distort the entrance pupil. The EPX command supports the ray iteration convergence by first doing an inverse ray trace from the stop to the outside world, so that better start coordinates for the iteration can be found.   EPX Y! pupil distortion is considered in ray iteration   EPX N! pupil distortion is ignored.   In case of decentered or tilted surfaces in front of the stop, there is no iteration advantage and it is recommended to turn this option off (EPX N).

The ray aiming mode determines the generation of the start rays in the object space. By default, ray aiming is performed for all wavelengths in use. Because ray aiming for all wavelengths is time consuming, an option to confine ray aiming to the reference wavelength is given in the configuration dialog. Select Edit - Configuration from the main menu. In the Aperture tab, disable the check box "Ray aiming at ALL wavelengths". Ray aiming is then performed at the reference wavelength only.

Currently there are four modes available to define start rays from an object point towards the pupil of a system:

### 7.4.1 ENP: Paraxial entrance pupil mode:

Rays are aimed to the paraxial entrance pupil. This mode does not account for pupil aberrations and is independent on tilted and decentered surfaces in the system. Since only paraxial quantities are used, it is the fasted mode. However, paraxial ray aiming may fail in systems with noticeable pupil aberrations, such as in wide angle systems or systems with large numerical aperture. If this occurs, use the STO ray aiming method described in the next section.

### 7.4.2 STO: Stop Surface Mode

Rays are aimed to the physical boundaries of the stop surface, independent of its shape (circular, elliptical, rectangular, etc.). This is an iterative process and therefore consumes more time. It also takes tilted and decentered surfaces and apertures into account, as well as vignetting caused by undersized surface apertures.
The effect of ray aiming mode "STO" is neatly observed with wide-angle lenses which exhibit strong pupil distortion. Fig.7.8 gives an example of this effect. If rays are aimed to the paraxial entrance pupil, i.e. RAIM ENP, they will not hit the real stop surface at all for some field angles. This is due to the fact that the axial position of the entrance pupil varies strongly with field angle. Since paraxial quantities do not account for field dependent effects, solely aiming to the paraxial entrance pupil will fail in most wide-angle systems.

Therefore, in using RAIM STO, the correct start coordinates of the rays are exactly traced in an iterative process, such that size and position of the stop are always exactly found.


Figure 7.8: Ray aiming methods. Rays aiming to the paraxial entrance pupil (RAIM ENP) will not hit the stop surface at the corresponding coordinates. RAIM STO takes account for pupil aberrations in centered and decentered systems by iterating for the exact start coordinates.

### 7.4.3 TEL: Telecentric Mode

Systems having an infinitely distant entrance pupil are best modelled in the telecentric mode. The initial direction of chief rays in the object space is always parallel to the optical axis. The telecentric mode requires systems with a finite object distance and the angular subtense of the beam emerging the object must be defined by the numerical aperture (see NAO command).
Note, that telecentric beams do not necessarily go through the center of the stop. Since the stop surface is always limiting the beams (independent of the FHY setting on the stop surface), it may be likely that the stop surface truncates the beams in an unwanted manner. The aperture dimensions of the stop should be appropriately oversized if such effects are not wanted.

### 7.4.4 OMN: Omni-directional Mode

In some systems it is necessary to launch rays into arbitrary directions, irrespective of stop position or definition of the system aperture (such as NA, EPD, FNO, etc). This can be a valuable option,
for example in condensor systems or illumination systems in which sources irradiate into the full $4 \pi$ angular space.
For example, Fig. 7.9 shows an elliptical reflector where rays are launched from a point object at angles greater than $\pm 90^{\circ}$, i.e. rays also exit the source in opposite direction to the positive Z-axis. This is normally not possible with the standard ray aiming (generation) methodsENP, STO, and TEL as described above.


Figure 7.9: Example of omni-directional ray aiming. See examples directory \examples\mirror\ellipsoid_1.otx

The only parameters required for defining an omni-directional beam are the minimum and maximum angles (referred to the global coordinate system) at which rays can be launched from a point source. Fig. 7.10 illustrates an arbitrary condition. The allowable range of minimum and maximum source ray angles is from $0^{\circ}$ to $\pm 180^{\circ}$.


Figure 7.10: Definition of beam angles emitted from a point source in omni-directional ray aiming.

In omni-directional mode, rays are generated such that their intersections with a sphere are equidistant, like with the degrees of longitude and latitude on the globe. This imposes some difficulties with some kinds of analysis plots. For example the results of ray intersection plots or illumination plots are always referred to the tangent plane at a given surface. Since it is impossible to convert a coordinate
system based on spherical coordinates to a plane, distortion of a regular ray grid emitted from a point source is always distorted on a plane.

### 7.5 Afocal Systems

In an afocal system the principal points and focal points are at infinity, which does not imply that the object and image are at infinity. This condition requires special procedures to be used in ray tracing because tracing to infinity would create numerical problems. We will distinguish between afocal in the object space and afocal in the image space. While afocal in the object space is quite normal in many systems, afocal in image space is handled by angular ray aberrations instead of transverse ray aberrations in a finite image plane. To illustrate the concept of angular measures, we will consider a simple Fraunhofer-type telescope as shown in Fig. ...
A rim ray exits the system at an angle $\alpha$ to the optical axis due to inherent aberrations in the system. Since the image is assumed at infinity (afocal in image space), the transverse aberration of the ray would also be infinity. At this point we will introduce the concept of a virtual "ideal" lens, which is placed at the exit of the system and helps us to convert the angular aberration of the ray to a finite measure. For simplicity, the focal length of the ideal lens is assumed 1000 mm , thus converting an angle $\alpha=1 \mathrm{mrad}$ to a transverse aberration $y=1 \mathrm{~mm}$.
The beauty of the "ideal lens" concept is, that we do not need to leave our world of transverse aberrations. If the system is afocal in image space, 1 mm aberration in the focal plane of the assumed "ideal" lens corresponds to 1 mrad angular ray deviation.
If the system is afocal (in image space), OpTaliX automatically does this conversion internally. It is not necessary to add an ideal lens after the optical system. The only command required to make a system afocal is

## AFO yes

irrespective whether the focus is actually at infinity or not. All performance analyses (Spot, Fan, MTF, PSF, etc.) will then be given in angular aberrations (mrad) instead of transverse aberration (mm).
Optical path differences (OPD) will be referred to a plane wave in the exit pupil of the system. Since the focal length of the (internally used) ideal lens is always 1000 mm , field sags are reported in diopters.

### 7.6 Vignetting

Vignetting in optical systems is defined by the shape and dimensions of the stop surface and by hard limiting (fixed) apertures on other surfaces using the FHY command. There can be as many fixed apertures as there are surfaces in the optical system. Fixed apertures are indicated in the system listing (see LIS command) by an asterisk (*) character immediately following the aperture value.

SET VIG	Calculates vignetting factors VUX, VLX, VUY, VLY   in accordance to the setting of fixed (hard limiting) sur-   face apertures. Included for Code V compatibility. See   also notes below.
DEL VIG [fi..j]	Delete vignetting factors for fields i to j.

For related commands, SET MHT and FHY see section 8.33.3 on page 169.

## Notes on SET VIG Command:

Modelling of ray bundles in OpTaliX is solely based on hard-limiting (fixed) apertures on surfaces. Even though vignetting factors can be evaluated (SET VIG), they are reported for information only and do not have any impact on size and shape of light beams.
Since light beams are always calculated using real apertures, there is no risk of inconsistency and OpTaliX will always calculate the correct beam. In particular, rays shown in the lens layout plot actually represent the beam limits used for all performance analysis options.
A typical output of the SET VIG command is as follows:

Field	VUX	VLX	VUY	VLY	UX	LX	UY	LY
1	-0.00011	-0.00011	-0.00011	-0.00011	6	6	6	6
2	-0.00002	-0.00002	-0.00003	-0.00010	6	6	6	6
3	0.00043	0.00043	0.17753	0.13093	6	6	11	1

Vignetting factors are given for each field separately. The UX, LX, UY, LY columns denote the surfaces which limit the beam. On the example given above, at field 3, surface 11 limits the upper Y-portion (UY) of the beam whereas surface 1 limits the lower Y-portion of the beam.

## 8

## Surface Data

Surface data include the typical lens prescription items such as radius of curvature, thickness (axial separation), glasses, etc. The numbering sequence starts with 0 for the object surface. The first surface of the optical system is surface 1 and, in a normal (sequential) system, the surface numbers increase monotonically in the order that rays strike them.


Figure 8.1: Surface numbering.

Note that in systems with reflectors, the thickness is usually negative to the next surface. This is because after a reflector, the next surface in the optical path is usually located in the negative Z direction from the reflecting surface. Thus, the thickness associated with a surface should not be thought of as an optical distance, but rather as what is the location on the Z axis of the next surface relative to that of the current surface.
The thickness associated with the image surface (THI SI) is unique. The actual image distance from the surface prior to the image surface (SI-1) to the image surface (SI) is the sum of the paraxial image distance and defocus term (THI SI). This is to accommodate the use of a paraxial image solve (PIM) plus a defocusing term. If the paraxial image solve is not used, the image surface thickness (THI SI) is automatically updated to show the difference to the paraxial focus.
There are two ways to enter and modify surface data. The first is the surface spreadsheet editor, which can be invoked from the Edit $->$ Surfaces menu or from the appropriate toolbar icon . The second is from the command line, which exists twice, under the main menu and as a floating dialog that can be placed anywhere on the screen.

### 8.1 Surface Editor

The surface editor is a tabbed dialog which contains several spreadsheets for editing surface parameter from the graphical user interface (GUI). This allows entering surface (prescription) parameters solely
from the GUI, as an alternative to entering data on the command line (sect. 6). The surface editor is invoked from the main menu Edit $\rightarrow$ Surface Data or by clicking on the icon in the toolbar or by entering EDI SUR in the command line. The surface parameter are grouped in several tabs as shown in Fig. 8.2):


Figure 8.2: Surface spreadsheet editor, invoked by the command EDI SUR.

### 8.2 Undo and Redo of Surface Parameter

It is possible to undo or redo virtually all parameter changes, including those entered from the various editors or from the command line. However, changes made to parameters from a macro, cannot be undone.
Undo is performed by clicking the left arrow symbol on the left side of the program main window, for a redo click on the corresponding right arrow symbol. The location of the toolbar containing the undo and redo symbols is shown in Fig. 8.3:


Figure 8.3: Undo and redo functions

From the command line, undo and redo is performed by the following commands:

UNDO	Undo a parameter change.
REDO	Redo a parameter change.

### 8.3 Surface Parameters

The following table list the commands for defining or editing common lens parameter from the command line. The parameter of special surfaces, such as holograms, fresnel surfaces, decentered or tilted
surfaces, are described in detail in the subsections to follow.

S rad thi gla	Shorthand entry, inserts a new surface at the current surface pointer. See also section 8.5 for a detailed explanation.
ASP [si..j]	defines aspheric surface
SPH [si..j]	defines spherical surface
NOR [si..j]	defines "no-raytrace" surface
K [si..j] value	conic constant
A [si..j] value	$4^{t h}$ order aspheric constant as defined in equation 8.1.
B [si..j] value	$6^{\text {th }}$ order aspheric constant as defined in equation 8.1.
C [si..j] value	$8^{\text {th }}$ order aspheric constant as defined in equation 8.1.
D [si..j] value	$10^{\text {th }}$ order aspheric constant as defined in equation 8.1.
E [si..j] value	$12^{\text {th }}$ order aspheric constant as defined in equation 8.1.
F [si..j] value	$14^{\text {th }}$ order aspheric constant as defined in equation 8.1.
G [si..j] value	$16^{\text {th }}$ order aspheric constant as defined in equation 8.1.
H [si..j] value	$18^{\text {th }}$ order aspheric constant as defined in equation 8.1.
CON [si..j]	defines conic surface
YTO	defines toric surface in Y
$\begin{array}{\|l\|} \hline \text { STO si } \\ \text { STO i } \end{array}$	Makes surface i stop surface. The "s" qualifier is not mandatory. The following examples are equally valid: STO s3, STO 3
SUT [si..j] ABCD	Surface type defined by a string, up to 6-characters long " $\mathbf{c c c c c}$ ".   Examples:   SUT s1 AD: surface 1 is aspheric and decentered,   SUT s2..3 si: surfaces 2 to 3 are spherical and gradient index.   See also the list on available surface type qualifiers below (page 67).
CPI si..j sx	Curvature pickup. Pick surfaces si..j to surface sx. A negative sign for sx picks the surface with opposite curvature. Example:   CPI s5 - 3 : curvature 5 is picked from surface 3 with opposite sign.
DPI si..j sx	Distance pickup. Pick surfaces si. . j to surface sx. A negative sign for sx picks the surface with opposite distance.   Example:   DPI s5 - 3 : distance 5 is picked from surface 3 with opposite sign.
MPI si..j sx	Material pickup. The material properties of surface sx are picked up (copied) to surfaces si. .j.
TPI si..j sx	Tilt and decenter pickup. The tilt and/or decenter values are picked up from surfaces si..j. Thus, surfaces si..j are tilted/decentered by the same amount than surface sx.
TPF si factor	Tilt/decenter pick-up factor. If factor is not 1.0 , picked values for tilts and decenters will be multiplied by factor
CUX [si..j] curvature_x	Curvature in $\mathrm{X} / \mathrm{Z}$ plane. This parameter is effective only for toric surfaces and requires the surface type "A" (aspheric).
	continued on next page


continued from previous page		
CUY [si..j] curvature_y	Curvature in $\mathrm{Y} / \mathrm{Z}$ plane. This is the default for spherical surfaces. See also the command RDY which specifies the radius instead of curvature.	
CIY [si..j] curvature_incr	Increment Y-curvature (CUY) immediately. Convenient for a power change to an unknown curvature value.	
RDX [si..j] radius_x	Radius in X/Z plane. This parameter is effective only for toric surfaces and requires the surface type " A " (aspheric).	
RDY [si..j] curvature_y	Radius in Y/Z plane. This is the default for spherical surfaces. See also the command CUY which specifies curvature instead of radius. Note: A radius value of 0 is not physically possible, and is therefore interpreted as a curvature of 0 (a flat surface).	
$\begin{aligned} & \text { THI [si..j] } \\ & {[\text { zi..j\|zk] thickness }} \end{aligned}$	Axial thickness (separation) from actual surface vertex to subsequent surface.	
TIN [si..j]   thickness_incr	Increment distance (THI) immediately. Convenient for a change to an unknown thickness value.	
THM [si..j\|sk] mirr_thickness	Center thickness to back surface of first-surface mirror at surface sk respectively surfaces si..j. Value is always positive.	
THR [si..j]   reference_thickness	Axial separation of surface(s) i. . j to "referenced" surface. Used in conjunction with global referencing. This command must not be confused with THI (axial thickness). THR is referred to a preceding surface whereas THI always refers to the subsequent surface. Thus, a referencing surface can have both THI and THR parameters. See also section 8.22 for a detailed explanation of the concept of global referencing. Note: Specify the referenced surface by the command GLB si..j k	
GRO [si..j] ival	Grating order, an integer value. This command is obsolete, HOR should be used instead.	
HOR [si..j] ival	Hologram diffraction order, an integer value.	
$\begin{aligned} & \text { GRX [si..j] } \\ & \text { grating_freq_x } \end{aligned}$	Grating frequency in grooves/mm (grooves parallel to X-axis)	
GRY [si..j] grating_freq-y	Grating frequency in grooves/mm (grooves parallel to Y-axis)	
NSS [si..j]	Make the surface(s) si. . j non-sequential.	
MXH [si..j] n_hits	Maximum number of allowable ray hits at non-sequential surface (default : n_hits = 10)	
REFL [si..j]	Reflect all rays (mirror surface).	
REFR [si..j]	Refract all rays. Total internal reflection (TIR) is a failure.	
TIR [si..j]	Total internal reflection. This surface acts like a mirror surface (REFL) except that rays that do not satisfy TIR condition are reported as failure.	
RMD [si..j]   REFR\|REFL	TIR	Refractive/reflective mode. Available modes are   REFR $=$ refract all rays at surface(s) si $. . j=$ default mode.   REFL $=$ reflect all rays at surface(s) si.${ }^{j}$   TIR = only reflects rays obeying TIR condition   This command complements the explicit commands REFR, REFL and TIR as given above.
	continued on next page	


continued from previous page	
MFL si module_efl	Module focal length. si is the first surface of the module   range.
SPG [si..j\|sk]   spec_gravity	Specific gravity in $\mathrm{g} / \mathrm{cm}^{3}$. Value is taken from glass catalogue   but may be overwritten by the SPG command.

### 8.4 Infinity Values

Because infinity values cannot be accurately represented in computers, the following conventions apply:
Distances, Separations: Any distance greater than $10^{10}$ is considered as an infinite value. This convention particularly applies to object distances at infinity. Make sure that the object distance (THI so) is $>10^{10}$ to ensure infinitely distant objects.
Radius, Curvature: Any radius greater $10^{10}$ is considered as infinity, that is, the surface is assumed perfectly flat. A special case is the surface radius 0 , for example RDY sk 0 . This command automatically defaults to a flat surface with infinite surface radius (curvature $=0$, i.e. CUY sk 0 ).

### 8.5 Surface Shorthand Entry

A shorthand entry of a spherical surface is obtained by the command:

```
S rad_curv thickness glassname
```

where

$$
\begin{array}{ll}
\text { rad_curv } & \begin{array}{l}
\text { is the radius or curvature in Y-direction. Radius or curvature entry is defined } \\
\text { by the RDM command (see section 7.1 page 43), }
\end{array} \\
\text { thickness } & \text { is the axial separation right of the surface vertex } \\
\text { glassname } & \text { is the glass manufacturer's designation }
\end{array}
$$

The default surface type on surface shorthand entry is spherical.

### 8.6 Surface Type

Surface types are characterized by six-character strings which are assigned to each surface. The surface type is defined by the following command:

SUT si..j cccccc
where $\operatorname{cccccc}$ is an arbitrary sequence of surface descriptors (a character). Surface types are categorized into obligatory and optional ones, according to the following table.

Obligatory Surface Types		Optional Surface Types, in arbitrary order		
S	Spherical surface	D	Decentered and/or tilted surfaces	
A	Aspheric surface, see sections 8.7.1 to 8.7.5.	M	Mirror	
L	Lens module (ideal lens)	G	Grating surface	


continued from previous page	
X "No-raytrace" surface Only transforms surrays to this surface. See sect. 8.23   U User-defined surface	H Holographic surface
	F Fresnel Surface
	I Gradient index (GRIN) surface
	N Non-sequential surface (NSS), must be used in combination with surface type "D"
	P Pipe, (Light Pipe, step index fiber). The cone angle of tapered pipes/fibers is defined by the semi-apertures of the end surfaces
	R Array (Lens Array)
	T Total internal reflection (TIR) surface (see sect. 8.13, page 96)
	Z Zernike surface
	C Radial Spline deformation
	W 2-dimensional surface deformation, given as gridded data
	E pure 2-dimensional spline (nonsymmetric), no base surface. In preparation.

One of the obligatory surface types ("A", "S", "X", "U" or "L") must always be specified. "A" and " $S$ " describe the base surface (aspheric or spherical). Surface type "L" (lens module) does not specify a base surface, since it only has transformational properties. "L" is also an exception of the rule, because no optional surface types are allowed in addition to the "L" character.
Optional surface descriptors may be arbitrarily combined in order to build complex surfaces. For example,

```
SUT s1..3 DAM sets the surface type of the surfaces 1-3 to
D = decentered,
A = aspheric,
M = mirror
```

The order of surface type qualifiers does not matter, i.e.

```
SUT s1..3 DAM
SUT s1..3 AMD
SUT s1..3 MDA
```

are equivalent.
Note: Gradient index surfaces and step index fibers require two qualifiers, one to define the surface type and a second one for the material properties (GRIN or step index). For example,

SI denotes a spherical surface with gradient index material attached,
$S P$ is a spherical surface with step index properties.

### 8.7 Aspheric Surfaces

Aspheric surfaces are commonly defined by polynomial expressions in one dimension which are then rotated about the local Z-axis to form the surface. The following types of polynomial aspheres are available:

- even power polynomial asphere, up to $18^{\text {th }}$ order,
- odd power polynomial asphere, up to $9^{\text {th }}$ order,
- odd power special polynomial asphere, up to $30^{\text {th }}$ order,
- XY polynomial surface, up to $10^{t h}$ order.
- anamorphic (biconic) surface, up to $10^{t h}$ order,
- toroidal surface,
- cylindrical surface.
- Qcon polynomial
- Qbf polynomial

Aspheric surfaces are defined by a type designator command ASP sk or by changing thesurface type to " $A$ ". The surface form is further defined by coefficients of various types.
Aspheric surfaces command overview:


Code V compatibility commands								
SPS ODD\|XYP	QCN	QBF	  ZFR\|ZFE	ZRN si..j	sk	Change surface profile to ODD, XYP, QCN or QBF special aspheric surface. Automatically sets surface type to " A " and asphere type according to the equivalences   ATY odd30 for SPS ODD   ATY xyp for SPS XYP.   SPS surface profile is determined by the curvature (RDY or CUY) and the SCO coefficients. If the surface is changed from an aspheric surface of kind "EVEN" or "ODD9" to an SPS surface, then any corresponding surface parameters are retained and stored in the appropriate SCO coefficients. All other SCO coefficients are set to zero.   ZFR\|ZFE	ZRN: Enables Zernike coefficients at surface range si..j	sk. For details see ZTYP command, (page 146).
SCO si..j\|sk ci coefficient	Coefficients for describing the SPS ODD $\|X Y P\| Q C N \mid Q B F$ surface(s) si..j\|sk. The coefficients differ in meaning for each ODD	XYP type as described in sections 8.7.4 and 8.7.5 respectively.						
YTO si..j\|sk	Defines a Y-toroid. The surface can be an ODD9 or EVEN power asphere in the Y-plane but is always assumed spherical in the X -plane. The Y -toroid degenerates to a sphere for $\mathrm{CUX}=$ CUY (respectively CUX $=0$ ) and $\mathrm{K}=\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{D}=\mathrm{E}=\mathrm{F}=$ $\mathrm{G}=\mathrm{H}=0$.							
CYL si..j\|sk	Defines a cylinder. For details see sect. 8.7.7 (page 77).							
IC sk\|si..j Yes	No	Intersection direction. As there may be more than one intersection of a ray with a surface, this option allows choosing the alternate intersection point from the one normally used. This option is normally not needed except when rays are at high angle to the local surface axis.   IC Yes = default,   IC No $=$ selects alternate intersection point.   In the surface editor, IC can be set in the "Misc" tab.   See also the notes on alternate intersection points in sect. 8.8.						

Note that aspheric surfaces always require the surface type (SUT) "A", which must replace the surface types "S", "L", "U" or "X". For example, simultaneous specification of surface types "SA", "LA" or "XA" is not permitted. See also a detailed description of surface types in section 8.6 on page 67 .

### 8.7.1 ''EVEN" Power Asphere

The "EVEN" power polynomial aspheric surface is defined as

$$
\begin{equation*}
z=\frac{c h^{2}}{1+\sqrt{1-(K+1) c^{2} h^{2}}}+A \cdot h^{4}+B \cdot h^{6}+C \cdot h^{8}+D \cdot h^{10}+E \cdot h^{12}+F \cdot h^{14}+G \cdot h^{16}+H \cdot h^{18} \tag{8.1}
\end{equation*}
$$

where: $\begin{cases}c & \left.=\text { vertex curvature (in } m^{-} 1\right) \\ K & =\text { conic constant } \\ A, B, C, D, E, F, G, H & =\text { asph. coefficients } \\ h^{2} & =x^{2}+y^{2}(\text { in } \mathrm{mm}) \\ x, y & =\text { surface coordinates (in mm) }\end{cases}$
The EVEN power asphere is a rotationally symmetric surface, that is, the conic/polynomial profile defined in Eq. 8.1 is rotated about the local Z-axis.
The conic constant $K$ describes surfaces of conic sections:

\[

\]

Table 8.4: Geometric interpretation of conic constant $K$

A different variant of equation 8.1 is occasionally in use:

$$
\begin{equation*}
z=\rho h^{2} /\left(1+\sqrt{1+\left(1-\kappa \rho^{2} h^{2}\right)}\right)+A \cdots h^{4}+B \cdots h^{6}+\cdots \tag{8.2}
\end{equation*}
$$

Since both, $K$ and $\kappa$, are termed conic constants and both equations are of similar form, they can be easily confused. For the sake of clarity, equation 8.1 is used consistently in $O p T a l i X$.
The numerical eccentricity $\varepsilon$ and the conic constant $k$ are then related by:

$$
\begin{align*}
K & =-\varepsilon^{2} \quad \text { ellipse at major axis }  \tag{8.3}\\
\frac{K}{K+1} & =\varepsilon^{2} \quad \text { ellipse at minor axis } \tag{8.4}
\end{align*}
$$

Equation 8.3 is also valid for a hyperbola.

### 8.7.2 "ODD9" Power Asphere

The difference between this surface and the "EVEN" power polynomial asphere defined in the previous section is the form of the expansion polynomial, which includes both the odd and even powers of radial distance up to $9^{t h}$ order. In addition, the terms start at power 2 instead at power 4.

$$
\begin{equation*}
z=\frac{c h^{2}}{1+\sqrt{1-(K+1) c^{2} h^{2}}}+A \cdot h^{2}+B \cdot h^{3}+C \cdot h^{4}+D \cdot h^{5}+E \cdot h^{6}+F \cdot h^{7}+G \cdot h^{8}+H \cdot h^{9} \tag{8.5}
\end{equation*}
$$

The $A \cdot h^{2}$ term is taken into account in paraxial calculations. The quadratic term describes a parabola with vertex curvature $2 \cdot A$. Thus, the effective curvature used in paraxial analysis is $c=c_{b}+2 \cdot A$.
The ODD power asphere is a rotationally symmetric surface, that is, the conic/polynomial profile defined in Eq. 8.5 is rotated about the local Z-axis.


Figure 8.4: Conic sections of aspheric surfaces.

### 8.7.3 Ellipse at major or minor Axis in the EVEN and ODD9 Asphere Models

The terminology "ellipse at major respectively minor axis" as used in the previous sections often leads to confusion. The EVEN and ODD9 asphere surfaces are primarily rotationally symmetric surfaces, if we assume $c_{x}=\operatorname{CUX}=0$ (special case of toric surface). That is, the surface is generated by rotating a 2-dimensional curve (conic or polynomial) in the Y/Z-plane about the local Z-axis.
This concept is important to understanding how elliptical surfaces are formed in the EVEN and ODD9 asphere models. Eqs. 8.1 and 8.5 only define the sag in the Y/Z-plane. Rotating these curves about the local Z-axis describes an ellipsoid for $-1<K<0$ (ellipse at major axis), however, it does NOT for elliptical sections at the minor axis ( $K>0$ ).
Figures 8.5 and 8.6 illustrate the difference.


Figure 8.5: Definition of an elliptical section at the major axis ( $-1<K<0$ ). Left: Section of the ellipse. Right: Perspective view showing the resulting surface.

Thus, an elliptical section defined at the minor axis does not describe a "true" ellipsoid with its minor axis aligned with the local Z -axis. If you need to model a true ellipsoid aligned at the minor axis, use


Figure 8.6: Definition of an elliptical section at the minor axis ( $K>0$ ). Left: Section of the ellipse. Right: Perspective view showing the resulting surface.
the anamorphic (biconic) surface model as described in section 8.7.6.

### 8.7.4 "ODD30" Power Asphere

The "ODD30" asphere is an extension of the "ODD9" surface to $30^{t h}$ order including both odd and even powers of radial distance. It is a purely rotationally symmetric surface. Due to the larger number of coefficients accepted, it is handled as a special aspheric surface respectively SPS in the Code V lingo. Basically, a special surface (SPS) is handled like a "user defined surface" (UDS) because it uses the same domain of coefficients. The only difference between the two variants is that special surface coefficients are entered by the SCO command and user defined surface coefficients are entered by the UCO command. User defined surfaces and special surfaces are distinguished by the surface type
A for special surfaces (of kind EVEN, ODD9, ODD30, XYP)
U for user defined surfaces

$$
\begin{equation*}
z=\frac{c h^{2}}{1+\sqrt{1-(K+1) c^{2} h^{2}}}+C_{2} \cdot h+C_{3} \cdot h^{2}+C_{4} \cdot h^{3}+C_{5} \cdot h^{4}+C_{6} \cdot h^{5}+\cdots+C_{31} \cdot h^{30} \tag{8.6}
\end{equation*}
$$

where: $\left\{\begin{array}{l}c=\text { vertex curvature }\left(\text { in } m m^{-} 1\right) \\ K=\text { conic constant } \\ C_{i}=\text { coefficient of } h^{i-1}, \text { for } 2 \leq i \leq 31 \\ h^{2}=x^{2}+y^{2}(\text { in } \mathrm{mm}) \\ x, y=\text { surface coordinates (in mm) }\end{array}\right.$
If all $C_{i}$ coefficients are zero (the default), a pure conic surface results. The maximum number of terms to use in the expansion can be specified with coefficient $C_{32}$ (C32) in order to speed up computation. If C32 is 0 , then all 31 coefficients are used.
The table below gives the coefficient numbers for the surface parameters of the ATY ODD30 asphere type (use alternatively SPS ODD command).

Coefficient	Definition
C1	Conic constant
C2	$1^{\text {st }}$ order aspheric coefficient
C3	$2^{\text {nd }}$ order aspheric coefficient


C4	$3^{\text {rd }}$ order aspheric coefficient
C5	$4^{\text {th }}$ order aspheric coefficient
C6	$5^{\text {th }}$ order aspheric coefficient
C7	$6^{\text {th }}$ order aspheric coefficient
C8	$7^{\text {th }}$ order aspheric coefficient
C9	$8^{\text {th }}$ order aspheric coefficient
C10	$9^{\text {th }}$ order aspheric coefficient
C11	$10^{\text {th }}$ order aspheric coefficient
C12	$11^{\text {th }}$ order aspheric coefficient
C13	$12^{\text {th }}$ order aspheric coefficient
C14	$13^{\text {th }}$ order aspheric coefficient
C15	$14^{\text {th }}$ order aspheric coefficient
$\vdots$	$\vdots$
C31	$30^{\text {th }}$ order aspheric coefficient
C32	Number of terms to use in the expansion

Entering coefficients C 1 to C 32 is accomplished by the SCO command explained on page 82 .
In the surface editor the SPS ODD surface is selected from the 'Asph.Type' column in the 'Asphere' tab. Use the pull-down menu to define the proper asphere type, as shown in Fig. 8.7.

(*/6) Surface Editor: E:\optalix\examples\Misc\DOUBLE_GAUSS.OTX								$\square \times$
Standard	Decenter, Tills Asphere \|GR			Solves	Special Apertures $\mid$ Hologram ${ }^{\text {Misc. }}$			
	Asph. Type	Pik	K (Conic Const.)	.	A	B	c	$\triangle$
	even, 18th ord		0.0000000		0.0000000	0.0000000	0.0000000	
1 A	odd 30th o -		0.0000000		0.0000000	0.0000000	0.0000000	
2 S	even, 18th ord		0.0000000		0.0000000	0.0000000	0.0000000	
3 S	$\begin{aligned} & \text { odd, 9th order } \\ & \text { oodd 3ith order } \end{aligned}$		0.0000000		0.0000000	0.0000000	0.0000000	$\checkmark$
1	$\times \mathrm{Y}$ polynomial							$\stackrel{\rightharpoonup}{*}$

Figure 8.7: Defining SPS ODD aspheric surfaces.

Note that the $\mathrm{K}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ columns are greyed out as they have no meaning for SPS ODD surfaces. Instead, invoke the SPS/UDS editor to edit ODD/ODD30 coefficients. This is performed from the main menu Edit -> SPS/UDS Coefficients or from the command line by entering EDI UDS

### 8.7.5 "XY" Polynomial Asphere

The XY polynomial asphere is a $10^{\text {th }}$ order polynomial surface added to a base conic. The polynomial is expanded into monomials of $x^{m} y^{n}$, where $m+n \leq 10$. The equation is

$$
\begin{equation*}
z=\frac{c h^{2}}{1+\sqrt{1-(K+1) c^{2} h^{2}}}+\sum_{i=2}^{66} C_{i} x^{m} y^{n} \tag{8.7}
\end{equation*}
$$

where: $\left\{\begin{array}{l}\left.c=\text { vertex curvature (in } \mathrm{mm}^{-} 1\right) \\ K=\text { conic constant } \\ C_{i}=\text { coefficient of the monomial } x^{m} y^{n} \\ h^{2}=x^{2}+y^{2} \text { (in mm) } \\ x, y=\text { surface coordinates (in } \mathrm{mm} \text { ) }\end{array}\right.$

The maximum number of terms used in the expansion can be specified with C 67 , which speeds up computation. If C67 is 0 , all 66 terms are used.

Coefficient	Definition	Coefficient	Definition
C1	Conic constant	C34	$x^{2} y^{5}$
C2	$x$	C35	$x^{6}$
C3	$y$	C36	$y^{7}$
C4	$x^{2}$	C37	$x^{8}$
C5	$x y$	C38	$x^{7} y$
C6	$y^{2}$	C39	$x^{6} y^{2}$
C7	$x^{3}$	C40	$x^{5} y^{3}$
C8	$x^{2} y$	C41	$x^{4} y^{4}$
C9	$x y^{2}$	C42	$x^{3} y^{5}$
C10	$y^{3}$	C43	$x^{2} y^{6}$
C11	$x^{4}$	C44	$x y^{7}$
C12	$x^{3} y$	C45	$y^{8}$
C13	$x^{2} y^{2}$	C46	$x^{9}$
C14	$x y^{3}$	C47	$x^{8} y$
C15	$y^{4}$	C48	$x^{7} y^{2}$
C16	$x^{5}$	C49	$x^{6} y^{3}$
C17	$x^{4} y$	C50	$x^{5} y^{4}$
C18	$x^{3} y^{2}$	C51	$x^{4} y^{5}$
C19	$x^{2} y^{3}$	C52	$x^{3} y^{6}$
C20	$x y^{4}$	C53	$x^{2} y^{7}$
C21	$y^{5}$	C54	$x^{8}$
C22	$x^{6}$	C55	$y^{9}$
C23	$x^{5} y$	C56	$x^{10}$
C24	$x^{4} y^{2}$	C57	$x^{9} y$
C25	$x^{3} y^{3}$	C58	$x^{8} y^{2}$
C26	$x^{2} y^{4}$	C59	$x^{7} y^{3}$
C27	$x y^{5}$	C60	$x^{6} y^{4}$
C28	$y^{6}$	C61	$x^{5} y^{5}$
C29	$x^{7}$	C62	$x^{4} y^{6}$
C30	$x^{6} y$	$x^{5}$	C63
C32	$x^{5} y^{2}$	$x^{4} y^{3}$	C64
	$x^{3} y^{4}$	$x^{2} y^{8}$	
C65		C66	$x y^{9}$
$y^{10}$			
	C67	Number of terms	

Entering coefficients C1 to C67 is accomplished by the SCO command explained on page 82.
In the surface editor the SPS XYP surface is selected from the 'Asph.Type' column in the 'Asphere' tab. Use the pull-down menu to define the proper asphere type, as shown in Fig. 8.8.
Note that the K, A, B, C, ... columns are greyed out as they have no meaning for SPS ODD or SPS XYP surfaces. Instead, invoke the SPS/UDS editor to edit XYP coefficients. This is performed from the main menu Edit $->$ SPS/UDS Coefficients or from the command line by entering EDI UDS

### 8.7.6 Anamorphic (Biconic) Asphere

The anamorphic asphere surface exhibits bilateral symmetry in both sections X and Y . The equation is:


Figure 8.8: Defining SPS ODD or SPS XYP aspheric surfaces. Note that the K, A, B, C, ... coefficients are greyed out and cannot be edited in the surface editor. For editing SPS ODD or SPS XYP coefficients, use the EDI UDS command.

$$
\begin{align*}
z= & \frac{c_{x} x^{2}+c_{y} y^{2}}{1+\sqrt{1-\left(1+K_{x}\right) c_{x}^{2} x^{2}-\left(1+K_{y}\right) c_{y}^{2} y^{2}}} \\
& +A_{R}\left[\left(1-A_{P}\right) x^{2}+\left(1+A_{P}\right) y^{2}\right]^{2} \\
& +B_{R}\left[\left(1-B_{P}\right) x^{2}+\left(1+B_{P}\right) y^{2}\right]^{3}  \tag{8.8}\\
& +C_{R}\left[\left(1-C_{P}\right) x^{2}+\left(1+C_{P}\right) y^{2}\right]^{4} \\
& +D_{R}\left[\left(1-D_{P}\right) x^{2}+\left(1+D_{P}\right) y^{2}\right]^{5}
\end{align*}
$$

where:

Variable	Command	Description
z	SAG	the sag of the surface at the local surface coordinates
$c_{x}, c_{y}$	CUX, CUY	the curvatures in X and Y
$K_{x}, K_{y}$	KX, KY	conic constants in X and Y . The definition of $K_{y}$ is equivalent to the conic constant $K$ as given in table 8.4 (page 71).
$A_{R}$	AR	rotationally symmetric coefficient, $4^{\text {th }}$ order
$B_{R}$	BR	rotationally symmetric coefficient, $6^{\text {th }}$ order
$C_{R}$	CR	rotationally symmetric coefficient, $8^{\text {th }}$ order
$D_{R}$	DR	rotationally symmetric coefficient, $10^{\text {th }}$ order
$A_{P}$	AP	non-rotationally symmetric coefficient, $4^{\text {th }}$ order
$B_{P}$	BP	non-rotationally symmetric coefficient, $6^{\text {th }}$ order
$C_{P}$	CP	non-rotationally symmetric coefficient, $8^{\text {th }}$ order
$D_{P}$	DP	non-rotationally symmetric coefficient, $10^{\text {th }}$ order

Note that the anamorphic surface reduces to the standardEVEN power asphere (see sect. 8.7.1) when

Variables	Commands
$c_{x}=c_{y}$	$\mathrm{CUX}=\mathrm{CUY}$
$k_{x}=k_{y}$	$\mathrm{KX}=\mathrm{KY}$
$A_{P}=B_{P}=C_{P}=D_{P}=0$	$\mathrm{AP}=\mathrm{BP}=\mathrm{CP}=\mathrm{DP}=0$

## Commands:

AAS sk\|si..j	Specifies anamorphic asphere. Parameters are   X-Curvature/X-Radius (CUX/RDX),   Y-Curvature/Y-Radius (CUY/RDY),   X-conic constant (KX),   Y-conic constant (KY),   $4^{\text {th }}-10^{\text {th }}$ order rotationally symmetric coefficients (AR,   $B R, C R, D R$ ),   $4^{\text {th }}-10^{\text {th }}$ order non-rotationally symmetric coefficients   (AP, BP, CP, DP).
ATY sk\|si..j AAP	as above, sets asphere type (ATY) to anamorphic asphere
$\begin{aligned} & \text { KX sk\|si..j } \\ & \text { X_conic_const } \end{aligned}$	X-conic coefficient
KY sk\|si..j   Y_conic_const	Y-conic coefficient, identical with K
AR sk\|si..j coeff	$4^{\text {th }}$ order rotational symmetric coefficient
BR sk\|si..j coeff	$6^{\text {th }}$ order rotational symmetric coefficient
CR sk\|si..j coeff	$8^{t h}$ order rotational symmetric coefficient
DR sk\|si..j coeff	$10^{\text {th }}$ order rotational symmetric coefficient
AP sk\|si..j coeff	$4^{\text {th }}$ order non-rotational symmetric coefficient
BP sk\|si..j coeff	$6^{\text {th }}$ order non-rotational symmetric coefficient
CP sk\|si..j coeff	$8^{\text {th }}$ order non-rotational symmetric coefficient
DP sk\|si..j coeff	$10^{\text {th }}$ order non-rotational symmetric coefficient

### 8.7.7 Cylindrical Surfaces

A cylinder surface is defined by CUX / RDX or CUY/RDY, depending on the orientation of the cylinder. By default, the axis of the cylinder is assumed along the $X$-axis (that is, CUY/RDY $\neq 0, C U X / R D X=$ 0 ). For arbitrary orientations of the cylinder axis use $\gamma$-rotation (CDE).

CYL sk\|si..j	Defines cylinder surface. By default, the cylinder axis is assumed   along the local X-axis, i.e. CUY/RDY $\neq 0, C U X / R D X=0$. The   profile in the local Y/Z-section can be a sphere or an EVEN as-   phere whereas in the local X/Z-plane only spherical sections are   allowed (See also toroidal surfaces, page 78 with the cylinder sur-   face as special case). Use $\gamma$-rotation (CDE) for arbitrary orienta-   tion of the cylinder axis.
ASP CYL sk\|si..j	As above. Complementary syntax.

## Notes:

- Cylinder surfaces may also be defined using the regularEVEN or ODD9 asphere types. In this case, CUX/RDY $\neq 0$ defines a toroidal surface, which, for very large radii $\left(\mathrm{RDX}>10^{10}\right)$, very well approximates a plane section in X .
- In the Y/Z-section any profile according to the EVEN asphere type (see Eq. 8.1, page 70) is allowed, whereas in the X/Z-section the profile is a straight line. Use $\gamma$-rotation (CDE) for any other orientation of the cylinder axis.


## Examples:

```
Cylinder axis along X-axis: CYL s1
 RDY s1 100
Cylinder axis along Y-axis: CYL s1
 RDX s1 100
Arbitrary cylinder orientation: CYL s1
 RDY s1 100
 CDE s1 45 ! }\gamma\mathrm{ -rotation 45
```

Notice that cylinder surfaces may also be defined using the regular EVEN or ODD9 asphere types (see sect. 8.7.1 and 8.7.2). In this case, CUX/RDX $\neq 0$ defines a toroidal surface, which, for very large radii ( $\mathrm{RDX} \geq 10^{10}$ ), very well approximates a plane section in X .

### 8.7.8 Toroidal Surfaces

Toroidal surfaces exhibit different radii/curvatures in X- and Y-direction. A toroidal surface is a subset of the general aspheric surface (type EVEN or ODD9, see sections 8.7.1 and 8.7.2) and is distinguished from a rotationally symmetric asphere by a non-zero X-curvature (CUX $\neq 0$ ). Toroidal surfaces must be of surface type "A" (asphere). Commands for entering curvatures in X-plane and Y-plane are:

CUX	si..j	curv	! curvature in X-direction
RDX	si..j	radius	! radius in X-direction
CUY	si..j	curv	! curvature in Y-direction
RDY	si..j	radius	! radius in Y-direction

Toroidal surfaces are described by the following extension to the aspheric equation8.1 :

$$
\begin{equation*}
z=F(y)+\frac{c_{x}}{2}\left(x^{2}+z^{2}-F(y)^{2}\right) \tag{8.9}
\end{equation*}
$$

where $c_{x}$ is the curvature in the $\mathrm{X} / \mathrm{Z}$ plane and $F(y)$ is equivalent to equation 8.1 respectively 8.5 . Equation 8.9 can be transformed to the normal form by:

$$
\begin{gather*}
0=x^{2}-\left(F(y)^{2}-\frac{2}{c_{x}} F(y)\right)+z^{2}-\frac{2}{c_{x}} z+\frac{1}{c_{x}^{2}}-\frac{1}{c_{x}^{2}}  \tag{8.10}\\
0=x^{2}-\left(F(y)-\frac{1}{c_{x}}\right)^{2}+\left(z-\frac{1}{c_{x}}\right)^{2} \tag{8.11}
\end{gather*}
$$

thus, the toric deformation of the aspheric surface in the $\mathrm{X} / \mathrm{Z}$ plane can be a sphere only. The aspheric deformations in the $\mathrm{Y} / \mathrm{Z}$ plane remain as described in equations 8.1 and 8.5.
The cylinder surface is a special case of the toroidal surface with $\rho_{x}=10^{-10}$. While the EVEN/ODD surface is more general, there is a special asphere type 'CYLINDER' (page 77) which simplifies data input for this special surface/asphere type.

### 8.7.9 Q-Type Polynomials

Aspheric surfaces using Q-type polynomials as described by G.Forbes [63, 64] offer several advantages over the classical monomials as given in sect. 8.7.1. Major advantages are:

- The coefficients have a physical meaning. In particular, Q-type polynomials for aspheric surfaces have units of length and their value directly expresses their contribution to the surface departure.
- The polynomial terms form a descending series giving a clear indication as to when a coefficient becomes irrelevant.
- Q-type polynomial coefficients can be given meaningful tolerances for the fabricator.
- The aspheric terms are orthogonal (within a normalization radius). Each term is unique and simplifies tolerancing.
- Easier definition of slope constraints for improvement of manufacturability.
- Fewer digits of precision are required. This simplifies the numerical burden for transferring asphere prescription data to optical fabrication.
- Helps to reduce the number of terms.

Two Q-type polynomial descriptions are available:

- The Qbfs ("best fit") polynomial form is characterized by an RMS slope departure from a bestfit sphere. The RMS slope of the departure provides a sensible metric of the testability of the surface. It can easily be calculated from the Qbfs coefficients, and it is proportional to mean fringe density. Typically it is intended for use with "mild" aspheres.
- The Qcon ("conic") form is characterized by the sag departure from a base conic.


### 8.7.10 Qbfs Polynomial (SPS QBF)

The SPS QBF surface describes symmetrical aspheres using Qbfs polynomials up to $30^{h}$ order. The aspheric deviation is defined an the basis of a best-fit sphere. The surface sagitta is defined by

$$
\begin{equation*}
z=\frac{c_{b f s} r^{2}}{1+\sqrt{1-c_{b f s}^{2} \cdot r^{2}}}+\frac{u^{2}\left(1-u^{2}\right)}{\sqrt{1-c_{b f s}^{2} r_{n}^{2} u^{2}}} \sum_{m=0}^{13} a_{m} Q_{m}^{b f s}\left(u^{2}\right) \tag{8.12}
\end{equation*}
$$

with
$z \quad$ sag of the surface perpendicular to the vertex tangent plane (parallel to the local z -axis)
$c_{b f s} \quad$ curvature of best-fit sphere
$r \quad=\sqrt{x^{2}+y^{2}}$ radial distance from vertex
$r_{n} \quad$ normalization radius.
$u \quad=r / r_{n}$
$a_{m} \quad m^{t h} Q^{b f s}$ coefficient
$Q_{m}^{b f s} \quad$ the $Q^{b f s}$ polynomial of order $m$.
Given the relation $u^{4} \cdot u^{2 m}=u^{2 m+4}$, the order of the $Q^{b f s}$ polynomial is $2 m+4$. The range $0-13$ for $m$ yields orders 4-30.
In explicit notation, the first six Qbfs basis elements are:

Term	Qbfs polynomial expression
1	1
2	$\frac{1}{\sqrt{19}}\left(13-16 u^{2}\right)$
3	$\sqrt{\frac{2}{95}}\left[29-4 x\left(25-19 u^{2}\right)\right]$
4	$\sqrt{\frac{2}{2545}}\left\{207-4 u^{2}\left[315-u^{2}\left(577-320 u^{2}\right)\right]\right\}$
5	$\frac{1}{3 \sqrt{131831}}\left(7737-16 u^{2}\left\{4653-2 u^{2}\left[7381-8 u^{2}\left(1168-509 u^{2}\right)\right]\right\}\right)$
6	$\frac{1}{3 \sqrt{6632213}}\left[66657-32 u^{2}\left(28338-u^{2}\left\{135325-8 u^{2}\left[35884-u^{2}\left(34661-12432 u^{2}\right)\right]\right\}\right)\right]$

The table below lists the coefficient numbers for the surface parameters of the SPS QBF asphere type. (use alternatively ATY QBF command).

Coefficient	Definition
C1	Conic constant
C2	Normalization radius (NRAD). If a normalization radius is not defined, the
c3	clear Y semi-aperture (e.g. CIR, REY, etc.) is used instead. $^{\text {Ch }}$ order Qbfs coefficient $\left(a_{0}\right)$
C4	$6^{\text {th }}$ order Qbfs coefficient $\left(a_{1}\right)$
C5	$8^{\text {th }}$ order Qbfs coefficient $\left(a_{2}\right)$
C6	$10^{\text {th }}$ order Qbfs coefficient $\left(a_{3}\right)$
C7	$12^{\text {th }}$ order Qbfs coefficient $\left(a_{4}\right)$
C8	$14^{\text {th }}$ order Qbfs coefficient $\left(a_{5}\right)$
C9	$16^{\text {th }}$ order Qbfs coefficient $\left(a_{6}\right)$
C10	$18^{\text {th }}$ order Qbfs coefficient $\left(a_{7}\right)$
C11	$20^{\text {th }}$ order Qbfs coefficient $\left(a_{8}\right)$
C12	$22^{\text {th }}$ order Qbfs coefficient $\left(a_{9}\right)$
C13	$24^{\text {th }}$ order Qbfs coefficient $\left(a_{10}\right)$
C14	$26^{\text {th }}$ order Qbfs coefficient $\left(a_{11}\right)$
C15	$28^{\text {th }}$ order Qbfs coefficient $\left(a_{12}\right)$
C16	$30^{\text {th }}$ order Qbfs coefficient $\left(a_{13}\right)$
$\ldots$	$\ldots$
C32	Number of terms to use in the expansion (i2, il3). If zero (0),
	OpTaliX automatically determines the number of terms by searching for the

Entering coefficients C1 to C32 is accomplished by the SCO command, explained in general on page 82. Specifically for Qbfs surfaces the necessary commands are:

SPS QBF si..j\|sk	Change surface profile to QBF special aspheric surface.
SCO si..j sk ci..j	Defines coefficients for SPS QBF surface(s) si. $\mathrm{l} \mid$ sk. If more   than one coefficient is entered, all coefficients must be specified   on the same command line. Example:   SCO s3 c3..5 0.1 0.2 0.3

### 8.7.11 Qcon Polynomial (SPS QCN)

The SPS QCN surface describes symmetrical aspheres using Qcon polynomials as described by Forbes [63] up to $30^{\text {th }}$ order. The aspheric deviation is defined an the basis of a base conic. The surface sagitta is defined by

$$
\begin{equation*}
z=\frac{c \cdot r^{2}}{1+\sqrt{1-(1+k) c^{2} r^{2}}}+u^{4} \sum_{m=0}^{13} a_{m} Q_{m}^{c o n}\left(u^{2}\right) \tag{8.13}
\end{equation*}
$$

with
$z \quad$ sag of the surface perpendicular to the vertex tangent plane (parallel to the local z-axis)
$c \quad$ vertex curvature (CUY)
$k \quad$ conic constant
$r=\sqrt{x^{2}+y^{2}}$ radial distance from vertex
$r_{n}$ normalization radius (NRAD).
$u \quad=r / r_{n}$
$a_{m} \quad m^{\text {th }} Q^{\text {con }}$ coefficient
$Q_{m}^{c o n} \quad$ the $Q^{c o n}$ polynomial of order $m$.

The Q vector at a particular $x=u^{2}$ is calculated by the following recurrance relationship:
$Q(0, x)=1$
$Q(1, x)=6 x-5$
$Q(n, x)=\frac{(2 * n+3)((n+1)(n+2)(2 x-1)-4) Q(n-1, x)-(n-1)(n+2)(n+3) Q(n-2, x))}{n(n+1)(n+4)}$

In explicit notation, the first six Qcon basis elements are:

Term	Qcon polynomial
1	1
2	$6 u^{2}-5$
3	$15-14 u^{2}\left(3-3 u^{2}\right)$
4	$-\left\{35-12 u^{2}\left[14-u^{2}\left(21-10 u^{2}\right)\right]\right\}$
5	$70-3 u^{2}\left\{168-5 u^{2}\left[84-11 u^{2}\left(8-3 u^{2}\right)\right]\right\}$
6	$-\left[126-u^{2}\left(1260-11 u^{2}\left\{420-u^{2}\left[720-13 u^{2}\left(45-14 u^{2}\right)\right]\right\}\right)\right]$

The table below lists the coefficient numbers for the surface parameters of the SPS QCN asphere type. (use alternatively ATY QCN command).

Coefficient	Definition
C1	Conic constant
C2	Normalization radius (NRAD). If a normalization radius is not defined, the   clear Y semi-aperture (e.g. CIR, REY, etc.) is used instead.
C3	th order Qcon coefficient $\left(a_{0}\right)$   C4
$6^{\text {th }}$ order Qcon coefficient $\left(a_{1}\right)$	


C5	$8^{\text {th }}$ order Qcon coefficient $\left(a_{2}\right)$	
C6	$10^{\text {th }}$ order Qcon coefficient $\left(a_{3}\right)$	
C7	$12^{\text {th }}$ order Qcon coefficient $\left(a_{4}\right)$	
C8	$14^{\text {th }}$ order Qcon coefficient $\left(a_{5}\right)$	
C9	$16^{\text {th }}$ order Qcon coefficient $\left(a_{6}\right)$	
C10	$18^{\text {th }}$ order Qcon coefficient $\left(a_{7}\right)$	
C11	$20^{\text {th }}$ order Qcon coefficient $\left(a_{8}\right)$	
C12	$22^{\text {th }}$ order Qcon coefficient $\left(a_{9}\right)$	
C13	$24^{\text {th }}$ order Qcon coefficient $\left(a_{10}\right)$	
C14	$26^{\text {th }}$ order Qcon coefficient $\left(a_{11}\right)$	
C15	$28^{\text {th }}$ order Qcon coefficient $\left(a_{12}\right)$	
C16	$30^{\text {th }}$ order Qcon coefficient $\left(a_{13}\right)$	
.	$\ldots$	
C32	Number of terms to use in the expansion $(>2,<13) . \quad$ If zero (0),	
	$O p T a l i X$ automatically determines the number of terms by searching for the	

Entering coefficients C1 to C32 is accomplished by the SCO command, explained in general on page 82. Specifically for Qcon surfaces the necessary commands are:

SPS QCN si..j\|sk	Change surface profile to QCN special aspheric surface.
SCO si..jlsk ci..j   coefficient(s)	Defines coefficients for SPS QCN surface(s) si..jlsk.

A test case, the cartesian oval, is given by Forbes [63]. This system is found in the OpTaliX examples
 shown in Fig. 8.9.


Figure 8.9: Cartesian oval using Qcon parameters.

### 8.8 Alternate Intersection Point

It is not always possible to predict the intersection point of a ray with a surface, in particular if the ray is at a high angle to the local surface axis. For example, consider the following case of a conic surface (parabola), where two intersection points are found (Fig. 8.10). Normally, the intersection point at $P_{1}$ would be selected by the program which is correct. If the ray originates from 'inside' of the parabola,
however, the IC command allows selecting the alternate intersection point $P_{2}$ which would be more appropriate.


Figure 8.10: Selection of alternate intersection point and geometrical meaning of IC code. Left: ray starting 'outside' surface, right: ray starting 'inside' surface.

### 8.9 Axicon

Axicon surfaces are rotationally symmetric about the Z-axis and are like a cone, with the tip of the cone at the vertex of the surface. Axicons are modelled by an aspheric surface (surface type "A"). The following examples show the definition of an axicon surface by using the "EVEN" power polynomial asphere respectively the "ODD30" power ( $30^{t h}$ order) polynomial asphere.

### 8.9.1 Axicon modelled by "EVEN" Power Asphere

In the "EVEN" power polynomial asphere only the radius radius of curvature and the conic constant $K$ need to be defined. The radius of curvature is set to a small value, the conic constant is -2 (hyperbola). As a guideline, the radius of curvature should be at least one order of magnitude smaller than the smallest radial aperture of the surface. Make sure that the radius of curvature is NOT zero!
Due to the non-zero radius of curvature there is a small deviation of the slope to that of an axicon near the tip of the cone. This deviation can be made arbitrarily small by selecting a small enough radius of curvature.
From a practical point of view, the cone angle is the most interesting parameter and the only one needed. The cone angle $\theta$ is defined as the angle between the vertex tangent plane (i.e. the plane perpendicular to the Z-axis) and the axicon surface. This angle can be easily converted to the conic constant $K$ by taking the limit case of the standard asphere sag (Eq. 8.1) as the radius of curvature approaches zero (curvature goes to infinity):

$$
\begin{equation*}
K=-\left(\frac{1}{\tan ^{2} \theta}+1\right) \tag{8.15}
\end{equation*}
$$

Example command input:

$$
\begin{array}{ll}
\text { sut s2 a } & \text { ! defines aspheric surface } \\
\text { rdy s2 0.1 } & \text { ! radius of curvature should be small (but must be non-zero) } \\
\text { k s2 -2 } & \text { ! Conic constant (hyperbola) }
\end{array}
$$

### 8.9.2 Axicon modelled by "ODD30" Power Asphere

An alternative way of defining an axicon surface is by using the odd power special asphere (see Eq. 8.6) which accepts coefficients up to $30^{\text {th }}$ order. Its advantage is that the tip of the axicon is exactly modelled because the ODD30 asphere also includes a linear term (slope).

$$
\begin{array}{ll}
\text { sps odd s2 } & \text { ! defines odd ( } 30^{t h} \text { order) aspheric surface } \\
\text { sco s2 c2 } 0.2 & \text { ! sets special surface coefficient C2 }
\end{array}
$$

The cone angle $\theta$ is related to the coefficient $C_{2}$ by the relation

$$
\begin{equation*}
\tan (\theta)=C_{2} \tag{8.16}
\end{equation*}
$$

### 8.10 Hologram Surface

The optical properties of a holographic surface are based on diffraction at the effective grating spacing seen at the local intersection point of a ray. Commonly, holographic surfaces are also denoted as diffractive surfaces. A diffractive lens behaves like an ideal, thin refractive lens with an infinite number of focal lengths given by

$$
\begin{equation*}
f(\lambda)=\frac{\lambda_{0} f_{0}}{m \lambda} \tag{8.17}
\end{equation*}
$$

where $f_{0}$ is the focal length at the design wavelength $\lambda_{0}$ and $m$ is the diffraction order. This result reveals the highly dispersive nature of a diffractive lens. To model these effects, several types of diffractive surfaces are available in $O p T a l i X$.

- Linear grating (section 8.11),
- Variable linear spacing (VLS) grating (section 8.11.1),
- Optical hologram, formed by interfering two beams of light (section 8.10.4),
- Computer-generated holograms (CGH) with a user specified radial symmetric phase distribution (section 8.10.2),
- Computer-generated holograms (CGH) with a user specified asymmetric (two-dimensional) phase distribution (section 8.10.1),
- "Sweatt" model (section 8.10.3).

Diffractive surfaces, which are represented by phase distributions $\Phi(x, y)$, add a phase to a ray when it strikes the diffractive surface. The direction cosines $K, L, M$ of an impinging ray changes according to the classical grating equation, if the vectors are resolved in a rectangular coordinate system oriented with its Z -axis along the local surface normal

$$
\begin{align*}
K^{\prime} & =K+m \cdot \frac{\lambda}{2 \pi} \cdot \frac{\partial \Phi(x, y)}{\partial x}  \tag{8.18}\\
L^{\prime} & =L+m \cdot \frac{\lambda}{2 \pi} \cdot \frac{\partial \Phi(x, y)}{\partial y}  \tag{8.19}\\
M^{\prime} & =\sqrt{1-\left(K^{\prime 2}+L^{\prime 2}\right)} \tag{8.20}
\end{align*}
$$

where $\lambda$ is the wavelength and $m$ is the diffraction order. The partial derivatives of the function $\Phi(x, y)$ are proportional to the local grating frequencies $\nu_{x}, \nu_{y}$

$$
\begin{equation*}
\nu_{x}=\frac{\Phi(x, y)}{x}, \quad \nu_{y}=\frac{\Phi(x, y)}{y} \tag{8.21}
\end{equation*}
$$

and we have

$$
\begin{align*}
K^{\prime} & =K+m \cdot \frac{\lambda}{2 \pi} \cdot \nu_{x}  \tag{8.22}\\
L^{\prime} & =L+m \cdot \frac{\lambda}{2 \pi} \cdot \nu_{y} \tag{8.23}
\end{align*}
$$

Note, that the phase function $\Phi$ is expressed in terms of the absolute optical path difference (OPD), i.e. in lens units. A more detailed treatment of vector ray tracing through general holograms is given by Welford [58].
Some other programs define the phase in units of the reference/design wavelength. For such cases the hologram coefficients must be normalized to the design wavelength first before they can be used in OpTaliX . This is accomplished by the relation

$$
\begin{equation*}
c_{i}(\text { OpTaliX })=\frac{c_{i}(\text { other })}{\lambda_{0}}=\frac{c_{i}(\text { other })}{\text { HWL }} \tag{8.24}
\end{equation*}
$$

with $\lambda_{0}=$ HWL given in $\mu m$.

Note also that diffractive structures (holograms, grating, etc.) exhibit a significant variation of diffracted energy depending on wavelength, incidence/diffraction angle, diffraction order and on the grating structure. This effect is accounted for intransmission analysis (page 331). A detailed description of the relevant theory is given in sect. 8.11.3 (page 93).

## Hologram Data Entry:

The nomenclature for hologram surfaces is uniform throughout all types of holograms, including linear (straight-line ruled) gratings.

HCO si..j ci..j coeff	Hologram coefficients ci. . j on surface(s) si. . j
HCi si..j coeff	Alternative form of entering HOE-coefficients, where " $i$ " denotes a coefficient number. For example, HC12 is coefficient no. 12. This form is particularly useful for defining coefficients as variables in optimization.   The following commands are synonymous: $\begin{array}{lll} \text { HC7 } & \text { s4 } & 0.1234 \mathrm{e}-3 \\ \text { HCO } & \text { s } 4 & \text { C7 } \\ \hline \end{array}$
HOT [si..j] htype	Hologram type, designating which phase function is used.   htype $=0$ : linear grating, see section 8.11,   htype $=1:$ symmetrical phase function as defined in Eq. 8.25,   htype $=2$ : asymmetrical (2d) phase function as defined in section 8.10.1.   htype $=3$ : two-point hologram defined by object and reference point source.   htype $=4$ : VLS-grating (see section 8.11.1).
	continued on next page


continued from previous page	
HWL sk design_wavel	Hologram design wavelength at surface sk, in micrometers.
HOR [sk\|si..j] order	Hologram order, an integer value. Note that the sign of the hologram order must be changed if the orientation of the HOE changes between setups and the local surface normal points in the opposite sense.
GRO [sk\|si..j] order	Grating order, an integer value. This command is obsolete, but still available. Use HOR instead.
$\begin{aligned} & \text { GRX [sk\|si..j] } \\ & \text { grooves_per_mm_X } \\ & \hline \end{aligned}$	Grooves per mm, the diffraction is seen in the X-direction.
$\begin{aligned} & \text { GRY [sk\|si..j] } \\ & \text { grooves_per_mm_Y } \end{aligned}$	Grooves per mm, the diffraction is seen in the Y-direction.
HX1 si..j obj_source_x	X-coordinate of object point source for holographic surface. obj _source_x is given relative to the local coordinate system of the hologram surface.
HY1 si..j obj_source_y	Y-coordinate of object point source for holographic surface. obj_source_y is given relative to the local coordinate system of the hologram surface.
HZ1 si..j obj_source_z	Z-coordinate of object point source for holographic surface. obj_source_y is given relative to the local coordinate system of the hologram surface.
HX2 si..j ref_source_x	X-coordinate of reference point source for holographic surface. ref_source_x is given relative to the local coordinate system of the hologram surface.
HY2 si..j ref_source_y	Y-coordinate of reference point source for holographic surface. ref_source_y is given relative to the local coordinate system of the hologram surface.
Hz2 si..j ref_source_z	Y-coordinate of reference point source for holographic surface. ref_source_y is given relative to the local coordinate system of the hologram surface.
HV1 si..j rea\|vir	Defines object point source as real (REA, diverging beam) or virtual (VIR, converging beam) for the designated surface(s).
HV2 si..j rea\|vir	Defines reference point source as real (REA, diverging beam) or virtual (VIR, converging beam) for the designated surface(s).
SUT [si..j] SG SUT [si..j] SH	Set surface type to put a grating on a (spherical) base surface as given in the example command to the left. See also the full description of the SUT command, page 65.   Set surface type to put a general hologram (including grating) on a spherical base surface as given in the example command to the left. See also the full description of the SUT command, page 65.
BLD [sk\|si..j] depth	Blaze depth in mm. Required in transmission/efficiency calculations.
	continued on next page


continued from previous page	
$\begin{aligned} & \text { BLT [sk\|si..j] } \\ & \text { [IDL\|KIN\|STE\|SIN] } \end{aligned}$	Blaze type used for diffraction efficiency calculations. Specifies the diffractive structure as   IDL : $100 \%$ of the diffracted energy is directed into the specified grating order (GRO/HOR) at all wavelengths.   KIN : Kinoform (sawtooth) profile,   STE : step approximation of the Kinoform profile,   SIN : sinusoidal profile.
BLN [sk\|si..j] levels	Number of discrete levels in the step approximation of a Kinoform diffracting profile.
HPH [sk\|si..j]	Plot hologram phase.
HPHN sj xabs yabs	Returns the phase (in waves) on a diffractive/holographic surface sj
HzO [sk\|si..j]	Calculate zones in radial holograms.
$\begin{aligned} & \text { VLS [si..j] c_3 c_4 } \\ & \ldots \text { c_10 } \end{aligned}$	Adds properties of a variable linear spacing (VLS) grating to a surface, i.e. converts a surface to a VLS grating. Surface type and hologram type are automatically set and do not require any further user interaction. The coefficients c_3 to c_10 are defined in Eqs. 8.33 and 8.34 respectively. For example, c_3 defines the constant grating frequency in grooves $/ \mathrm{mm}$.

### 8.10.1 Asymmetric Phase Function

The function for a generally asymmetric phase is defined by a polynomial function of up to 28 coefficients:

$$
\begin{aligned}
& \Phi(x, y)=a_{1} \\
& \begin{aligned}
a_{2} x & +a_{3} y \\
a_{4} x^{2} & +a_{5} x y+a_{6} y^{2}
\end{aligned} \\
& a_{7} x^{3}+a_{8} x^{2} y+a_{9} x y^{2}+a_{10} y^{3} \\
& a_{11} x^{4}+a_{12} x^{3} y+a_{13} x^{2} y^{2}+a_{14} x y^{3}+a_{15} y^{4} \\
& a_{16} x^{5}+a_{17} x^{4} y+a_{18} x^{3} y^{2}+a_{19} x^{2} y^{3}+a_{20} x y^{4}+a_{21} y^{5} \\
& a_{22} x^{6}+a_{23} x^{5} y+a_{24} x^{4} y^{2}+a_{25} x^{3} y^{3}+a_{26} x^{2} y^{4}+a_{27} x y^{5}+a_{28} y^{6}
\end{aligned}
$$

Note that the phase is a function of $x$ and $y$ and not $z$, and thus is independent of the substrate shape. Individual coefficients $a_{i}$ are entered by the commands HCi or HOC (see also section 8.10 for a complete description of the commands).
Also note that the phase is defined in absolute (lens) units (i.e. typically in mm ).

## Example:

```
sut s2 SH ! base surface is spherical with superimposed hologram
HC3 s1 0.123! Hologram coefficient c3 (a3 term) on surface 1 is 0.123
HOC s1 c3 0.123 ! As above
```


### 8.10.2 Symmetric Phase Function

The phase function of a symmetric hologram takes the absolute value of a power series expansion in the radial coordinate $h$.

$$
\begin{equation*}
\Phi(x, y)=a_{1}+a_{2} h+a_{3} h^{2}+a_{4} h^{3}+a_{5} h^{4}+a_{6} h^{5}+\ldots \ldots \tag{8.25}
\end{equation*}
$$

where $h=\sqrt{x^{2}+y^{2}}$
In the paraxial domain the properties of a lens are completely described by the $a_{3}$ term and the diffractive lens power $\varphi_{\text {diff }}$ is given by

$$
\begin{equation*}
\varphi_{d i f f}=\frac{1}{f}=-2 m a_{3} \lambda \tag{8.26}
\end{equation*}
$$

where $m$ is the diffraction order.
The blaze depth $d$, i.e. the sagitta of the radial groove profile, is then calculated by [62],

$$
\begin{equation*}
d=\frac{\lambda_{0}}{n_{0}-1} \tag{8.27}
\end{equation*}
$$

where $\lambda_{0}$ is the reference wavelength, and $n_{0}$ is the refractive index at the reference wavelength. See also sect. 23.3 about manufacturing aspects and calculation of diffraction zones related to diffractive structures. This section also describes conversion of hologram coefficients to other programs.

### 8.10.3 Sweatt Model

An alternative to the phase models described in the previous sections is to using the so-called Sweatt model. It has been shown by Sweatt [52,53] and Kleinhans [26] that a diffractive lens is mathematically equivalent to a thin refractive lens, provided the index of refraction goes to infinity. For practical cases a very high refractive index $(n=10000)$ is used. This reduces the lens thickness profile and introduces an appreciable shape over a relatively small physical path length. The advantage of this method is, that it allows the use of existing ray tracing routines for designing diffractive lenses. The chromatic properties of the diffractive lens are modelled by

$$
\begin{equation*}
n_{s}(\lambda, m)=m \frac{\lambda}{\lambda_{0}}\left[n_{s}\left(\lambda_{0}\right)-1\right]+1 \tag{8.28}
\end{equation*}
$$

where the subscript $s$ refers to the "Sweatt" model and $\lambda_{0}$ is the design wavelength. The refractive index is proportional to the wavelength. It is implicitly assumed that the design order is the first order. The lens curvatures of the equivalent "Sweatt" model for a given lens power $\varphi$ at the design wavelength are given by

$$
\begin{equation*}
c_{1,2}=c_{s} \pm \frac{\varphi_{0}}{2\left[n_{s}\left(\lambda_{0}\right)-1\right]} \tag{8.29}
\end{equation*}
$$

where $c_{s}$ is the curvature of the diffractive substrate. Higher order terms in the diffractive surface phase polynomial are modelled by aspherization of the base surface.
To simplify the set up of the "Sweatt" model, a material (glass) SWEATT is available. Enter gla sk sweatt in the command line to convert a surface sk to the "Sweatt" model. Alternatively, enter the material (glass) name in the appropriate row/column of the surface spreadsheet editor.

## Example:

```
sut s2 S ! Base surface is spherical. Note, that the surface type "H" is not
 required in the Sweatt model
gla s2 sweatt ! Defines the high-index glass "SWEATT"
hwl s2 0.633!Design wavelength used in the Sweatt model is 0.633 \mum
```


### 8.10.4 Two-Point Hologram

This type of holographic surface describes the interference pattern of two point sources, i.e. two spherical waves, which includes plane wavefronts as the limiting case. The local grating frequency is determined by the location and orientation of the resultant interference fringes. To model a two-point hologram, the location of the two sources and the wavelength of the source beams must be given. The sources used to record the hologram are specified by X-, Y- and Z-coordinates relative to the local coordinate system of the holographic surface. The parameters are $\mathrm{HX1}, \mathrm{HY} 1, \mathrm{HZ1}$ for the object point source and HX2, HY2, HZ2 for the reference point source.
The parameters HV1 and HV2 define from which side each beam is directed during construction. Point sources are considered real if the beam is diverging from the source, or virtual if the beam is converging toward the source.
Tracing a ray through a holographic surface makes use of the information about the geometry of formation of the hologram. Unlike to phase models, the local fringe spacing is not explicitly computed . Holograms can be applied to surfaces of any arbitrary shape.
We follow the notation by Welford [58] and let $n$ be a unit vector along the local normal to the hologram surface (see Fig. 8.11). The hologram is recorded by two spherical wavefronts emerging from the object point source and the reference point source, represented by the vectors $r_{o}$ and $r_{r}$. The unit vectors $r_{o}^{\prime}$ and $r_{r}^{\prime}$ represent the reconstruction and image rays at the intersection point $P$. The image ray $r_{r}^{\prime}$ is obtained by the equation

$$
\begin{equation*}
n \times\left(r_{o}^{\prime}-r_{r}^{\prime}\right)=\frac{m \lambda^{\prime}}{\lambda} n \times\left(r_{o}-r_{r}\right) \tag{8.30}
\end{equation*}
$$

where $m$ is the order of diffraction, $\lambda$ is the recording wavelength (design wavelengthHWL) and $\lambda^{\prime}$ is the reconstruction wavelength.
In a coordinate system oriented with its Z -axis to the local surface normal at $P$ the vectors are resolved into two components

$$
\begin{align*}
K_{0}^{\prime}-K_{r}^{\prime} & =\frac{m \lambda^{\prime}}{\lambda}\left(K_{0}-K_{r}\right) \\
L_{0}^{\prime}-L_{r}^{\prime} & =\frac{m \lambda^{\prime}}{\lambda}\left(L_{0}-L_{r}\right) \tag{8.32}
\end{align*}
$$

of a typical unit vector (K,L,M).

## Example using a two-point model:

sut s2	SH	! base surface is spherical with superimposed hologram
hot s2	3	! Hologram type specifies "two-point" hologram
hz1 s2	$-1 . e 20$	! Object point source is at infinity, object wavefront is flat.
hz2	s2	50

Note, that all other point source parameters (HX1,HY1, HX2,HY2) are initially zero.

## Design Example:

An example holographic lens is found in the directory $\$ i \backslash e x a m p l e s \backslash d i f f r a c t i v e \backslash t w o-p o i n t-h o e . o t x . ~$


Figure 8.11: Notation for ray tracing at a holographic surface.

The diffractive optical element (DOE) is recorded with a $\mathrm{He}-\mathrm{Ne}$ laser at a wavelength $0.6328 \mu \mathrm{~m}$. The location of the point sources are specified in the local coordinate system of the holographic optical element (HOE).
We also note the hologram construction parameters as shown in the surface listing (see LIS command):

```
Hologram coefficients :
1 HOT 3 HOR -1 HWL 0.63300
\begin{tabular}{cccc}
HOT & HOR & HWL & HX2 \\
HX1 & 0.0000 & 0.0000 \\
HY1 & 0.0000 & HY2 & 0.0000 \\
HZ1 & \(-0.10000 \mathrm{E}+21\) & HZ2 & 50.000 \\
HV1 & REA & HV2 & REA
\end{tabular}
```

Since this is an on-axis lens, the location of the point sources of the recording laser beams are at HX1 $=\mathrm{HY} 1=0$, and $\mathrm{HX} 2=\mathrm{HY} 2=0$. Point source 1 is at infinity ( $\mathrm{HZ1} 0$ ), so it is actually a plane wave at the hologram surface. Point source 2 is located at the focal point, which is 50 mm to the right of the HOE (HZ2 50.0). Based on elementary holography theory, the plane wave incident to the hologram will be diffracted into a spherical (on-axis) wave converging to the focal point and thus constructing a perfect image.
We also note the curvature of the hologram surface. For on-axis imaging it does not make any difference whether the hologram surface is curved or not, since the hologram is recorded by two (perfect) point sources located on the axis. In this case the reconstruction geometry is identical to the recording geometry. For off-axis imaging, however, a curved hologram substrate is analogous to "bending" of a thin lens and yields coma-free and aplanatic imaging.

### 8.11 Diffraction Grating Surface

Diffraction gratings are a subset of holographic surfaces and are used to model straight-line ruled gratings. This simplifies data entry without the need to fully specify complex holograms. However, gratings may also be specified by an asymmetric hologram surface (see section8.10.1, in which the


Figure 8.12: Two-point hologram on curved substrate. See example file at \$i\examples\diffractive\two-point-hoe.otx
linear coefficients $a 2, a 3$ directly give the grating frequency in X- and Y-direction. The straight rules may have any orientation with respect to the base surface (respectively the local coordinate system). The orientation is defined by proper setting of the grating frequency in X- and Y-direction (GRX, GRY). The grating frequency is always defined on the surface tangent plane in lines (grooves) per millimeter.

GRX [si..j] grooves_per_mm_X	Grooves per mm, the diffraction is seen in the X-   direction.
GRY [si..j] grooves_per_mm_Y	Grooves per mm, the diffraction is seen in the Y-   direction.
HOR [si..j] order	Hologram diffraction order, an integer value.
SUT [si..j] SG	Set surface type to put a grating on a (spherical) base   surface as given in the example command to the left.   See also the full description of SUT command (page   67).

## Example:

sut	s2	SG	! base surface is spherical with grating additive
hor	s2	1	! Diffraction order is +1
gry	s2	100	! Grating frequency is seen in Y-direction at 100 Lines $/ \mathrm{mm}$.
grx	s2	55	! Grating frequency is seen in X-direction at 55 Lines $/ \mathrm{mm}$.

### 8.11.1 Variable Line Spacing (VLS) Grating Surface

A linear variable spacing grating (VLS-grating) is a special form of a straight-line ruled grating (see previous section). The phase is described by a polynomial function

$$
\begin{equation*}
\Phi(y)=a_{3} y+a_{4} y^{2}+a_{5} y^{3}+a_{6} y^{4}+a_{7} y^{5}+a_{8} y^{6}+a_{9} y^{7}+a_{10} y^{8} \tag{8.33}
\end{equation*}
$$

The grating frequency $\nu_{y}$ is the first derivative of $\Phi$

$$
\begin{equation*}
\nu_{y}=a_{3}+2 a_{4} y+3 a_{5} y^{2}+4 a_{6} y^{3}+5 a_{7} y^{4}+6 a_{8} y^{5}+7 a_{9} y^{6}+8 a_{10} y^{7} \tag{8.34}
\end{equation*}
$$

Note that a VLS-grating is only defined in the Y-direction. Arbitrary orientations of the grooves can be simulated by applying a Z-rotation to the surface (see CDE command). Also note that the coefficients numbering starts at 3 , which ensures consistency with the definitions of the conventional grating (sect. 8.11) and the asymmetric phase function (sect. 8.10.1).
The grating frequency $\nu_{y}$ is always defined on the tangent plane of a surface. If only $a_{3}$ is specified, the VLS-grating behaves like a straight-line ruled gratings with constant groove spacing (grating frequency $=a_{3}$ in grooves $/ \mathrm{mm}$ ).
A VLS-grating is traced in OpTaliX similarly to an asymmetric phase hologram. Therefore the surface type must be " H ".

## Example:

sut s2	SH	! base surface is spherical plus hologram
hor s2	1	! Diffraction order is +1
hot s2	4	! Hologram type is VLS-grating
hco s2	c3 100	! Hologram coefficient 3 (equivalent to the grating frequency $=100$ grooves $/ \mathrm{mm}$ ).
hc3 s2 100	! as above.	

A simplified form of entering/defining VLS gratings is provided by the following command:

```
VLS [si..j] c_3 c_4
C_10
```

Adds properties of a variable linear spacing (VLS) grating to a surface, i.e. converts a surface to a VLS grating. Surface type and hologram type are automatically set and do not require any further user interaction. The coefficients c_3 to c-10 are defined in Eqs. 8.33 and 8.34 respectively. For example, c_3 defines the constant grating frequency in grooves $/ \mathrm{mm}$.

### 8.11.2 Conversion of Coefficients for a VLS Grating

A different form of describing VLS-gratings on a curved substrate is occasionally used. It is given by Kita et.al. [25]

$$
\begin{equation*}
\sigma=\frac{\sigma_{0}}{\left(1+\frac{2 b_{2} w}{R}+\frac{3 b_{3} w^{2}}{R^{2}}+\frac{4 b_{4} w^{3}}{R^{3}}\right)} \tag{8.35}
\end{equation*}
$$

where the groove spacing $\sigma$ is defined as a function of the local coordinate $w$ measured from the center of the grating and the radius of curvature $R$ of the concave grating surface. The coefficients $b_{2}, b_{3}, b_{4}$ are easily converted to the form used in OpTaliX (Eq. 8.34)
In the Kita paper, the groove spacing $\sigma$ is defined as a function of the local coordinate $w$ measured from the center of the grating and the radius of curvature $R$ of the concave grating surface, whereas in OpTaliX the groove spacing is expressed by the grating frequency $\nu$

$$
\begin{equation*}
\nu_{y}=a_{3}+2 a_{4} y+3 a_{5} y^{2}+4 a_{6} y^{3}+\ldots . \tag{8.36}
\end{equation*}
$$

Groove spacing and (local) grating frequency are related by $\nu=1 / \sigma$. Inserting into Eq. 8.35 and rearranging yields

$$
\begin{equation*}
\nu=\nu_{0}+\frac{2 \nu_{0} b_{2}}{R} y+\frac{3 \nu_{0} b_{3}}{R^{2}} y^{2}+\frac{4 \nu_{0} b_{4}}{R^{3}} y^{3} \tag{8.37}
\end{equation*}
$$

A deeper analysis indicates that the conventions of the coordinate axes used in the paper by Kita and those used in OpTaliX are different. Obviously $w=-y$. Thus, we modify Eq. 8.37 accordingly

$$
\begin{equation*}
\nu=\nu_{0}-\frac{2 \nu_{0} b_{2}}{R} y+\frac{3 \nu_{0} b_{3}}{R^{2}} y^{2}-\frac{4 \nu_{0} b_{4}}{R^{3}} y^{3} \tag{8.38}
\end{equation*}
$$

Comparing Eqs. 8.34 and 8.38, the conversion formulas are directly obtained as

$$
\begin{align*}
& a_{3}=\nu_{0}=1 / \sigma_{0} \\
& a_{4}=-\frac{\nu_{0} b_{2}}{R}=-\frac{b_{2}}{\sigma_{0} R} \\
& a_{5}=\frac{\nu_{0} b_{3}}{R^{2}}=\frac{b_{3}}{\sigma_{0} R^{2}}  \tag{8.39}\\
& a_{6}=-\frac{\nu_{0} b_{4}}{R^{3}}=-\frac{b_{4}}{\sigma_{0} R^{3}}
\end{align*}
$$

## Numerical Example:

We use the data given in the paper by Kita 8.35: $R=5649 \mathrm{~mm}, \sigma_{0}=1 / 1200 \mathrm{~mm}, b_{2}=-20$, $b_{3}=4.558 \cdot 10^{2}, b_{4}=-1.184 \cdot 10^{4}$. The following table shows the analytically converted coefficients.

OpTaliX   Coeff.	calculated   from Eq. 8.39
$a_{3}$	1200
$a_{4}$	4.2485
$a_{5}$	$1.714 \cdot 10^{-2}$
$a_{6}$	$7.882 \cdot 10^{-5}$

### 8.11.3 Diffraction Efficiency Calculation

OpTaliX calculates the scalar diffraction efficiency on surfaces that contain diffractive structures (hologram, grating). Diffraction efficiency describes the amount of energy associated to a ray when passing a diffractive structure. Diffraction efficiency depends on wavelength, incidence angle, diffraction order and on the profile of the diffractive structure. The scalar model implemented in OpTaliX currently does not include variations due to polarization state.
The results of diffraction efficiency calculations are included in transmission analyses (requires settings TRA Y and POL Y ).
The following profiles of diffractive structures are currently available:

- Sawtooth Profile (Kinoform Blaze Type)
- Sawtooth Step Approximation
- Sinusoidal Profile


### 8.11.3.1 Sawtooth Profile (Kinoform)

The diffraction efficiency into the $m^{\text {th }}$ diffracted order of a sawtooth (Kinoform) profile (Fig. 8.13) is approximated by

$$
\begin{equation*}
\eta(m)=\left(\frac{\sin [\pi(\alpha-m)]}{\pi(\alpha-m)}\right)^{2} \tag{8.40}
\end{equation*}
$$

with:

$$
\begin{aligned}
\alpha & =\frac{d_{1}\left(n_{1} \cdot \cos \theta_{1}-n_{2} \cdot \cos \theta_{2}\right)}{\lambda} \\
m & =\text { diffracted order (GRO or HOR) } \\
d_{1} & =\text { blaze depth (BLD) } \\
n_{1} & =\text { refractive index before surface } \\
n_{2} & =\text { refractive index after surface } \\
\lambda & =\text { wavelength } \\
\theta_{1} & =\text { local incidence angle of ray } \\
\theta_{2} & =\text { local diffraction angle of ray }
\end{aligned}
$$



Figure 8.13: Sawtooth profile of a diffracting structure (Kinoform structure)

Within each period, the profile is a linear function of the spatial coordinate $x$. The blaze depth $d$ (BLD command) of the local grating structure is always measured to the local surface normal.

### 8.11.3.2 Sinusoidal Profile

The diffraction efficiency into the $m^{t h}$ diffracted order of a sinusoidal profile (Fig. 8.14) is approximated by

$$
\begin{equation*}
\eta(m)=\left[J_{m}(\pi \cdot \alpha)\right]^{2} \tag{8.41}
\end{equation*}
$$

where $\alpha=\frac{d_{1}\left(n_{1} \cdot \cos \theta_{1}-n_{2} \cdot \cos \theta_{2}\right)}{\lambda}$, and $J_{m}$ is the Bessel function of first kind, order $m$.

### 8.11.3.3 Step Approximation

The step approximation of a Kinoform profile is specified by the BLT STE command. The diffraction efficiency into the $m^{t h}$ diffracted order of a step approximation of a Kinoform profile (Fig. 8.15) is approximated by

$$
\begin{equation*}
\eta(m)=\left[\frac{\sin (m \pi / N)}{m \pi}\right]^{2} \cdot\left[\frac{\sin (\pi(\alpha-m))}{\sin (\pi(\alpha-m) / N)}\right]^{2} \tag{8.42}
\end{equation*}
$$



Figure 8.14: Sinusoidal profile of a diffracting structure.
where:
$N=$ number of discrete levels in each grating period (BLN command).
$\alpha=\frac{d_{1}\left(n_{1} \cdot \cos \theta_{1}-n_{2} \cdot \cos \theta_{2}\right)}{\lambda}$
$m=$ diffracted order (commands GRO or HOR)
$d_{1}=$ blaze depth (BLD command)
$n_{1}=$ refractive index before surface
$n_{2}=$ refractive index after surface
$\lambda=$ wavelength
$\theta_{1}=$ local incidence angle of ray
$\theta_{2}=$ local diffraction angle of ray


Figure 8.15: Step approximation profile of a Kinoform diffracting structure.

### 8.11.3.4 Diffraction Efficiency Example

The effect of diffraction efficiency at diffractive structures (hologram, grating, etc.) can be best demonstrated with transmission analysis vs. wavelength. Load the example file \$i\examples\spectrometer\rowland-grating.otx.
The optical system, as shown in Fig. 8.16 contains a linear grating on a curved surface. The necessary parameters required to analyze diffraction efficiency effects are blaze type (BLT) and blaze depth (BLD):

```
BLT s1 KIN Blaze type is Kinoform
BLD s1 0.00027 Blaze depth is 0.00027 mm
```

Transmission analysis vs. wavelength is then accomplished by the command:

```
TRA LAM
```

See Fig. 8.17 for the corresponding transmission curve.


Figure 8.16: Rowland grating.

### 8.12 Fresnel Surface

In a Fresnel lens the curved surface of a lens is collapsed in annular zones to a thin plate. As shown in Fig. 8.18, this has the refracting effect of the lens without its thickness or weight. Such lenses are often used as condensors in overhead projectors, spotlights and signal lamps.
A Fresnel lens is defined by the radius of curvature $R$ of the refracting surface (as it would be defined for a conventional lens) and the depth $d$ of the annular zones (see Fig.8.18).

FTH fresnel_depth	Fresnel thickness, that is the depth or thickness of the annular rings.   Smaller values for FTH result in a finer radial spacing of the annular   zones. This option is currently only available in the command line. It   cannot be set from the menu. Note that the surface type (SUT) must   be "F" in conjunction with the "S" or "A" qualifier for the surface   shape (S = spherical, A = aspherical).

Note, that "shadowing" effects due to the finite thickness of the structure are not taken into account during ray tracing.

## Example input:

```
sut s1 SF !defines a Fresnel surface with spherical base curvature
rdy s1 30 ! defines base radius, which controls refraction
fth s1 1 ! depth of annular zones
```


### 8.13 Total Internal Reflection (TIR) Surface

Total internal reflection (TIR) occurs on glass-air interfaces when the angle of incidence in the medium of higher index exceeds the critical angle $\theta_{c}$. Under that condition there can be no refracted light and every ray undergoes total reflection as shown in Fig. 8.19.
The critical angle is calculated by


Figure 8.17: Diffraction efficiency calculation on a Rowland grating with a "Kinoform" profile.

$$
\begin{equation*}
\sin \left(\theta_{c}\right)=\frac{n}{n^{\prime}} \tag{8.43}
\end{equation*}
$$

A TIR surface always behaves like a mirror surface, except that TIR condition is calculated to determine whether a ray is valid or is blocked. Thus, rays that hurt the TIR condition (i.e. the angle of incidence is less than $\theta_{c}$ are blocked whereas rays at $\theta>\theta_{c}$ is reflected.

A TIR surface is defined by the following command:

TIR sk\|si..j   or   RMD TIR sk\|si..j	Defines total internal reflecting surface (TIR). Adds " T " to surface type. A TIR surface behaves like a mirror surface except that rays only pass if TIR condition is fulfilled. See also RMD TIR, respectively REFL and REFR to convert a surface to reflecting or refracting mode.   Calculating TIR condition requires proper definition of both materials, GL1 and GL2, where, according to Eq. $8.43, n=$ index of GL1 and $n^{\prime}=$ index of GL2. By default, $n^{\prime}=1$.   The TIR flag is ignored at non-sequential surfaces as the TIR condition is always checked and the corresponding ray direction is automatically chosen.

Light is totally reflected, i.e. $R=1$, if the TIR condition according to Eq. 8.43 is fulfilled, however, there is a phase change on reflection which depends on incidence angle, wavelength and which is different for S- and P-components (polarized light). The phase changes are calculated by 4$]$

$$
\begin{equation*}
\tan \frac{\delta_{1}}{2}=-\frac{\sqrt{\sin ^{2} \theta_{i}-n^{2}}}{n^{2} \cos \theta_{i}} \tag{8.44}
\end{equation*}
$$



Figure 8.18: Fresnel lens and construction method of annular zones.


Figure 8.19: Total internal reflection (TIR) condition.

$$
\begin{equation*}
\tan \frac{\delta_{2}}{2}=-\frac{\sqrt{\sin ^{2} \theta_{i}-n^{2}}}{\cos \theta_{i}} \tag{8.45}
\end{equation*}
$$

where the subscript (1) means S-polarization (German: senkrecht) and (2) means P-polarization (German: parallel).
Although there is no loss of light at TIR, the wavefront (i.e. phase) is altered according to Eqs. 8.44 and 8.45. For unpolarized light, the impact on wavefront $\Delta w$ is given by

$$
\begin{equation*}
\Delta w=\frac{\left(\delta_{1}-\delta_{2}\right) \lambda}{2 \pi} \tag{8.46}
\end{equation*}
$$

The phase change is always applied, irrespectively of whether polarization ray trace is enabled or not (see POL).
An example showing the effect on wavefront is provided in \$i\examples $\backslash \mathrm{misc} \backslash$ tir.otx. The results are shown in Fig. 8.20

Even though the aspheric lens should provide a near perfect image, the coma-like tail appearing on the PSF in Fig. 8.20 is caused by wavefront (phase) variation as a function of incidence angle variation across the pupil, in particular by those rays striking the TIR surface in the neighborhood of the critical angle $\theta_{c}$. Note that the focussed spot of Fig. 8.20 is not centered on the optical axis but is shifted. This shift is known as the Goos-Hanchen effect. Similarly, we may explain this effect in the language


Figure 8.20: Total internal reflection example. See \$i\examples $\backslash \mathrm{misc} \backslash$ tir .otx. Shows optical layout (left), wavefront (right) and point spread function (underneath).
of Fourier-Transform theory by multiplying a function (the wavefront) by a linear phase factor. See also Mansuripur [36] for a more thorough explanation of this effect.

### 8.14 Non-Sequential Surface

Non sequential surfaces (NSS) are a special subset of the total lens, where the sequence of the surfaces, which are hit by a ray, is determined by the light ray itself. This means that the program automatically determines which surface is hit next.

Command Overview:

NSS si..j	Converts a group of (previously entered) sequential surfaces   into an equivalent NSS-range. The command automatically   sets the correct tilt types on entrance port and exit port. The   non-sequential surface range may also include the object sur-   face (e.g. NSS so. . 8), however, ray aiming is unlikely to   work properly in this case. The NSS so . k option is mainly   useful in illumination applications with predefined rays (see   also source rays, page 308).
DEL NSS si..j	Converts a group of non-sequential surfaces into sequential sur-   faces. Tilts and decenters are appropriately changed to reflect   the sequential model. If there is more than one NSS range in an   optical system, each range must be separately converted. Thus,   it is not allowed to convert the whole surface range spanning   the NSS sub-ranges.
GL1 si..j glass-name	Define glass on the "left side" (i.e. the side with negative local   Z-axis) of the surfaces si..j
GL2 si..j gl-name	Define glass on the "right side" (i.e. the side with positive local   Z-axis) of the surfaces si..j
MXH si..j max_hits	Maximum number of hits allowed for each surface in a NSS-   range before declaring a ray failure. Note that each non-   sequential surface may be assigned a different value for MXH.   Ray tracing may also be terminated if a surface with absorbing   (obstructing) property is hit.

Add " N " to the surface type (SUT) to specify a non-sequential surface. In OpTaliX non-sequential surfaces are always handled as decentered surfaces, even where all decenter/tilt data on a designated surface are zero. Thus, the surface type qualifier "D" must always be specified in conjunction with non-sequential surfaces. Consecutive non-sequential surfaces are defined in a NSS-range. The number of NSS-ranges within an optical system is unlimited. Fig. 8.21 shows the definition of nonsequential surfaces within the environment of sequential surfaces. A NSS-range is defined by an entrance port surface and an exit port surface. The entrance port surface is sequential, since it is the last surface of the sequential range. The exit port surface is non-sequential, since it is the last surface of the NSS-range. All surfaces entered between the entrance- and exit- port surface are nonsequential. Within a specified NSS-range, they may be entered in any order and may be arbitrarily tilted and decentered. The entrance port and exit port surfaces must have the tilt mode NAX, whereas for all other surfaces within a NSS-range the tilt mode DAR must be selected. NAX and BEN tilt modes are not allowed in a NSS-range!

### 8.14.1 Converting Sequential Surfaces to Non-sequential Surfaces

A range of sequential surfaces is converted to non-sequential surfaces by the command NSS si..j. This conversion automatically performs the following steps:

- set the glasses GL1 and GL2,
- set the tilt modes (TLM) of all surfaces inside the NSS-range to DAR,
- set the tilt modes (TLM) of entrance port and exit port to NAX,
- freezes all apertures (i.e. all apertures of surfaces inside the NSS-range are checked if a ray hits the surface inside the aperture (valid) or outside (invalid),
- refer all non-sequential surface vertex coordinates locally to the entrance port.

Also note that all surfaces in the range must be sequential surfaces. Ranges containing both sequential and non-sequential surfaces (before conversion is attempted) may lead to unexpected results, because they cannot be unambiguously converted.

### 8.14.2 Non-Sequential Coordinate System

The entrance port surface defines a new (local) coordinate system for all subsequent surfaces within a NSS-range. The origin is at the vertex of the entrance port surface. All non-sequential surfaces in a given NSS-range are entered by specifying their X, Y and Z decenters ( XDE,YDE,ZDE) and their Euler rotation angles ( $\mathrm{ADE}, \mathrm{BDE}, \mathrm{CDE}$ ) with respect to this (local) coordinate system. Note that the separation (THI - command) has no meaning for NSS and is (must) therefore set to zero for all non-sequential surfaces. The THI-values are ignored within a NSS range. To specify the Z-location of a non-sequential surface relative to the entrance port coordinate system, use theZDE command instead.
The exit port surface, being of type non-sequential, defines a new coordinate system for the following sequential surfaces. The origin is at the vertex of the exit port surface. The entrance port surface and the exit port surface must not be mirror surfaces. The image surface must be sequential. NSS-ranges must not overlap.


Figure 8.21: Definition of non-sequential surface range.

### 8.14.3 Glass Specification for Non-Sequential Surfaces

With a NSS-range, two glasses must be specified for each non sequential surface: The GL1 command specifies the glass on the "left side" of the surfaces (the side containing the negative local Z-axis). GL2 specifies the glass for the opposite side (positive local Z-axis).

### 8.14.4 Transfer between Non-Sequential Surfaces

At a given surface, the program traces the intersection points of a ray with all other surfaces within a NSS-range. On the basis of this information, the transfer of a ray from one NSS to the next NSS is determined by the following criteria:
The optical path difference (OPD) must always be positive. "Virtual" ray trace within a NSS-range is not allowed. If more than one surface with positive OPD exist, the surface with the smallest OPD
is selected. It is not possible to ignore aperture violations (i.e. a ray falls outside of the valid aperture definition). The ray intersection point must always be within the valid aperture definition. A ray can hit the same surface two or more times in succession without having to transfer to another surface.

Entrance port surface : The surface is always a sequential surface (since it is the last surface of the sequential range) and of type "SD" or "AD". It defines a new axis and a new origin for all subsequent surfaces in the NSS-range. The tilt modus (TLM) is 1 (NAX), defining a new coordinate system, with its origin at the vertex of the entrance port surface.

Exit port surface: The surface is always a non-sequential surface (since it is the last surface in the NSS-range) and decentered. ( $\mathrm{TLM}=1$ ).

All other surfaces in NSS-range: Surfaces are always referred to the origin (local vertex coordinates) of the entrance port surface.

### 8.14.5 Absorbing (obstructing) Surface Property

An absorbing property may be assigned to a non-sequential surface by declaring the primary aperture (pupil) p1 on a surface obstructing. For example,

```
cir s3 obs
```

sets the aperture type (property) of a circular aperture to obstructing. A ray which hits an absorbing (obstructing) surface is terminated on that surface.

### 8.14.6 General Notes on Non-Sequential Ray Tracing

The object surface and the image surface cannot be included in a non-sequential range.
It is possible to set up non-sequential ranges such that a ray that enters cannot exit. To avoid infinite ray trace loops, a maximum of hits on a given surface can be specified. See the MXH command, which provides a means to terminate non-sequential ray tracing after a certain number of surface hits. Pupil finding may be unpredictable whenever the stop is a non-sequential surface or follows a nonsequential surface. It is recommended that the stop is placed ahead of any non-sequential range whenever possible.

### 8.15 Pickup Surfaces

The parameters of a surface can be made dependent on the setting of another surface. This is particularly useful in double pass or symmetrical systems where surface parameters, such as curvature, thickness, tilt/decenter, material, aspheric coefficients, are specified by a linear relationship with parameters on a preceding surface. In the simplest case, the value of a parameter can be directly copied (picked up) from another (preceding) surface, however, its value may also be negated or scaled by a factor.
A pickup is used to specify a particular surface parameter (such as a radius) by the value of another surface parameter of the same kind (e.g. another radius). The parameter to be picked up is an independent parameter, as its value can be independently specified. The parameter defined at the pickup
surface is the dependent parameter as its value is permanently updated on changes of the independent parameter.
Pickups can be applied to a group of surface parameters, for example to all tilt/decenters (XDE, YDE, ZDE, ADE, BDE, CDE) as a whole, or may be individually specified for single parameters (for example XDE only).
Surface pickups are specified by the commands:

```PIK XXX sk sj [ A [ B ]] or PIK DEC sk sj [A] or PIK ASP sk sj```	Pickup parameter XXX for surface sk from surface sj . Optional parameter:   A: Multiply by value A (default 1.0)   B: Add offset B (default 0.0)   DEC: Pickup all decenter data as a group   ASP: Pickup all aspheric coefficients as a group.   Examples: $\begin{array}{llll} \text { PIK THI s4 } & \text { s3 } \\ \text { PIK CUY } & \text { s } 4 & \text { s3 } & -1.0 \\ \text { PIK GLA } & \text { s } & \text { s3 } \end{array}$
LIS PIK [sk\|si..j] or PKL	List pickups.
DEL PIK XXX [sk\|si..j]	Delete all pickups denoted by XXX parameter in the specified surface range.

Notes:

- If the dependent surface is not already decentered, it is automatically converted to a decentered surface (i.e. adds the "D" qualifier to the surface type, see sect. 8.6).
- If the dependent surface is not already an aspheric surface, it is automatically converted to an aspheric surface (i.e. adds the "A" qualifier to the surface type, see sect. 8.6).

Pickups may be entered in any order and pickups can be chained. That is, a dependent parameter can become the independent parameter of an other pickup. For example, the independent pickups

```
PIK CUY s3 s1
PIK CUY s5 sl
```

are equivalent to chaining pickups

```
PIK CUY s3 sI
PIK CUY s5 s3
```

Pickups may also be defined in reverse order. For example,

Circular pickups are not allowed. For example,

```
PIK CUY s3 s2
PIK CUY s2 s3
```


More Examples:

PIK CUY s5 s4	The curvature of surface 5 is picked up from surface 4 .
PIK THI s3 s2-1.0	The distance of surface 3 is picked up from surface 2 with opposite sign of surface 2 .
PIK ASP s3 sl	All aspheric coefficients A,B,C,D,E,F,G,H and the Xradius of curvature (except conic constant K) of surface 3 are picked up from surface 1. This is a group pickup, i.e. all aspheric coefficients (including CUX) are picked up from the designated surface (surface 1).
PIK D s3 s1	Pick up aspheric coefficient D only. Disables group pickup on s3, if previously enabled.
PIK GLA s4 sl	As above, material properties of surface 5 are picked up from surface 1

8.15.1 Group Pickups

Individual pickups may be grouped together as a single entity. This holds for tilt/decenter pickups and asphere pickups only. Group pickups are entered in the command line by

```
PIK DEC s3 s1 Pickup all decenter/tilt parameter at surface 3 from surface 1 (group pickup)
PIK ASP s4 s2 Pickup all aspheric coefficients at surface 3 from surface 1 (group pickup)
```

In the surface editor, group tilt/decenter pickups are specified by selecting the "Decenter, Tilts" tab and entering the pickup surface in the "Pik" column, as shown in Fig. 8.22.

Figure 8.22: Defining group pickups for tilt/decenter parameter.

Note that individual pickups (shown in the columns right to each parameter column) reflect the setting of the group pickup. Specifying an individual pickup (see sect. 8.15 .3) will automatically remove the group pickup on that particular surface.

8.15.2 Individual Pickups

Individual pickups are applicable only for tilt/decenter parameters and aspheric parameters. An individual pickup specifies a pickup for a single parameter only. For example,

```
PIK E s3 s1 Pickup only E aspheric coefficient at surface 3 from surface
                                1 (individual pickup)
PIK YDE s3 s1 Pickup only YDE decenter value at surface 3 from surface
    1 (individual pickup)
```

Entering an individual pickup will automatically remove the group pickup on that particular surface.

Individual pickups										
(6) Surface Editor: E:\optalix \examples\Misc\DOUBLE_GAUS5.OTX									- \|可x	
Standard Data	Decenter, Tills	Asphere GRIN		Solves Special/Apertures Hplogram / Misc. \|						
	THR	TLM	SEQ.	Pik	XDE	YDE	¢DE	ADE	BDE	®
OBJ S	0.00000	DAR	XIZABC		0.000000	0.00000\%	D.000000	0.000000	0.000000	
1 S	0.00000	DAR	x KZABC		0.000000	0.000000	1.008000	0.000000	0.000000	
2 AD	0.00000	DAR	SIZABC		3.000000	4.000000\%	0.00000 g	0.000000	0.000000	
3 SDA	0.00000	DAR	x MZABC	+	3.000000	2 -4.000000-2	1.000000	0.000000	0.000000	
STO AD	0.00000	DAR	x KZABC	1	0.000000	3.000000	0.000000	0.000000	0.000000	
IMG S	0.00000	NAX	x Z ABC		0.000000	0.000000	0.000000	0.000000	0.000000	
4\|										

Figure 8.23: Defining individual pickups for tilt/decenter parameters.

8.15.3 Pickups vs. Solves

Pickups are evaluated prior to solves. That is, a solve on the same surface affecting the pickup parameter will override the pickup value. Consider the following example:

```
cpi s3 1
sol umy s3 -0.1
```

The first command cpi s3 1 picks the curvature on surface 3 from surface 1 . The second command, however, alters (solves) the curvature on surface 3 such that the paraxial marginal ray angle on surface 3 is -0.1 . The pickup on surface 3 will be ineffective.
Note that aperture data cannot be picked up. This is due to multiple apertures being allowed on a surface.

8.15.4 Listing Pickups

Listing pickups is accomplished by the command LIS PIK. Here is a sample output:

PICKUPS :				Factor	Offset
$\#$				DEC	3
2	PIK	DE000	0.0000		
3	PIK	CUY	2	0.0000	0.0000
3	PIK	ASP	2		
3	PIK	THI	1	0.0000	0.0000
3	PIK	GLA	1		

8.16 Solves

In contrast to linked (pick-up) surfaces, which only affect surface parameters, solves allow control of paraxial properties. Conditions for specifying a solve are, for example, holding the paraxial ray angle, the paraxial ray height or a certain paraxial ray incidence angle to a specified value. Solves will keep these requirements satisfied. For example, a paraxial ray angle solve at a surface will change its radius of curvature to maintain the specified ray angle. It is to be noted, that solves only apply to paraxial quantities. In optimization, this also makes it possible to reduce the number of independent variables.

SOL sk solve_type param1 param2	Sets a solve at surface sk. solve_type can be any 3-character string of UMX solve x-curvature on sk to produce a ray exit angle of param1 UMY solve y-curvature on sk to produce a ray exit angle of param1 HMX solve axial separation/thickness on sk to produce a paraxial height param1 in the X/Z-plane at surface sk+1. HMY solve axial separation/thickness on sk to produce a paraxial height param1 in the Y/Z-plane at surface sk+1. UCY Solve paraxial direction angle (in radians) of the chief ray at surface(s) si..j and zoom position zi..j with reference to a nominal input field angle of 1.0 radians. HCY Solve paraxial height of the chief ray at surface(s) si..j and zoom position zi..j AMY solve Y-curvature on sk to make it aplanatic to the paraxial marginal ray. IMY solve Y-curvature on sk for an angle of incidence (param1) of the marginal ray. (param2) is not used. ET solve axial thickness on sk for an edge thickness (param1) at semi-diameter param2.
DEL SOL sk solve_type	Delete solve of solve_type at surface sk. Example : DEL SOL S4 UMY
LIS SOL [si..j]	List solves
PIM yes\|no	Paraxial image solve. yes adjusts the back focal distance to the paraxial image location, no keeps the back focus fixed.
	continued on next page

continued from previous page	$\begin{array}{l}\text { Reduction ratio solve. Dynamically (i.e. as the optical system } \\ \text { changes) set the paraxial object distance required to satisfy }\end{array}$		
RED reduction_ratio	$R E D=\frac{\text { ImageHeight }}{- \text { ObjectHeight }}=-m \quad(8.47)$		
where m is the optical magnification. For an object at infinity $m=$			
0, any other value establishes a finite conjugate system. See also			
the SET MAG command on page 44, which adjusts magnification			
statically (i.e. one-time adjustment) and the notes below.		$\}$	Delete solve on reduction ratio. Leaves object distances un-
:---			
solved.			

Examples:

```
sol umy s3-0.1 Solve curvature at surface 3 to produce a marginal ray angle of
    -0.1 (radians).
sol s3 et 0.1 15 Solve axial thickness at s3 such that an edge thickness of 0.1mm
    is achieved at a radial surface height of }15\textrm{mm}\mathrm{ .
sol et s4 0 15 Solve axial thickness at surface 4 for 0mm edge contact at a semi-
    diameter 15mm.
red 2.0 Solves for object distance to satisfy optical magnification -2.0.
pim Y Solves for paraxial image.
```


Notes:

- In zoomed systems, solves only apply to the first zoom position. The resulting value is then used in all zoom positions.
- In finite conjugate systems, the system aperture should be defined by the entrance pupil diameter (EPD) or the stop surface semi diameter only. Avoid system aperture definitions like FNO or NA.
- In finite conjugate systems, the system aperture should be defined by the numerical aperture object (NAO) or the stop surface semi diameter only.
- A paraxial height solve (HMY) at the last surface (in order to hold the back focus) must not be used in conjunction with PIM, as PIM always sets the image surface to the paraxial focus, thus overriding the HMY solve.
- A paraxial height solve (HMY) should not be used in conjunction with a distance pick-up DPI. The height solve will always override the corresponding distance pick-up.
- A paraxial angle solve (UMY) should not be used in conjunction with a curvature pick-up CPI. The angle solve will always override the corresponding curvature pick-up.
- In optimization, solve parameter must not be used as a constraint. For example, a UMY solve and a UMY constraint at the same surface will add to the computing load and the constraint will be ignored.
- A RED solve is not accepted if paraxial ray solves are simultaneously set in the system. Exception: ET solve (edge thickness).

Solves will be updated each time a paraxial ray trace is required. The selected parameters (curvature, separation, ...) are forced to be dependent variables on system parameters, which are solved directly. No iteration is required. Referring to the paraxial quantities in Fig5.5, the relevant equations are for paraxial marginal ray angle ($\mathrm{UMY}=u^{\prime}$), solving for curvature c,

$$
\begin{equation*}
c=-\frac{u^{\prime}-u}{\left(n^{\prime}-n\right) h_{a}} \tag{8.48}
\end{equation*}
$$

for paraxial marginal ray height at the subsequent surface ($\mathrm{HMY}=h$), solving for axial separation d,

$$
\begin{equation*}
d=\frac{h^{\prime}-h}{u} \tag{8.49}
\end{equation*}
$$

for aplanatic condition (AMY), solving for curvature c

$$
\begin{equation*}
c=\frac{\left(\frac{1+n^{\prime}}{n}\right) \cdot u}{h} \tag{8.50}
\end{equation*}
$$

for angle of incidence (IMY $=i$), solving for curvature c

$$
\begin{equation*}
c=-\frac{i+u}{n \cdot h} \tag{8.51}
\end{equation*}
$$

8.17 Tilted and Decentered Surfaces

The default condition is a centered system in which all surfaces are aligned along the optical axis. However, optical surfaces can be positioned arbitrarily in 3-D space. This is accomplished by tilting and/or decentering the coordinate system, in which the surface is described. The position of this coordinate system is specified by the XDE, YDE and ZDE parameters, its orientation is specified by the $A D E, B D E$ and $C D E$ parameters. By default, the positions/orientations of the (local) surface coordinate systems are always defined with respect to the global coordinate system (see DAR surface, section 8.18.1). Other forms of defining the local coordinate systems of subsequent surfaces areNAX (new axis) and BEN (bend at mirror). Tilt values are understood in a mathematical sense, i.e. positive tilts are counter clockwise (see also section 5.2.3 for a detailed definition of tilt orientation).
Tilts and decenter are non-commutative operations, i.e. tilting, then decentering results in a different coordinate system from decentering and then tilting. It is therefore important to specify the order in which tilts and decenter are applied to surfaces. The default condition is decenter first and then tilt.

| ADE [si..j\|sk] [zi..j|zk]
 alpha_tilt | Tilt angle (in degree) around X-axis . Positive tilts are
 counter clockwise. |
| :--- | :--- |
| BDE [si..j] [zi..j\|zk]
 beta_tilt | Tilt angle (in degree) around Y-axis. Positive tilts are
 counter clockwise. |
| CDE [si..j] [zi..j\|zk]
 gamma_tilt | Tilt angle (in degree) around Z-axis. Positive tilts are
 counter clockwise. |
| XDE [si..j] [zi..j\|zk]
 x_dec | X-decenter |

continued from previous page			
$\begin{aligned} & \text { YDE [si..j] [zi..j\|zk] } \\ & \text { y_dec } \end{aligned}$	Y-decenter		
$\begin{aligned} & \text { ZDE [si..j] [zi..j\|zk] } \\ & \text { z_dec } \end{aligned}$	Z-decenter		
GADE [si..j]	GRIN tilt around X-axis (This is an "ADE"-tilt of the GRIN material axis with respect to the surface vertex).		
GBDE [si..j]	GRIN tilt around Y-axis (This is a "BDE"-tilt of the GRIN material axis with respect to the surface vertex).		
GCDE [si..j]	GRIN tilt around Z-axis (This is a "CDE"-tilt of the GRIN material axis with respect to the surface vertex).		
TLT si..j	Tilt surface range si..j. This command tilts a group of surfaces. The tilt angles and reference points are requested in a dialog box.		
TLM [si..j] mode \|DAR	NAX	BEN	Tilt mode, describes how the optical axis is defined after surface(s) si..j: mode $=0$: local decenter, (decenter and return, see DAR below.) mode $=1$: surface normal defines new optical axis, see NAX mode $=2$: optical axis follows law of reflection at mirror (see BEN) Alternatively, the tilt mode may be entered by the corresponding acronyms. For example, TLM s4 NAX TLM s4 BEN, etc.
TSEQ [si..j] sequence	Tilt sequence (order in which the decenter/tilt operations are applied). sequence is a character string of up to 6 characters. The permitted characters are: $\mathrm{X}=$ decenter -X $Y=$ decenter $-Y$ $Z=$ decenter $-Z$ $\mathrm{A}=$ tilt about X -axis $\mathrm{B}=$ tilt about Y -axis $\mathrm{C}=$ tilt about Z -axis The sequence of tilt/decenter operations is specified by the sequence of the characters. For example, BX performs tilt about Y-axis first, then decenter in X-direction. XYZABC is the default setting (i.e. decenter first, then tilts).		

continued from previous page	
TMAT si..j\|sk glb_ref param1..12	Define surface decenter and tilt by a transformation ma- trix $M_{i, j}$. The coordinate transformation may be referred to the coordinate system of a previous surface defined by glb_ref. Enter 0 for reference to the immediately pre- ceding surface. Twelve parameters param1. . 12 define the elements of the transformation matrix $M_{i, j}$. The matrix elements $m_{i, j}$ are entered row wise. An example is given in sect. 8.20.1. For a detailed description of transforma- tion matrices see also section 8.20, page 114. Hint: Global transformation matrices defined in the system may be listed by the GSM command (page 181).
DAR [si..j]	Surface decenter and return (equivalent command is TLM 0).
BEN [si..j]	Surface bend, the optical axis follows the law of reflection at mirror (equivalent command is TLM 2).
NAX [si..j]	New optical axis. The surface normal defines the new opti- cal axis for all subsequent surfaces (equivalent command is TLM 1).

Notes:

Surface decenter and/or tilts only take effect if a surface type qualifier "D" is specified to the surface type. For example, a spherical tilted/decentered surface is set by the command SUT s3 SD. See also section 8.6 on page 67 for further details on surface types.
Consequently, tilts and/or decenter are deactivated for a particular surface by removing the "D" qualifier from the surface type string.
Unlike CODE V, DAR is the default tilt mode in OpTaliX .
Paraxial analysis may not be correct for non-symmetric systems, since the paraxial ray trace (by definition) does not account for decenters and tilts.

8.17.1 Sign convention for tilted surfaces:

The tilt angles $A D E, B D E, C D E$ are referred to rotations around the X -, Y - and Z -axis respectively. The sign of the tilts follows the mathematical convention, i.e. a positive sign means a counter-clockwise rotation, a negative sign is a clockwise rotation (see Fig. 5.1 on page 30).

8.18 Tilt Modes

The method of tilting and decentering surfaces is specified by the tilt mode. Three types of decentered and tilted surfaces are provided. They can be specified by the following commands:

	Define the tilt-mode of surface (surface range) si..j, where tilt_mode $=0:$ The optical axis is not changed (see also DAR command), tilt_mode $=1:$ The new optical axis is the surface normal of the actual surface (see NAX command), tilt_mode $=2$ The new optical axis follows the light path on reflection on a mirror surface, without requiring an additional tilted dummy surface. (see BEN command). To be used only for mirror surfaces !!
BEN si..j	Bended surfaces. The new axis follows the law of reflection. See detailed description in section 8.18 .3
DAR si..j	Decenter and Return. See detailed description in section 8.18.1 NAX si..j

The following sections give a more detailed explanation on the definition of tilt modes.

8.18.1 Tilt Modus 0 : Decenter and Return (DAR)

The "decenter and return" surface (Tilt modus $=0$) is the default for tilted and decentered surfaces in OpTaliX . This option means that if a decentered surface is specified (either by DAR or TLM command), the subsequent surfaces refer to the coordinate system of the surface of the last TLM = 1 or $T L M=2$ specifier. Example (Fig. 8.24):

Figure 8.24: Definition of tilted/decentered surface with tilt mode $(T L M)=0$

Surface 3 is decentered and tilted by the following command sequence:
SUT S3 SD ! surface type is spheric and decentered
TLM s3 0 ! Tilt modus is 0 (not initially required because TLM 0 is the default, however, if the surface is in a different tilt mode (1 or 2), then this command must be explicitly given to set the surface to this mode).
DAR s3 Decenter and return surface. This command is synonymous to "TLM s3 0" as given above.
YDE s3 2.5 ! Y-decenter of surface 3 is +2.5 mm
ADE s3 30. ! Tilt around X-axis is 30 deg (counter clockwise since tilt is positive).
The subsequent surface 4 lies on the optical axis again, since surface 3 does not alter the optical axis. If a previous surface (for example surface 2) is a surface with $\mathrm{TLM}=1$ or $\mathrm{TLM}=2$, surface 4 (in the example of Fig. 8.24) refers to the previous surface surface 2). DAR-surfaces ("decenter and return")
need not to be initially specified (since they are the default) but they may be explicitly forced by :

```
TLM si..j 0 or
DAR si..j
```


8.18.2 Tilt Modus 1 : Surface Normal defines new Axis (NAX)

The tilt modus 1 (see TLM command) applied to a surface s_{x} sets the coordinate system for all subsequent surfaces to the local coordinate system of the surface s_{x}. The new optical axis coincides with the normal of surface s_{x}. The command sequence to generate the configuration of Fig. 8.25 is:

SUT	S3	SD	! surface type is spheric and decentered
TLM	s3	1	! Tilt modus is 1 (axis follows normal of preceding surface)
YDE	s3	2.5	! Y-decenter of surface 3 is +2.5 mm
ADE	s3	30.	! Tilt around X-axis is 30 deg (counter clockwise since tilt is positive).

Figure 8.25: Definition of tilted/decentered surface with tilt mode $(T L M)=1$, i.e. the optical axis follows surface normal of the preceding surface.

8.18.3 Tilt Modus 2 : Bend Surface (BEN)

The optical axis follows the reflection by a mirror. The $A D E, B D E$ tilts are applied a second time after reflection in order to generate the new optical axis (see Fig. 8.26).

8.18.4 Compound Tilts on a BENd Surface

A CDE tilt is automatically applied to compound tilts ($A D E$ and $B D E$) on BEN type surfaces to keep the coordinate system properly applied. This rotates the system following a BEN surface so that a meridional ray will remain a meridional ray in the surfaces following the BEN surface. OpTaliX generates the $C D E$, it cannot be entered manually. The relationship between $C D E$ and ($\mathrm{ADE}, \mathrm{BDE}$) is

$$
\begin{equation*}
\cos (C D E)=\frac{\cos (A D E)+\cos (B D E)}{1+\cos (A D E) \cos (B D E)} \tag{8.52}
\end{equation*}
$$

Figure 8.26: Definition of tilted/decentered surface with tilt mode $(T L M)=2$, i.e. optical axis follows law of reflection.

The calculated $C D E$ is reported in the prescription data (see LIS command). If $C D E$ is explicitly required on a BEN surface (for example in non-rotationally symmetric systems), BEN should be removed from this surface and the corresponding decenters/rotations should be applied to an extra dummy surface.

8.18.5 Reverse Decenter and Tilts (REV)

The REV command takes the decenter/tilt information on a surface and applies the inverse.
REV [si..j]

Takes decenter and tilts and applies it with inverse sign and reverse order.

8.19 Tilt Sequence

Any sequence of tilts and decenter may be specified. The default sequence is given in table8.21.

Order	Tilt/decenter	Qualifier	Symbol
first	XDE (decenter X)	X	Δx
second	YDE (decenter Y)	Y	Δy
third	ZDE (decenter Z)	Z	Δz
fourth	ADE (tilt about X-axis)	A	α
fifth	BDE (tilt about Y-axis)	B	β
sixth	CDE (tilt about Z-axis)	C	γ

Table 8.21: Default tilt sequence and qualifying characters.

The tilt sequence is specified by a 6 -character string, describing the sequence of decenter/tilts. For the default sequence, the tilt sequence would be "XYZABC", which corresponds to decenters $\Delta x, \Delta y, \Delta z$ and the Euler tilt angles α, β, γ. This means, that decenters are applied before tilts. The tilt/decenter sequence is entered by the command

TSEQ [si..j] string	Tilt sequence. Specify the sequence of tilts or decen- ters by a 6-character string. The default sequence is XYZABC.

Unlike in other optical design programs, an arbitrary sequence not only allows changing the order of tilts and decenter (e.g. decenter-after-tilt or tilt-after-decenter), it also permits arbitrary sequences within tilts or decenters (e.g. first around Z-axis, second around X-axis, third around Z-axis) and even mixed sequences of decenters and tilts.
It is important to note, that the order of tilts and decenters matters. The tilt sequence α, β, γ does not provide the same result as the tilt sequence β, α, γ or $-\alpha,-\beta,-\gamma$ with the same tilt/rotation angles, or any other arbitrary combination.
Tilting is performed internally by successive matrix multiplications, applied in the specified sequence. For example, the default tilt sequence (i.e. first tilt around X -axis, second around Y -axis, third around Y-axis) results in the following matrix multiplication (from right to left) ${ }^{1}$

$$
M_{z} \cdot M_{y} \cdot M_{x}=\left[\begin{array}{cccc}
\cos \gamma & \sin \gamma & 0 & 0 \tag{8.53}\\
-\sin \gamma & \cos \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
\cos \beta & 0 & -\sin \beta & 0 \\
0 & 1 & 0 & 0 \\
\sin \beta & 0 & \cos \beta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
\left.\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & 0 \\
0 & -\sin \alpha & \cos \alpha \\
0 & 0 & 0 \\
0 & 1
\end{array}\right] \\
\text { rotation around } Y
\end{array}\right.
$$

In case of uncertainties, it is always possible to spread the tilts out over several dummy surfaces.

8.20 Transformation Matrix

Surface tilts and decenters may also be defined by so-called transformation matrices. A transformation matrix gives a unique representation of location and orientation of a surface with respect to another surface or to a global coordinate system. Surface matrices can be entered by the TMAT command. Before entering transformation matrices we shall be concerned with the definition of a transformation matrix which is a 3×4 matrix of the form

$$
M_{i, j}=\left[\begin{array}{llll}
m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \tag{8.54}\\
m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4}
\end{array}\right]
$$

A transformation matrix describes tilts and decenters of the vertex normals (i.e. the local coordinate system) of a surface with respect to another coordinate system which can be the coordinate system of a previous surface or of a global coordinate system.
Coordinate transformations are performed by tilts about the local X-axis (α), Y-axis (β), Z-axis (γ) and decenters (X, Y, Z). See also the definition of (local or global) coordinate systems in section5.2, page 29. We also note that tilts are not commutative, that is, the order of tilts matters.
Tilt of a surface about the X -axis:

$$
M_{i, j}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{8.55}\\
0 & \cos \alpha & \sin \alpha & 0 \\
0 & -\sin \alpha & \cos \alpha & 0
\end{array}\right]
$$

[^0]Tilt of a surface about the Y-axis:

$$
M_{i, j}=\left[\begin{array}{cccc}
\cos \beta & 0 & -\sin \beta & 0 \tag{8.56}\\
0 & 1 & 0 & 0 \\
\sin \beta & 0 & \cos \beta & 0
\end{array}\right]
$$

Tilt of a surface about the Z-axis:

$$
M_{i, j}=\left[\begin{array}{cccc}
\cos \gamma & \sin \gamma & 0 & 0 \tag{8.57}\\
-\sin \gamma & \cos \gamma & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Lateral shift (decenter):

$$
M_{i, j}=\left[\begin{array}{cccc}
1 & 0 & 0 & -X \tag{8.58}\\
0 & 1 & 0 & -Y \\
0 & 0 & 1 & -Z
\end{array}\right]
$$

Example:

A 20° tilt about the X -axis plus a 5 mm decenter in Y-direction results in the transformation matrix

$$
M_{i, j}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{8.59}\\
0 & 0.8660254 & 0.5 & -5 \\
0 & 0.5 & 0.8660254 & 0
\end{array}\right]
$$

8.20.1 Entering Transformation Matrices:

A 20° tilt about the X -axis plus a 5 mm decenter in Y-direction is entered as follows:

```
tmat s4 0 1 0 0 0 0 0.8660254 0.5 -5 0 -0.5
```

This is a very cryptic form of entering a transformation matrix. So, it is advisable putting this command in a macro file which allows arrangement of the data in a matrix-like fashion for better readability. We define the following text in a file, say tmat.mac

```
tmat s4 0 1.0000000 
```

and execute the macro from the command line with

```
run tmat.mac
```

Note the operator for line continuation (\&) in the macro example above.
Hint: Global transformation matrices defined in the system may also be listed/controlled by theGSM command (page 181).

8.21 Tilting GRIN Material Properties

The alignment of the refractive index profile of GRIN materials is defined by the tilt mode of the surface, which specifies the GRIN material properties. By default, the GRIN profile is aligned along the optical axis, but it may be laterally and axially displaced using the GXDE, GYDE, GZDE commands or may be differently oriented using GADE, GBDE, GCDE commands. In addition, the tilt mode (DAR
or NAX) of the surface holding the GRIN material properties also affects the orientation of GRIN media. The combination of surface tilts/decenters and GRIN tilts/decenters can be a complicated process. Figs. 8.27 and 8.28 illustrate the absolute orientation of GRIN profiles for various tilt modes.

Figure 8.27: Orientation of GRIN profiles with DAR surfaces. Left: Since a DAR surface does not alter the optical axis, the index of refraction profile of the GRIN medium is also aligned along the optical axis. Right: Use GADE, GBDE, GCDE to tilt the GRIN profile with respect to the optical axis.

Figure 8.28: Orientation of GRIN profiles with NAX surfaces. Left: The vertex normal of a NAX surface defines the new optical axis. Thus, the profile of the GRIN medium is also aligned along the new optical axis. Right: Use GADE, GBDE, GCDE to additionally tilt the GRIN profile with respect to the new optical axis.

Note that BEN (bend) surfaces are not allowed in conjunction with GRIN media. If the bend function is explicitly required inside GRIN media, it should be applied to an extra dummy surface.

8.22 Global Referencing

Any surface may be referenced to the local coordinate system of a previous surface. In this manner it is possible to break the strict sequential order of surfaces (where the local coordinate system of a surface refers to its preceding surface), even though the ray trace is still sequential.

Referenced surfaces must always be NAX-surfaces, which means that a subsequent surface is referred to the local coordinate system of the referenced surface. On entering a surface reference, the tilt mode is automatically set to 1 (see NAX, TLM).

GLB Si..j k	Global surface reference. Coordinate data (XDE, YDE, ZDE, ADE, $B D E, C D E)$ are interpreted for surface(s) i . . j with respect to the coordinate system of a preceding surface k . Tilts and decentrations are recalculated to retain the physical position of the surface. A surface which is already globally referenced may be referenced to another surface by simply reapplying the GLB command with the new (preceding) surface number. Global referencing can be removed by GLB si..j 0
REF Si..j k	Specifies a global reference for surfaces i..j with respect to surface k . The difference to the GLB command is that thickness/tilt/decentration data are not altered. This may result in a change of the optical layout. Warning: The "REF si..j" command must not be confused with the command "REF ref_w" which changes the reference wavelength. Distinction is made by the surface qualifier si..j wether REF means a reference to another surface or the reference wavelength.
THR si..k ref_thi	Reference thickness of surface(s) i..j to surface k is ref_thi. The reference thickness is measured from the referenced surface (k) to the referencing surface ($\mathrm{i} . . j$). The referenced surface k must have a lower number than the referencing surface i.

To explain the concept of global referencing, let us consider a simple system with a moveable lens (see Fig. 8.29). Here, the image surface (surface 7) is referred to the local coordinate system of surface 1 instead of being referenced to its previous surface (surface 6), as would be expected in a strict sequential model. In this example, surface 7 is the referencing surface, surface 1 is the referenced surface. This is accomplished by two commands:

```
GLB s7 1 ! Surface 7 is referenced to surface 1
THR s7 194.7 ! The reference thickness of surface 7 to surface 1 is 194.7mm, i.e.
    surface 7 is 194.7mm separated from the local vertex of surface 1
```

Thickness 6 can no longer be freely altered by the user because it has become a dependent variable. Its value is computed from the thicknesses 1 to 5 and from the absolute position of surface 7 (the referencing surface). In the surface spreadsheet editor, the field for thickness 6 is greyed out.
We note,

- The position of a globally referenced surface is solely determined by the THR value on this surface,
- THR is an independent variable and is always specified as the separation before the referencing surface,
- the thickness before a globally referenced surface is always a dependent variable (greyed out in the surface editor).

We also note that specifying the reference thickness THR as the separation before the referencing surface is in contrast to the convention used in $\operatorname{OpTaliX}$ (separations are always defined as distance from the local surface to the subsequent surface. Using this method, it is straightforward to change the separation between the doublet and the negative lens (thickness 4) without affecting the position of the image surface (as it would be in a model of strictly consecutive surface separations). Thus, we now have an elegant way to keep the overall length of the system constant without compromising or

Figure 8.29: Definition of surface references.
altering other system parameters. Such a feature is particularly useful in zoomed (multi-configuration) systems where only one parameter needs to be controlled, instead of two (the separation before and after a lens group). We will now move the negative lens by changing thickness 4: The position of the lens relative to surface 4 has changed while the image plane position remains the same, because it is referred to the vertex of surface 1 which has not changed (Fig. 8.30).

Figure 8.30: Definition of surface references.

From these considerations it is now evident, that a referencing surface has two axial thicknesses, THR and THI. While THR refers the vertex of a surface to the vertex of another (previous) surface, THI defines the thickness to the subsequent surface.

8.23 "No-Raytrace" (NOR) Surface

A "no-raytrace" (NOR) surface is a special surface that only transforms surface and ray coordinates, but does not actually trace rays to this surface. NOR surfaces are particularly useful for optical systems that contain tilts and decenters, however, they may also be favourably used in centered systems. NOR surfaces can be used to define non-optical reference points such as mechanical interfaces (flanges, polygon scanner rotation axis, etc) and refer optical surfaces and components to these points.
NOR surfaces require the surface type (SUT) "X", which is obligatory. The surface type qualifiers "S", "A" or "L" must not be contained in the surface type definition. The command
NOR si..j
does all the necessary actions to convert a surface to a "no-raytrace" (NOR) surface. NOR surfaces can be centered or decentered. Thus, NOR surfaces are only defined by the surface types "X" or "XD". Other surface types (such as the optional qualifiers M,I,H,G, ...) are allowed but have no effect on the ray trace.
Note that NOR surfaces do not return ray intersection data - for example as displayed in ray intersection plots (SPO RIS), single ray trace analysis (RSI) or in footprint analysis (FOO), because rays are not actually traced to the designated surface (only coordinates are transformed). Therefore, ray intersection coordinates cannot be made available on NOR-surfaces!
NOR surfaces, together with globally referenced surfaces, provide a powerful means for modelling opto-mechanical effects. Their use is explained on the example of a polygon scanner as shown in Fig. 8.31. We will use both global referencing and NOR surfaces to achieve the desired effect of moving polygon facets. In this model, surface 1 (the first surface of the $F \theta$ - lens) is globally referenced to surface 1, the stop surface. Since the $F \theta$ lens is tilted by 90° with respect to the entrance beam at surface 1 , the desired position is accomplished by the commands

```
glo s5 1 !global reference of surface 5 to surface 1. Surface 5 is automat-
    ically converted to decentered type with tilt mode NAX.
ade s5 90 ! tilt surface 5 by 90
yde s5 50 ! Y-vertex position of surface 5
thr s5 25 ! reference thickness is 25mm, that is the Z-separation of the
    vertex of surface 5 from surface 1.
```

Surface 2 is located at the polygon's rotation axis. The Z-position (along the optical axis) is defined by THI s1, the Y-position is entered by a YDE s2 command. Surface 2 is of decenter type NAX, thus surfaces 3 and 4 refer to surface 2 . Surface 3 is not really needed, it is only used in this example to better visualize the polygon center by plotting a cross. Surface 4 represents one mirror facet of the polygon. Its tilt and decenter values are appropriately set with reference to surface 2 .
Note that the global decenter type on surface 5 avoids the need to apply a second tilt angle on a dummy surface to keep the geometry fixed.
Surfaces 2 and 3 are made NOR surfaces by the command NOR s2. . 3, thus avoiding that rays are apparently plotted "through" the polygon facet mirror (surface 4) to surfaces 2,3. Surfaces 2 and 3 are solely used for transformational purposes and need not to be traced by real rays.

8.24 Gradient Index Surface

In inhomogeneous or gradient-index materials, rays no longer propagate in straight lines. The index of refraction changes as a function of the position of the ray in the medium. A gradient in the direction of the optical axis is called an axial gradient, a gradient perpendicular to the optical axis is called a radial gradient. Of course, there are mixed gradients possible, in which the index of refraction is a function of axial and radial position in the material.

A complete specification of a gradient surface must take into account the surface properties as well as the material properties. The qualifier "I" must be added to the surface type to tell the program how refraction into the gradient-index material shall be performed. The material properties may be defined by either specifying a predefined gradient-index glass (e.g. G14SFN for Gradium ${ }^{T M}$ glass) or by entering gradient coefficients for each of the defined wavelengths.
The numerical solution of finding the exact ray path involves the choice of a step size $d s$. Choosing small values for $d s$ will improve numerical accuracy, however, will also increase computing time.

Figure 8.31: Use of global coordinates and NOR surfaces for modelling of a polygon scanner.

SUT si..j string	Surface Type (SUT) of surface(s) i..j is "string". Note that the surface type must contain at least a S (for spherical surfaces) or A (for aspheric surfaces) within string. Example: sut s3 ai (aspheric + GRIN)
GLA si..j name	Glass name. The specification of the glass name takes precedence over the base index specification . It automatically causes proper setting of the base index and the gradient index coefficients for all specified wavelengths. If glass name is omitted, at least the base refractive index (i.e. refractive index at the optical axis) must be given. There are predefined glasses for the gradient types LPT, NSG and GLC (see GIT command below). For all other types of gradients where the index profile is defined by manual entry of coefficients (GIC), the generic glass "GRIN" must be used. Examples: $\text { gla s2 g41sfn (LightPath Gradium }{ }^{T M} \text {-glass) }$ gla s2 grin (generic GRIN-glass, enter coefficients with GIC command)
	continued on next page

continued from previous page	
GIC si..j ci..j val	Gradient index profile coefficients. The definition of the coeffi- cients cl, c2, c3, . in dependence on the GRIN-type (GIT) is given in table 8.24.16. In order to take effect, the glass type (GLA) must be GRIN. Other gradient index glasses (for example G51SFN from LightPath or SLW18 from Nippon Sheet Glass Corp., etc.) have predefined profile coefficients, which cannot be changed.
GDISP sk disp_name	Gradient index dispersion name. Defines which user defined dispersion characteristics is assigned to a gradient index ma- terial on surface sk. Note that the glass type (see GLA com- mand) on surface sk must be GRIN. This command does not work with predefined gradient index materials. The disper- sion coefficients are defined in the file grindisp. asc in the GLASSES directory and are then globally available. See also section 32.9 for a definition of the file format. Currently only LPT, URN, SEL, GLC and GRT dispersion models may be se- lected. If disp_name is left blank, dispersion properties are removed from the GRIN material on surface sk.
GIS si..j step	Gradient step size ds. The parameter step is the integration step along the ray path. See also the note at the end of this table.
GZO si..j val	Gradient Z-offset, for axial gradients only. Describes the axial offset of the vertex of the entrance surface from the zero-point of the axial index function.
GADE [si..j] val	GRIN tilt around X-axis (This is an "ADE"-tilt of the GRIN material axis with respect to the preceding surface).
GBDE [si..j] val	GRIN tilt around Y-axis (This is a "BDE"-tilt of the GRIN ma- terial axis with respect to the preceding surface).
GCDE [si..j] val	GRIN tilt around Z-axis (This is a "CDE"-tilt of the GRIN ma- terial axis with respect to the preceding surface).
GIT si..j string	Gradient Index Type. The following types of gradient index profiles are available:
SEL: SELFOC gradient	
GLC: Gradient Lens Corporation Gradient	
(EndoGRINTM)	

continued from previous page	
MXG si..j\|sk	Maximum number of iteration steps in the GRIN medium de- max_grin_iterations fined on surface(s) si..j\|sk. Gradient index ray trace may loop infinitely if improper coefficients are specified, in particu- lar for user defined profiles. Note that each gradient index sur- face may be assigned a different value for MXG. Setting MXG to values other than 0 provides a means to prematurely termi- nate ray tracing. MXG si..j\|sk 0 disables limit checking on that particular surface(s).

Note on optimal gradient-index step (GIS): The accuracy and speed of gradient-index ray tracing is determined by the choice of step length. The default step size in OpTaliX is set to 0.1 mm , which is a good compromise for various gradients. It is recommended to test the step size until an acceptable accuracy is achieved for a particular system and, if required, to be reduced accordingly. As a guideline, the step size may be as large as 1 mm for weak gradients without the need to sacrifice accuracy in geometrical analysis. For diffraction analysis, however, typically smaller step sizes are required for acceptable accuracy. In cases, where a large step size $(>0.1 \mathrm{~mm})$ is selected, the program automatically reduces step size to 0.1 mm in all diffraction analyses and restores the user selected step size afterwards.

Aperture checking for gradient index surfaces may be accomplished by assigning the fixed aperture flag FHY (see section 8.33.3) on the first surface of a GRIN lens. Rays inside the gradient material are blocked if their radial coordinate exceeds the aperture of the entrance surface.

Example Commands:

```
SUT s3 AI ! surface type of surface 3 is AI (aspheric, gradient index)
GLA s3 SLN20 ! glass type at surface 3 is SLN20
GIT s3 SEL ! gradient index type at surface 3 is SEL (=SELFOC lens)
GIC s3 c4 0.42 ! gradient index coefficient No.4 = 0.42 for all wavelengths
GZO s3 1.2 ! gradient z-offset = 1.2 mm
MXG s3 200 ! Limit number of iterations in GRIN medium defined on surface
    3 to 200.
```


Example 1: Setting up a LightPath GRADIUM ${ }^{T M}$ gradient:

Defining LightPath GRADIUM ${ }^{T M}$ gradients only requires specification of the LightPath glass name, e.g.

GLA s2 G14SFN
All other parameters (gradient index type, surface type) are automatically determined. In addition, when switching back from a LightPath GRADIUM glass to a homogeneous glass, the gradient index type and the surface type are automatically reset.

Example 2: Defining gradient material with coefficients:

If a predefined gradient material does not exist or if a user profile shall be simulated, the index profile may be defined by entering profile coefficients directly. The coefficients depend on the gradient type chosen, as explained in Eq's. 8.66 to 8.85 and in table 8.24 .16 (page 130).
For example, a "University of Rochester (URN)" gradient consists of axial and radial coefficients, thus allowing definition of a mixed gradient.

Figure 8.32: Gradient index raytrace, shown for a radial index profile.

```
gic s3 c1 1.65 defines 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ profile coefficient (the base index n no0)
gic s3 c2 -0.035 defines 2 nd profile coefficient (the linear axial slope n no1)
```


8.24.1 Editing GRIN Coefficients on a Surface

In addition to selecting own GRIN dispersion models via the GDISP command, coefficients may also conveniently edited in a dialog called from the surface editor. The major difference to the GDISP option is that the GRIN material is only defined on a particular surface in a lens and is therefore not globally available as with predefined GRIN materials.
In order to enable this option, the glass name on the surface must be 'GRIN'. No other name is allowed. Then select the GRIN-tab in the surface editor and click on the appropriate button in the 'Coeff' column. This opens a dialog as shown in Fig. 8.33. You may now select a predefined dispersion characteristics (as defined in '\$ i\glasses \backslash grin.asc' for catalogue GRIN's or in ' $\$$ i \backslash glasses \backslash grindisp.asc' for user defined dispersions) or you may select the 'USER' option in the list box. If 'USER' is selected, the dispersion coefficients can be edited, otherwise (for predefined dispersions) the coefficients field is disabled (greyed out). The name 'USER' in the list box may be changed at wish.
'User' defined profiles and dispersions always pertain to the particular surface from which the dialog was called. The 'USER' definitions are stored with the optical system and are therefore only 'locally' available within that particular optical system.

Figure 8.33: Editing GRIN coefficients on a particular surface.

Warning: Altering GRIN coefficients should be done with great care. In case of improper data, the program may hang in an infinite loop because no exit surface is found. It is prudent to reduce the
maximum allowable number of GRIN steps on a surface before testing or experimenting with new profiles. See the MXG command.

8.24.2 Ray-Tracing Method

Tracing rays in inhomogeneous (gradient) index material is obtained by solving the ray equation 49] :

$$
\begin{equation*}
\frac{d^{2} \mathbf{r}}{d t^{2}}=n \nabla n \tag{8.60}
\end{equation*}
$$

with

$$
\begin{equation*}
t=\int \frac{d s}{n} ; \quad d t=\frac{d s}{n} \tag{8.61}
\end{equation*}
$$

where \mathbf{r} is the position vector of a point on the ray, $d s$ is an element of the arc along the ray. Equation 8.60 has three components which can be solved simultaneously by using three-element arrays:

$$
\begin{gather*}
\mathcal{R} \equiv\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \tag{8.62}\\
\mathcal{T}=\left(\begin{array}{l}
T_{x} \\
T_{y} \\
T_{z}
\end{array}\right)=n\left(\begin{array}{l}
d x / d s \\
d y / d s \\
d z / d s
\end{array}\right) \tag{8.63}
\end{gather*}
$$

and

$$
\mathcal{D}=n\left(\begin{array}{l}
\partial n / \partial x \tag{8.64}\\
\partial n / \partial y \\
\partial n / \partial z
\end{array}\right)
$$

It is obvious that the components of the vector \mathcal{T} are the three optical direction cosines α, β, γ of a ray. Equation 8.60 can be written as the following matrix equation:

$$
\begin{equation*}
\frac{d^{2} R}{d t^{2}}=\mathcal{D}(\mathcal{R}) \tag{8.65}
\end{equation*}
$$

Equation 8.65 is solved by the Sharma method [49] with the initial condition that at $\mathcal{R}=R_{0}\left(x_{0}, y_{0}, z_{0}\right), \mathcal{T}=$ T_{0} which is a known quantity. Starting from the known point (R_{0}, T_{0}), one can generate successively $\left(R_{1}, T_{1}\right),\left(R_{2}, T_{2}\right), \cdots\left(R_{n}, T_{n}\right)$, i.e., one can trace a ray through the medium using the Runge-Kutta algorithm.

8.24.3 SELFOC ${ }^{T M}$ Lens (SEL)

The radial gradient of SELFOC ${ }^{T M}$ lenses is given by:

$$
\begin{equation*}
n(r)=n_{0}\left(1-\frac{A}{2} r^{a}\right) \tag{8.66}
\end{equation*}
$$

with

$$
\begin{align*}
a & =2 \\
A & =\frac{2 \cdot \Delta n}{n_{0} \cdot r_{k}^{a}} \tag{8.67}
\end{align*}
$$

In SELFOC ${ }^{T M}$ material the refractive index decreases parabolically, which is defined by $a=2$ in eq. 8.66. Substituting eq. 8.67 into eq. 8.66 , we obtain, after some simple manipulations, the more general form

$$
\begin{equation*}
n(r)=n_{0}-\underbrace{\frac{2 \cdot \Delta n}{n_{0} \cdot r_{k}^{a}}}_{A} \cdot \frac{n_{0} r^{a}}{2} \tag{8.68}
\end{equation*}
$$

See also section 13.7.4 for a list of available GRIN profiles from NSG.
The wavelength dependency (dispersion) of SELFOC ${ }^{T M}$ glasses is given by the equations [39]

$$
\begin{gather*}
n_{0}(\lambda)=c_{1}+\frac{c_{2}}{\lambda^{2}} \tag{8.69}\\
\sqrt{A}(\lambda)=k_{11}+\frac{k_{12}}{\lambda^{2}}+\frac{k_{13}}{\lambda^{4}} \tag{8.70}
\end{gather*}
$$

8.24.4 Gradient Lens Corporation (GLC)

The radial gradient of "EndoGRIN" rod lenses provided by "Gradient Lens Corporation" is:

$$
\begin{equation*}
n(r)=n_{00}+n_{10} r^{2}+n_{20} r^{4} \tag{8.71}
\end{equation*}
$$

where $r^{2}=x^{2}+y^{2}$.
The coefficients n_{00}, n_{10}, n_{20} are wavelength dependent:

$$
\begin{equation*}
n_{i j}(\lambda)=A+B \lambda^{2}+\frac{C}{\lambda^{2}}+\frac{D}{\lambda^{4}} \tag{8.72}
\end{equation*}
$$

where λ must be given in nm . For each n_{00}, n_{10}, n_{20} there exist a separate set of parameters A, B, C, D. See also section 13.7.4 for a list of available GRIN profiles from Gradient Lens Corp.

8.24.5 Grintech Radial Gradient (GRT)

The radial gradient profile of rod lenses manufactured by Grintech, Jena (Germany) is defined as

$$
\begin{equation*}
n(r)=n_{0} \cdot \operatorname{sech}(g r)=\frac{n_{0}}{\cosh (g r)} \tag{8.73}
\end{equation*}
$$

where $r^{2}=x^{2}+y^{2}$ and g is a material constant. The dispersion of n_{0} is modelled with good accuracy by

$$
\begin{equation*}
n_{0}(\lambda)=1.61189+\frac{7614\left[n m^{2}\right]}{\lambda^{2}} \tag{8.74}
\end{equation*}
$$

See also section 13.7.4 (page 232) for a list of available GRIN profiles from Grintech.

8.24.6 Grintech Cylindrical Gradient (GRC)

The gradient profile of cylindrical lenses manufactured by Grintech, Jena (Germany) is defined as

$$
\begin{equation*}
n(y)=n_{0} \cdot \operatorname{sech}(g \cdot y)=\frac{n_{0}}{\cosh (g \cdot y)} \tag{8.75}
\end{equation*}
$$

where y is the height in Y-direction and g is a material constant. In the X-direction, the g-coefficient is assumed zero and the index of refraction is n_{0}. The dispersion of n_{0} is modelled with good accuracy by

$$
\begin{equation*}
n_{0}(\lambda)=1.61189+\frac{7614\left[\mathrm{~nm}^{2}\right]}{\lambda^{2}} \tag{8.76}
\end{equation*}
$$

See also section 13.7.4 (page 232) for a list of available GRIN profiles from Grintech.

8.24.7 Linear Axial Gradient (AXG)

The refractive index is a linear function of the axial distance z :

$$
\begin{equation*}
n(z)=n_{0}+a \cdot z \tag{8.77}
\end{equation*}
$$

with :

$$
\begin{aligned}
& n_{0}=\text { base index at the optical axis } \\
& a=\text { linear axial coefficient }
\end{aligned}
$$

8.24.8 LightPath Technologies Gradient (LPT)

LightPath Technologies, Inc. are using a $11^{\text {th }}$ order axial profile for their proprietary GRADIUM ${ }^{T M}$ glasses:
$n(z)=\sum_{i=0}^{11} n_{i}\left(\frac{z}{z_{m}}\right)=n_{0}+n_{1}\left(\frac{z}{z_{m}}\right)^{1}+n_{2}\left(\frac{z}{z_{m}}\right)^{2}+n_{3}\left(\frac{z}{z_{m}}\right)^{3}+n_{4}\left(\frac{z}{z_{m}}\right)^{4}+\ldots . .+n_{11}\left(\frac{z}{z_{m}}\right)^{11}$
where the coefficients n_{0} to n_{11} are given in ascending order at the wavelength $\lambda_{\text {ref }}=587.6 \mathrm{~nm}$. z is the distance into the blank from either the high index or low index surface. The value of z ranges from 0 to the maximum value z_{m}.
The wavelength dependence is modelled by a modified Sellmeier formula

$$
\begin{equation*}
n(\lambda)^{2}-n\left(\lambda_{r e f}\right)^{2}=\sum_{i} \frac{K_{i} \lambda^{2}}{\lambda^{2}-L_{i}} \tag{8.79}
\end{equation*}
$$

where $n\left(\lambda_{r e f}\right)$ is the index at the reference wavelength and the constants are functions of n

$$
\begin{equation*}
K_{i}=\sum_{j=1}^{k} K_{i j}\left[n\left(z, \lambda_{0}\right)\right]^{j-1} \tag{8.80}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{i}=\sum_{j=1}^{k} L_{i j}\left[n\left(z, \lambda_{0}\right)\right]^{j-1} \tag{8.81}
\end{equation*}
$$

The wavelength λ is given in microns. See also section 13.7 .4 for a list of available GRIN profiles from LightPath Inc.

8.24.9 University of Rochester Gradient (URN)

$$
\begin{equation*}
n(r, z)=n_{00}+n_{01} z+n_{02} z^{2}+n_{03} z^{3}+n_{04} z^{4}+n_{10} r^{2}+n_{20} r^{4}+n_{30} r^{6}+n_{40} r^{8} \tag{8.82}
\end{equation*}
$$

with :

$$
\begin{array}{ll}
r(x, y)^{2} & =x^{2}+y^{2} \\
n_{00} & =\text { base index } \\
n_{0 i} & =\text { axial coefficients } \\
n_{i 0} & =\text { radial coefficients }
\end{array}
$$

Dispersion properties can be assigned to URN gradient index profiles by specifying a dispersion name as provided in the GDISP command. The same set of dispersion coefficients as for the LightPath material is used. In particular Eqs. 8.79 to 8.81 apply. Dispersion coefficients must be stored in the file grindisp.asc in the GLASSES directory.

Example for setting up a generic URN profile with dispersion modelling:

| gla s1 GRIN | ! generic name for gradient index glass |
| :--- | :--- | :--- |
| git s1 URN | ! gradient index type is URN |
| gic s1 c1 1.678 | ! first profile coefficient |
| gic s1 c2 0.00345 | ! second profile coefficient |
| gic ... | ! repeat coefficients entry if required |
| gdisp s1 GLAK | ! the dispersion name is GLAK (must exist in file grindisp.asc). |

8.24.10 Luneberg Gradient (LUN)

$$
\begin{equation*}
n^{2}(p)=n_{0}^{2}\left(2-\frac{p^{2}}{a^{2}}\right) \tag{8.83}
\end{equation*}
$$

with: $p^{2}=x^{2}+y^{2}+(z-r)^{2}$

8.24.11 Spherical Gradient (SPG)

$$
\begin{equation*}
n(p)=n_{0}+n_{1}(r-p)+n_{2}(r-p)^{2}+n_{3}(r-p)^{3}+n_{4}(r-p)^{4} \tag{8.84}
\end{equation*}
$$

with: $p^{2}=x^{2}+y^{2}+(z-r)^{2}$

8.24.12 Maxwells's Fisheye (MAX)

$$
\begin{equation*}
n(p)=\frac{n_{0}}{1+\frac{p^{2}}{a^{2}}} \tag{8.85}
\end{equation*}
$$

with: $p^{2}=x^{2}+y^{2}+(z-r)^{2}$

8.24.13 User-Defined Gradient Index (UDG)

User-defined gradient index profiles can be programmed in FORTRAN or C in a user-written subroutine. The default name for a user-defined gradient index profile is "usergrn".
The usergrn subroutine must compute the refractive index at any point (x, y, z) in the glass, i.e., $n=n(x, y, z)$. The subroutine must also explicitly evaluate the derivatives of the index, $d n / d x$, $d n / d y$, and $d n / d z$.
Coefficients of a user-defined gradient are specified by the UDG command:

```
UDG si..j|sk ci..j|ck
coeff_1 coeff_2 ...
Enter user-defined coefficients c. . j on surface(s) si . .j, respectively surface sk. Requires surface type "I" (for gradient Index) on that surface.
```

OpTaliX provides a sample subroutine in both FORTRAN and C programming languages. It is found in the directories

```
\optalix\usergrn\Fortran for FORTRAN
\optalix\usergrn\C for C/C++
```

with appropriate subdirectories for Lahey/Fujitsu FORTRAN, Intel FORTRAN, Compaq Visual FORTRAN and Microsoft Visual C compilers. Note that the subroutine name must be exactly "usergrn" in small characters and no other name is permitted. The usergrn subroutine can also, if needed, call other subroutines or read data files. The usergrn subroutine that you write in FORTRAN or C must have the following parameters:

```
usergrn((isur,sdata,x,y,z,wvl,rindx,gx,gy,gz,i_err)
```

where:

isur	Current surface number for which the index function and the derivatives are to be evaluated. This is an input parameter which may be used to distinguish between various algorithms on different surfaces. If only one UDG type surface is used, this parameter is normally not needed. See also the note below.
sdata	Data array with 91 elements for passing data between OpTaliX and the usergrn subroutine. The elements of data correspond to the UDG coefficients C1 to C91.
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	Coordinates at a point along the ray, with z along the optical axis.
wvl	Wavelength, in microns.
rindx	The calculated index of refraction at the point (x, y, z).
$\mathrm{gx}, \mathrm{gy}, \mathrm{gz}$	A three-element output vector with the x, y, and z components of $\nabla(n)$ at the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
i_err	Error flag. It should be set to 0 if there is no error generated and set to 1 otherwise.

Notes:

- Only one usergrn subroutine can be linked to $O p T a l i X$ at one time. Therefore all userdefined gradients in the optical system must use the same usergrn subroutine. However, it is possible to program more than one UDG description with different coefficients in the same usergrn subroutine. The parameter isur designates the surface number currently in use for evaluating index of refraction and derivatives.
- If the user-defined gradient has any axial (z) dependence, then the value of "brind" will be negative after a reflector.

8.24.14 Default usergrn Subroutine

The default UDG in OpTaliX is the "University of Rochester" type gradient index. The index profile is given by Eq. 8.82 on page 127. The FORTRAN source code of the usergrn subroutine is as follows:
subroutine usergrn(isur,sdata, $\left.x, y, z, w v l, r i n d x, g x, g y, g z, i _e r r\right)$
$!$

```
P Parameters:
```

 isur : surface number (input)
 sdata(91) : Array containing the user-defined GRIN parameters (input)
 For example, sdata(1) is the value entered with the
 command UCO C1.
 \(x, y, z \quad\) Coordinates of the current position of the ray with
 respect to the origin of the surface (input)
 wvl : wavelength (in microns) (input)
 rindx : The calculated index of refraction at (\(x, y, z\)) (output)
 gx,gy,gz : Gradient (derivatives) at coordinates (x,y,z) (output)
 i.e. \(d n / d x, d n / d y, d n / d z\)
 i_err : Error flag (0 = no error, 1 = error) (output)
 Note: The error flag must be properly set by the user
 Notes:
 The user will typically substitute his own FORTRAN code for a
 particular surface.
 More than one surface description can be programmed in this subroutine.
 Use the "isur" parameter to distinguish between surfaces and
 determine the interpretation of the coefficients stored in "sdata"
 dll_export usergrn
 intēger :: i_err,isur
 double precision : : \(x, y, z, g x, g y, g z, r i n d x, w v l, s d a t a(91)\)
 double precision : : rad2,t1,t2,tabl
 i_err \(=0\)
 \(\operatorname{rad} 2=x * x+y * y\)
 ! Evaluate index of refraction:
t1 $=\mathrm{z} *(\mathrm{z}$ *(z *(z *sdata(5) +sdata (4)) +sdata(3)) +sdata (2))
t2 $=\operatorname{rad} 2 *(\operatorname{rad} 2 *(\operatorname{rad} 2 *(\operatorname{rad} 2 * \operatorname{sdata}(9)+$ sdata $(8))+$ sdata $(7))+$ sdata $(6))$
rindx $=$ sdata $(1)+\mathrm{T} 1+\mathrm{T} 2$
if (rindx.lt.1.0do) then
i_err = 1
rindx $=1.0 \mathrm{do}$
endif
! Evaluate gradient :
t1 $=\operatorname{rad} 2 *(\operatorname{rad} 2 *(\operatorname{rad} 2 * 8 . d 0 * \operatorname{sdata}(9)+6 . d 0 *$ sdata $(8))+4 . d 0 *$ sdata $(7))$
tabl $=t 1+2 . d 0 *$ sdata (6)
$g x=t a b l$ * x
$g y=t a b l * y$
$g z=z *(z *(z * 4 . d 0 * s d a t a(5)+3 . d 0 * s d a t a(4))+2 . d 0 * s d a t a(3))+$ sdata(2)

8.24.15 Compiling and Linking usergrn

OpTaliX supports the Lahey/Fujitsu FORTRAN, Compaq Visual FORTRAN, Intel FORTRAN and the Microsoft Visual C++ compilers. All supported compilers are 32 bit versions. The 16 bit versions are not supported. All compilers must have version numbers equal or higher as listed below. References to compiler specific instructions are given in the last column.

Manufacturer	Compiler Version	See Section
Lahey Fujitsu	FORTRAN-95, version 5.7 or later	8.31 .3
Compaq	Visual FORTRAN, version 6.6 or later	8.31 .4
Intel	FORTRAN-95, version 7.1 or later	8.31 .4
Microsoft	Visual C/C++, version 5.0 or later	8.31 .6

8.24.16 GRIN - Coefficients Overview

The parameter C1 to C10 are the coefficients which describe the index profile of a gradient index material. To be used in conjunction with the GIC command. The meaning of each profile coefficient depends on the GRIN-type and is defined as follows:

Type	Equation	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
SEL	$n_{0}(\lambda)=c_{1}+\frac{c_{2}}{\lambda^{2}}$ $\sqrt{A}(\lambda)=k_{11}+\frac{k_{12}}{\lambda^{2}}+\frac{k_{13}}{\lambda^{4}}$	c_{1}	c_{2}	k_{11}	k_{12}	k_{13}					
GLC	$n(r)=n_{0}+n_{1} r^{2}+n_{2} r^{4}$	n_{0}	n_{1}	n_{2}							
GRT	$n(r)=n_{0} \cdot \operatorname{sech}(g r)$	n_{0}	g								
GRC	$n(y)=n_{0} \cdot \operatorname{sech}(g y)$	n_{0}	g								
AXG	$n(z)=n_{0}+a \cdot z$	n_{0}	a								

continued from previous page											
LPT	$\begin{aligned} & n(z)=n_{0}+n_{1}\left(\frac{z}{z_{m}}\right)^{1}+ \\ & n_{2}\left(\frac{z}{z_{m}}\right)^{2} \\ & +n_{3}\left(\frac{z}{z_{m}}\right)^{3}+\ldots . .+ \\ & n_{11}\left(\frac{z}{z_{m}}\right)^{11} \end{aligned}$	z_{m} n_{9}	n_{0} n_{10}	n_{1} n_{11}	n_{2}	n_{3}	n_{4}	n_{5}	n_{6}	n_{7}	n_{8}
URN	$\begin{aligned} & n(r, z)=n_{00}+n_{01} z+n_{02} z^{2} \\ & \quad+n_{03} z^{4}+n_{04} z^{4}+n_{10} r^{2} \\ & \quad+n_{20} r^{4}+n_{30} r^{6}+n_{40} r^{8} \end{aligned}$	n_{00}	n_{01}	n_{02}	n_{03}	n_{04}	n_{10}	n_{20}	n_{30}	n_{40}	
LUN	$\begin{aligned} & n^{2}(p)=n_{0}^{2}\left(2-\frac{p^{2}}{a^{2}}\right) \\ & \text { with } p^{2}=x^{2}+y^{2}+(z-r)^{2} \end{aligned}$	n_{0}	a	r							
SPG	$\begin{aligned} n(p)= & n_{0}+n_{1}(r-p) \\ & +n_{2}(r-p)^{2} \\ & +n_{3}(r-p)^{3} \\ & +n_{4}(r-p)^{4} \end{aligned}$	n_{0}	n_{1}	n_{2}	n_{3}	n_{4}					
MAX	$n(p)=\frac{n_{0}}{\left(1+\frac{p^{2}}{a^{2}}\right)}$ with $p^{2}=x^{2}+y^{2}+(z-r)^{2}$	n_{0}	a	r							

8.25 Light Pipe, Step Index Fiber

Light pipes and step index fibers are handled in an identical manner. Rays enter a tube (being either solid or hollow) and reflect from the walls an indeterminate number of times until they emerge. Circular and rectangular cross sections are supported. Both end surfaces may have any form (spherical, aspheric, with grating, with surface deformation, etc) and may also be arbitrarily tilted.

Fibers and light pipes are formed by extruded surfaces. The aperture boundary of the entrance surface defines the diameter ($=2 *$ aperture radius) of the tube and the axial separation to the next surface (the end surface) defines the length of the tube. Thus, the rod conforms to the aperture shape (circular or rectangular) of the entrance surface. In addition, two materials (glasses) must be provided at the entrance surface for core and cladding (use GLA and GL2 commands). The only difference between a light pipe and a step index fiber is in the material for the cladding. In a light pipe, the index of refraction of the cladding is 1 , whereas for a step index fiber it is >1.
The entrance surface of light pipes must have the surface type " P " in addition to the "S" (spherical) or "A" (aspheric) base shape. Example command: sut s3 sp
In a tapered fiber, the cone angle is defined by the semi-diameters of entrance surface and exit surface

Figure 8.34: Light pipe (top) and tapered fiber (bottom).
respectively. In case of rectangular apertures, X - and Y-cross sections of the rod are tapered separately.
Hollow light pipes may be simulated by defining a mirror on the outside walls (not on the end surfaces), which bypasses checking of total internal reflection (TIR). This is accomplished by the command

PMI si..j yes \mid no	Pipe Mirror. Enables (yes) or disables (no) reflective properties on the outer walls. If enabled, TIR condition will be ignored and rays will always reflect at the outer walls.

Examples:

Step index fibers respectively light pipes are completely defined by the following command sequence (supposed, the rod/fiber entrance is at surface 3):

```
sut s3 SP makes surface spherical and defines light pipe respectively fiber
gla s3 sf6 defines core material
gl2 s3 bk7 defines cladding material (gl2 s3 air is a fiber without cladding)
thi s3 100 length of fiber/pipe is 100mm
cir s3..4 2.5 diameter of rod is 5mm (=2*aperture radius)
```

Tapered fibers with circular apertures use the same commands, except that the semi-apertures on entrance surface and exit surface are different:

```
sut s3 SP makes surface spherical and defines fiber/pipe
thi s3 100 length of fiber/pipe is 100mm
cir s3 2.5 diameter of entrance aperture is 5mm
cir s4 1.0 diameter of exit aperture is 2mm. Since the exit diameter differs from
    the entrance diameter, the pipe/fiber is tapered.
```

The semi cone angle ϑ of the tapered fiber in the second example above is then $\vartheta=\tan ^{-1}[(2.5-$ 1.0)/100].

Rectangular (tapered) light pipes have rectangular apertures on both end surfaces. They are defined by the commands:

```
sut s3 SP
thi s3 100
rex s3 2.5
rey s3 2.5
rex s4 1.0
rey s4 1.0
makes surface spherical and defines fiber/pipe
length of fiber/pipe is 100 mm
rectangular aperture, entrance aperture X -diameter is 5 mm
rectangular aperture, entrance aperture Y-diameter is 5 mm
rectangular aperture, exit aperture X -diameter is 2 mm
rectangular aperture, exit aperture Y-diameter is 2 mm . Since the exit aperture dimensions differ from the entrance aperture dimensions, the pipe/fiber is of pyramidal shape.
```


Sheared rectangular light pipe:

The end surface apertures may also be sheared (laterally displaced) at rectangular light pipes. This is accomplished by aperture offsets (see commands ADX, ADY) on the end surfaces. The side walls will automatically be adjusted. Note that shearing of end surface apertures does not shift the optical axis. Aperture offsets are ignored on cylindrical light pipes.

8.26 Array Element

The array surface arranges optical elements (surfaces) in a regular grid, i.e. they are repeated many times at specified X/Y locations with respect to the local coordinate of a surface, denoted hereafter as array cells or channel surface.

The individual lens or surface assemblies may be regarded as cells or channels. The channel surface encompasses all of the channels in the array. The aperture limits of the array surface are defined by the AMX, AMY parameters. Depending on the aperture dimensions and the cell/channel spacings (ARX, ARY) some channels (array elements) may be truncated. Individual channels are distributed in a uniform grid over the channel surface. The channel centers are located at (local) X/Y coordinates defined by the X -spacing (ARX) and Y-spacing (ARY).

Figure 8.35: Examples of array elements, a) fresnel lens array, b) spherical lens array, c) GRIN rod array. The corresponding example files can be found in the \$i\examples \backslash array directory as sphere-array.otx, fresnel-array.otx and selfoc-array.otx.

Array surfaces are defined by the surface type qualifier " R " in addition to any other qualifier describing the shape of the surface (e.g. "S" or "A") to be repeated.

| ARH sk\|si..j Y|N | Array hexagonal arrangement.
 ARH sk Y: hexagonal cells arrangement (Fig. 8.37),
 ARH sk N : cells arranged in rectangular grid (Fig. 8.36). |
| :--- | :--- |
| ARX sk\|si..j x_spacing | X-spacing of array channels. |
| ARY sk\|si..j Y_spacing | Y-spacing of array channels. |
| ARXO sk\|si..j X_offset | X-offset of entity of array channels with respect to local surface
 coordinate system. |
| ARYO sk\|si..j Y_offset | Y-offset of entity of array channels with respect to local surface
 coordinate system. |
| AMX sk\|si..j max_x | \pm limit for grid in X-direction |
| AMY sk\|si..j max_Y | \pm limit for grid in Y-direction |
| AADE sk\|si..j
 angle_deg | α-tilt angle (in degree) of each array cell. |
| ABDE sk\|si..j
 angle_deg | β-tilt angle (in degree) of each array cell. |
| ACDE sk\|si..j
 angle_deg | γ-tilt angle (in degree) of each array cell. |

Array properties can be combined with any type of surface, i.e. spherical, aspheric, Fresnel, GRIN and so on. For example, the following commands define various valid combinations of array surfaces:

```
sut s1 SR Defines surface type for an array of spherical surfaces
sut s1 AR Defines surface type for an array of aspheric surfaces
sut s1 SFR Defines surface type for an array of Fresnel surfaces with spherical base
    curvature
sut s1 SIR Defines surface type for an array of GRIN surfaces with spherical base
    curvature
```

There can be as many arrays as are surfaces in the optical system. Lens arrays, which span more than one surface (i.e. elements) can be generated by repeating the array parameters from previous surfaces. The apertures of the array channels are defined by the surface apertures (seeCIR, REX, REY, ELX, ELY commands).
If both, x_spacing and y_spacing are zero on a given surface, the array property is ignored and the lens behaves like a continuous (non-array) surface.

Figure 8.36: Definition of array parameter shown for a square regular grid. The dashed lines indicate the vertex of the base surface.

Restrictions:

1. Array parameters may not be zoomed. Parameters of the channel surface such as curvature, thickness, etc may be zoomed.
2. Array parameters may not be used in optimization.

Example:

An array of spherical channel surfaces as shown in Fig. 8.35(b) is best created when starting from a plano-convex lens. The first surface of the lens is converted to an array by
arr s1 55001515
where the spacings of the channel centerlines are 5 mm in X - and Y-direction. The qualifier " R " is correspondingly added to the surface type without requiring user interaction. The X- and Y-offsets are zero. This aligns the center channel on the vertex of the base surface. The extent of the array is given by the \pm data pair (1515). We may also enter the ARR command by discrete commands:

```
sut sl sr
arx sl 5
ary sl 5
arxo s1 0
aryo sl 0
amx s1 15
amy s1 15
```

Next we will reduce the radius of curvature of surface 1 to pronounce the effect.

Figure 8.37: Hexagonal arrangement of array cells. All odd numbered columns are shifted (staggered) in Y-direction by $0.5 *$ ARY. Optimal packaging of cells is then accomplished with ARX $=$ $\cos \left(30^{\circ}\right) * \mathrm{ARY}=0.866^{*} \mathrm{ARY}$.

```
rdy s1 3
```

and will also define a fan of 31 rays along the Y -direction in order to better visualize refraction of rays in the lens layout plot (see also VIE command).

```
set fan y 31
```

The output should be as shown in Fig. 8.35(b).

8.27 Radial Spline Deformation Surfaces

The radial spline deformation surface is rotationally symmetric about the vertex of the base surface. The radial spline is defined by deformation points in radial direction, starting from the vertex to the outer rim of the surface. Each deformation point is described by a pair of two values, the radial distance (SPLR) from the vertex and the deformation value (SPLZ) perpendicular to the base surface. The base surface can be any of the surface types available in $O p T a l i X$, for example a sphere or asphere. Since the spline function is added to the base surface, the surface type (SUT) must be composed of two letters, e.g.

SC $=$ spherical base surface + spline
$\mathrm{AC}=$ aspherical base surface + spline

Up to 20 radial deformation points are supported per surface. There may be as many spline surfaces as are surfaces in the current system. The deformation points are then fitted by a "Spline" interpolation method to obtain a continuous radial function across the surface. It should be noted that the deformation points are simulated exactly while all intermediate coordinates may exhibit "overshooting" effects which are generally not desired. Since spline interpolation attempts to generate "smooth" curves (i.e. first and second derivative of two adjacent segments match), there is no direct control
of the surface slope. This behaviour is inherent to the Spline fitting method and does not constitute an implementation fault. A finer (smaller) sampling interval should be chosen in such cases. It is also good practice to provide additional sampling points outside the active area (if available) to avoid boundary effects. In some cases, when the spline deformation is very steep, a ray passing the exact surface vertex at exact normal incidence of the local surface may be deviated. This is also a boundary effect which may be reduced (or eliminated in most cases) by adding an extra sampling point close to the vertex point of the surface. This forces a zero slope at this point.

$\begin{aligned} & \text { SPLN si..j } \\ & \text { n_spline_points } \end{aligned}$	Number of (radial) spline deformation points at surface(s) si..j
$\begin{aligned} & \text { SPLR si..j ci..j } \\ & \text { rad_dist1 ... } \\ & \text { rad_dist_n } \end{aligned}$	Radial distance from the vertex of the surface(s) si..j. The radial distances are measured along the vertex tangent plane. Example: splr s3 c1..5 024713 where the deformation points are located at $0,2,4,7$ and 13 mm from the surface vertex.
$\begin{aligned} & \hline \text { SPLZ si..j ci..j def_1 } \\ & \text { def_2 ... } \operatorname{def_ n} \end{aligned}$	Deformation from the base surface, measured perpendicular to the normal of the base surface. Example: splz s3 c1.. 5 $0.00 .001-0.0020 .003-0.004$
SPL si..j file file_spec	Load Spline deformations from file " $f i l e _s p e c$ ". A detailed description of the radial Spline file format is given in section 32.5 . Example: spl s4 file c:/temp/spline_def.dat

Example:

We will apply a periodic deformation of roughly sinusoidal shape for easy visualization of the effects. First, we will enter the data manually in the command line and later on will learn about importing (loading) the spline deformation stored in a file. Assuming 6 sampling points, the command sequence is (without entering the exclamation mark and the text right to it)

```
spln 6 ! define number of sample points
splr s1 c1..6 0 0.001 10 20 30 40 ! define the radial distances
splz s1 cl..6 0 0 .001-.001 .001 -.001 !define the deformation
```

Note the second sampling point, which has been set very close to the first sampling point. This forces a zero slope at the vertex in the spline interpolation.
Alternatively, we could edit the data in a separate text (ASCII) editor outside of OpTaliX and store it in a file. It is then loaded with a single command. Using the demonstration example above, the file would look like (with comments included)

```
! Spline deformation file
0
0.001 0 ! this is an extra data point
10 0.001
20-0.001
30 0.001
40-0.001
! end of file
```

See also section 32.5 for a detailed description of the radial Spline file format. The file is loaded with the command SPL sl file 'c:\optalix\my-spline-data.spl'. Path and filename must be adjusted accordingly.

8.28 Two-Dimensional Interferometric Deformation on Surfaces

Interferometric deformations are specified as two-dimensional gridded data. Using this method, nonrotationally symmetric deformations can be modelled. Typically, such data is obtained from interferometric measurements of lens surfaces or complete optical systems or from external programs that generate appropriate data files. The surface type (SUT) must have the qualifier "W" in order to make 2-dimensional deformation/apodization data active.
The data in an interferogram file can represent either surface deformation, wavefront perturbation data or intensity apodization data:

- Surface deformation data is added to whatever surface shape is defined with the lens. Deformation data is always measured normal to the nominal surface. During ray tracing, both ray aberrations and wave aberrations will be properly modified. Surface deformation data are always associated with refractive or reflective surfaces, they have no effect on dummy surfaces (same medium on both sides of a surface).
- Wavefront perturbation data modify the ray deviations and optical path difference (OPD) but has no effect on surface shape, even though it is associated with a (refracting/reflecting) surface.
- Intensity apodization data modify the transmission characteristics of an optical system but do not alter surface shape and ray directions.

Interferometric deformations can be scaled in deformation (ISF) and its origin can be placed at a particular X,Y location on the surface (INX and INY commands).
A file interface is provided that allows reading (importing) two-dimensional data sets. This data (surface deformation, wavefront perturbation or filter) is then assigned to a surface.

INT sk file int_file_name	Assign surface deformation data given in the file int_file_name to surface sk. No particular exten- sion of the file name is required, however,". int" is rec- ommended. The file format must obey a specific struc- ture, which is specified in section 32.11.
ORB sk file orb_file_name	This command is functionally equivalent to the "INT" command above, except that it expects surface defor- mation data in a form provided by the "Orbscan II" to- pography system from Bausch \& Lomb used in surgi- cal treatments of the human eye. The data must have been exported in cartesian form (gridded data) using the "'Recorder" option. The surface deformation data in the file orb_file_name is then attached to surface sk.

continued from previous page	
ISF si..j scale_factor	Scales the measured deformation by a specified scale factor. For example, a scale factor 0.5 is often used for scaling of surface data obtained in a double-pass interferometric setup. A scaling factor -1.0 also allows flipping the deformation data from "bump" to "dent".
INX sk x_offset	X-coordinate on surface sk where the center of the deformation data is placed.
INY sk x_offset	Y-coordinate on surface sk where the center of the deformation data is placed.
IRX sk x_extension	Physical extension of the deformation array in Xdirection on surface sk. Extension is meant as \pm value from the center of the deformation data.
IRY sk y_extension	Physical extension of the deformation array in Ydirection on surface sk. Extension is meant as \pm value from the center of the deformation data.
PLO INT [sk]	Plots two-dimensional deformation assigned to surface sk. See also sect. 8.28.8.
RAW2INT file raw_file	Convert two-dimensional gridded data in "raw" format to INT format. This is a utility command which is useful when only "raw" data are available. The file raw_file must be provided in ASCII format with full path specification. The parameter "file" is mandatory. The data in the RAW format may be separated by blank characters, comma, tabs or by quote characters ". One line in the ASCII file corresponds to one row in the data grid. Thus, there are as many lines in the the file as are rows in the data array. The file must not contain any header or comment lines. The array size is extracted from the data itself. Example: raw2int file c: \mydata.txt The converted data are then written in a separate file in the same directory with the extension .int appended. From the example above, the output (converted) file is then $\mathrm{c}: \backslash$ mydata.txt. int

8.28.1 Saving Deformation Data

Deformation data associated to surfaces in the current optical system can be saved in two variants:
a) The deformation data are kept in the original file and only a "link" to the file containing the data is saved with the prescription data. This method allows small prescription files, however, an absolute path is stored. However, absolute paths cannot be updated when your computer configuration changes. For example, if you change the location of the deformation file (move it) or send your prescription file to anybody else (via Internet/Intranet) who most likely has a different directory structure on his computer, OpTaliX will not be able to find the deformation file. Only in cases where you can relay on a stable and consistent file structure, saving links is recommended.
b) The second option, which is independent on file structure, saves the deformation data as an integral part of the prescription data. Large file sizes may result, depending on the number of surfaces that have deformations associated and on the array sizes of the deformation data itself.

Saving deformation data is controlled by from the command line by

	Save interferometric deformation, wavefront or filter data as link to a file. On saving or restoring an optical system, the data are retrieved from the original file (ILN YES) or are stored along with the description data (ILN NO). There are specific advan- tages/disadvantages in choosing either method: ILN YES : Only stores a link to the file containing the data (INT, BMP, PCX or PNG file). On restoring the optical system, the file must exist, i.e. accessible by path and file name. Moving files may result in loss of data due to inaccessible files. ILN NO : Saves all data with the prescription data. The corre- sponding OpTaliX file may become VERY large, depending on the amount of data involved in describing the perturbation or filter characteristics. This way, perturbation data will always be available, however, it cannot be changed except by reloading new data.

or from the configuration dialog invoked from the main menu by Edit $->$ Configuration Data. In the General tab, check the option "Store 2-dim deformation with prescription data", as shown in Fig. 8.38 .

Figure 8.38: Option for saving interferometric deformation data, wavefront or filter data. Check if data are to be saved with prescription data, leave unchecked if data are maintained in separate file, accessed by a link.

Caution: Once 2-dimensional deformation data are stored with the prescription data and the appropriate check box in the configuration dialog has been checked, it is not recommended to uncheck it. If unchecked, the program does not know where to store the deformation data, since it cannot create the original files, and the data will be lost. That is, the program provides two methods of handling and storing deformation data, however, the storing method should not be changed after a selection has been made.

8.28.2 Sign Conventions

A positive deformation in the data file(s) is in the direction of the local Z-axis for the surface, regardless of the direction of light. Thus, the physical meaning depends on which side of an optical element is considered. For a singlet lens, for example, a positive deformation on the first surface is a concave increment ("dent") to the surface while a positive deformation on the second ("rear") surface is a convex increment ("bump") to the surface.

Figure 8.39: Sign convention for two-dimensional deformations on surfaces.

It is generally a good idea to test the correct orientation of coordinate axes (X, Y) of deformation data with marked pieces. A plot of the deformation data as shown in Fig. 8.40 is helpful to visualize the data in the OpTaliX coordinate system. This plot is generated by the command (on the example of surface 3)
plo int s3
or from the menu: Display -> Show 2-dim. Surface Deformation

8.28.3 Interferometric Deformation Data

Surface deformations obtained from interferometric measurements or from other external programs (e.g. NASTRAN deformations) are read in by the INT command. The file format is identical to the Code V INT-files and is specified in section 32.11.
Due to the inherent structure of Code-V INT files, no provision for specifying the lateral X- and Yextensions of the data, respectively the coordinates of the X / Y sample points, is foreseen. Thus, the connection of the unit length of the file data to the physical length on the surface must be specified separately. To control the correct X/Y-extensions on a specific surface use thePLO INT command.
In OpTaliX mapping of the file data to the surface aperture is queried at the time of loading/assigning deformation data as shown in Fig. 8.41.

8.28.4 Wavefront Perturbations

Wavefront perturbation data must be provided in the INT file-format (see section 32.11 on page 516) as defined in Code V. This means that Code V INT files can be directly read in and associated to surfaces without modification.

Figure 8.40: Plot of two-dimensional surface deformation in the OpTaliX coordinate system. The deformation is always shown in the direction of the positive Z -axis. For systems having no mirrors or tilted components, the positive Z-direction is identical to the direction of light (from left to right in the lens layout plot).

Wavefront perturbations modify the ray directions and the optical path difference (OPD) but there is no effect on surface shape, even though it is associated to a surface. Wavefront perturbations are usually placed on dummy surfaces. Wavefront perturbation data can be viewed using thePLO INT command.

8.28.5 Surface Intensity Apodization (Intensity Filter)

Intensity apodization data are read in from an INT-file or a bitmap file (BMP, PCX or PNG) and are associated to a specific surface. Surface based apodization only modifies the intensity transmission along a ray path and thus can be understood as a spatial intensity filter. There is no effect on surface shape and direction of rays. By default, rays are not blocked, except in regions where data is missing (see sect. 8.28.7). In addition, rays can be blocked in regions of zero intensity if the IBZ attribute is assigned to a filter (sect. 8.28.7).
Intensity apodization can be associated to any surface (except object and image surface), however, they are typically associated to dummy surfaces. The effect of the apodization on the beam profile depends upon the region of the surface that is hit by the beam.
Apodization filter data in INT-files or BMP/PCX/PNG files are transmission and can have any value grater than 0 . See a detailed description of the INT file format in section 32.11. Apodization filters can also be defined in a bitmap file (BMP, PCX or PNG) in which transmission is grey-coded in grey levels between 0 (no transmission) and 255 (full transmission $=1.0$).
Apodization filters can be placed on surfaces with X- and Y-offsets using the INX and INY commands. Inversion and scaling of intensity data is not possible. Use thePLO INT command to control correct placement and scaling of apodization data on surfaces. The effect of intensity apodization on system transmittance can be plotted by the pupil intensity map (PMA) option as described in section 14.1.9.

It is not required to activate transmission analysis (TRA yes | no) or polarization analysis (POL yes |no) to see the effects of intensity apodization filters on performance. Once attached to a surface, intensity

Figure 8.41: Assigning two-dimensional deformations from Code V compatible INT files to surfaces and specifying scaling factor and X / Y offsets. The connection of the unit length (maximum array size) to the physical extension on the surface can be accomplished by matching the data to the clear surface aperture (default) or by explicitly specifying X/Y extensions of the interferogram data.
apodization filters are always active.

8.28.6 Deformations from Orbscan II Topography System

Surface deformation data obtained from the "Orbscan II" topography system from Bausch \& Lomb are assigned to surfaces using the ORB command. It is functionally equivalent to the INT command, except that a different file format is expected.
The Orbscan II data must be provided in cartesian form (gridded data) using the "Recorder" option (see the Orbscan manual). This option writes a readable ASCII file. Orbscan topographic data can be read in and assigned to optical surfaces from the command line or by selecting menus. For example, importing Orbscan II deformation data is accomplished in the command line by
orb s3 file c:\temp\def_data.txt
The file may have any extension. Note the use of the expression " $£ i l e$ " in the command. It is required to identify the subsequent string as a path and file specification. Using menu items, the same file is assigned to surface 3 by clicking

File -> Import -> Orbscan Map Data

Select the file containing the deformation data from the file selection box. The surface association is performed in a subsequent dialog box as shown in Fig. 8.42. It also allows definition of the (interferogram) scaling factor ISF, which is used to change the sign of the deformation data, as well as X- and Y-offsets (INX, INY) where the deformation is placed on the surface.
Orbscan map data are defined and stored in a left-handed coordinate system. Since the coordinate system used in OpTaliX is also left-handed, no special precautions such as inverting or mirroring data is required. In particular, ISF should be +1.0 .

Figure 8.42: Assigning Orbscan map data (two-dimensional deformations) to surfaces and specifying scaling factor and X / Y offsets. The lateral X / Y extensions are greyed out, because these are explicitly provided with Orbscan files and need not specified.

8.28.7 Behaviour of Rays in Regions of No Data

Interferogram or filter data can have regions of missing data. Possible reasons may be clipping by the edge or obscuration of the piece being tested, noise or too weak signal in the interferometer detector, or other reasons. Missing data are indicated in the files according to the value associated with the NDA file entry.
Rays which hit "no data" regions will be blocked, irrespectively whether the surface aperture is checked (fixed aperture) or not.
Optionally rays can also be blocked on surfaces with intensity filters if the intensity reaches zero. The IBZ flag controls behaviour of rays in such regions:

	Block rays in regions of zero intensity. This option is only applicable on surfaces with intensity filters. If this flag is set (IBZ sk YES), rays hitting a region where the intensity approaches zero (<0.001) are blocked. Specify IBZ sk NO to let rays pass irrespective of the intensity imposed by the filter.
IBZ si..j\|sk \quad Yes \mid No	The IBZ option is particularly useful to model very complex aperture shapes. Any arbitrary shape provided in an INT-file or a bitmap file (BMP,PCX,PNG) may be attached as an intensity filter. IBZ YES on that surface will then define the complex aperture as all rays at zero intensity will be blocked.

8.28.8 Display Interferometric Deformation

Interferometric deformations attached to a surface can be viewed by the PLO INT command:

PLO INT sk [?]	Plot interferometric deformation attached to a surface. The question mark (optional) invokes a dialog box for editing plot parameters.

A sample plot of an interferometric deformation and the associated surface aperture is shown in Fig. 8.43 (page 145). This plot allows mapping of the interferogram file data to the surface aperture. Notice that the interferogram dimensions are queried at the time of loading/assigning deformation data. However, interferogram dimensions can be changed by theIRX, IRY commands.

Figure 8.43: Display interferogram deformation on a surface. The surface aperture is shown in red colour which allows a direct comparison with the measured interferogram dimensions.

Interferometric deformations can be plotted in four styles, wire-grid plot, gray-scale plot, false-colour plot and as X/Y-sections. Currently, the plot style can only be defined within the option dialog box (i.e. PLO INT ?).

8.29 Zernike Surface

The Zernike surface is defined by the surface type " Z " which may be added to any other base surface (e.g. spherical, aspherical, toroidal, etc). Zernike surfaces are always defined in terms of "Finge Zernike polynomials". Zernike surfaces may be defined as surface or phase deformation:

- Zernike surface deformation: Defines a deformation of the surface, i.e. direction and optical path along a ray are altered by the law of refraction. The Zernike surface deformation is preferably applied to surfaces with an air/glass or glass/air interface.
- Zernike phase deformation: Introduces an additional phase component to the optical path (wavefront). The direction of rays is modified such that rays are always perpendicular to the phase additive. Zernike phase surfaces must be defined on surfaces with the same medium on both sides of the surface (preferably AIR/AIR interfaces).

Command Overview:

$\begin{aligned} & \text { ZRN [si..j\|sk] } \\ & \text { SUR\|PHA } \end{aligned}$	Define Zernike deformation on surface (SUR), or as phase/wavefront perturbation (PHA) at surface(s) si..j. The Zernike surface deformation is preferably applied to surfaces with air/glass, respectively glass/air interfaces, the Zernike phase surface should only be applied to air/air surfaces (i.e. dummy surfaces).		
ZTYP ZFR\|ZFE	ZRN [si..j	sk]	Define Zernike type, i.e. the sequence of the Zernike coefficients. Currently, the following Zernike definitions (types) are supported: ZFR : Fringe Zernike polynomials ZFE : Extended Fringe Zernike polynomials ZRN : Standard Zernike Polynomials
$\begin{aligned} & \text { SPS ZFR\|ZFE\|ZRN } \\ & \text { [si..j\|sk] } \end{aligned}$	Code V compatibility command to the ZTYP command (as above) Sets the following Zernike definitions (types): ZFR : Fringe Zernike polynomials ZFE : Extended Fringe Zernike polynomials ZRN : Standard Zernike Polynomials		
$\begin{aligned} & \hline \text { ZRN [si..j\|sk] ci..j } \\ & \text { SCO [si..j\|sk] ci..j } \end{aligned}$	Set Zernike coefficient ci . . j at surface(s) si. . j		
ZRN si..j\|sk FIL f_name	Load Zernike deformation coefficients from file f_name and attach it to a specific surface sk or a range of surfaces si..j. A description of the Zernike coefficients file format is given in section 32.4.		
ZRN WAV [fi]	Fit Zernike polynomials to wavefront aberration at field fi at the reference wavelength. Make sure to have appropriate Zernike coefficients on wavefront activated (see ZWACT command below). See also the WZRN command to retrieve Zernike coefficients fitted to the wavefront.		
PLO ZRN si	Plot Zernike-wave based on Zernike coefficients associated to surface si		
EDI ZRN si	Opens a dialog box to edit Zernike coefficients associated to surface si.		
INR [si..j\|sk] radius	Connects the unit circle of Zernike data to a physical aperture on the surface(s) si..j\|sk. The entered value is the radius on that surface(s). The default value for INR is the semidiameter of the surface clear aperture. Note: If the given value of radius scales the Zernike deformation to a smaller value than the actual semi-aperture, the data outside the INR radius will be extrapolated, leading to false results! This case must be avoided.		
	continued on next page		

continued from previous page	
```ZACT si..j\|sk ci..j act1 act2 ...```	Activate/deactivate Zernike coefficients on a particular surface (or range of surfaces). Activating a coefficient means that it will be used in the performance analysis. "act" is an integer number of 0 or 1 , where 0 deactivates a coefficient and 1 activates it. In absence of a coefficients specifier "c", a sequence of integer values is expected (see third example below).   Examples: $\begin{array}{llllll} \text { zact s2 c1 } & 1 & & \begin{array}{l} \text { ! activates Zernike coeffi- } \\ \text { cient } 1 \text { at surface } 2 \end{array} \\ \text { zact s2 } & \ldots & c 1 . & . & 1 & 1 \\ \text { ! activates Zernike coeffi- } \\ \text { cients no. } 1 \text { to } 5 \text { at surface } 2 \end{array}$   Alternatively, coefficients may be activated/deactivated in the Zernike spreadsheet editor, which is invoked by the command EDI ZRN (see above). For the definition of Zernike coefficients see sect. 8.29.2).
$\begin{aligned} & \text { ZWACT ci..j act1 } \\ & \text { [act2 ...] } \end{aligned}$	Activate/deactivate Zernike coefficients used for wavefront fitting. Activating coefficients means that they will be used for fitting the wavefront. "act" is an integer number of 0 or 1 , where 0 deactivates a coefficient and 1 activates it. In absence of a coefficients specifier " $c$ ", a sequence of integer values is expected (see third example below. A surface qualifier is not required, since the ZWACT switches always apply to the wavefront Zernike coefficients.   Examples: $\begin{array}{llllll} \text { zwact c1 } & 1 & & & \begin{array}{l} \text { ! activates Zernike coeffi- } \\ \text { cient } 1 \text { to be used for wave- } \\ \text { front fitting, } \end{array} \\ \text { zwact } & \text { c1. } & \ldots & 5 & 1 & \begin{array}{l} \text { ! activates Zernike coeffi- } \\ \text { cients no. } 1 \text { to } 5 \text { for wave- } \\ \text { front fitting, } \end{array} \\ \text { zwact } & 1 & 0 & 1 & 0 & 1 \end{array} \begin{aligned} & \text { ! activates coefficients no. } \\ & 1,3 \text { and } 5, \text { deactivates coeffi- } \\ & \text { cients no. } 2 \text { and } 4 . \end{aligned}$   Alternatively, wavefront coefficients may be activated/deactivated in the Zernike spreadsheet editor, which is invoked by the command EDI ZRN (see above). Use the command WAV ZRN to actually fit the coefficients to the wavefront aberration at a particular field. For the definition of Zernike coefficients see sect. 8.29.2).
WZRN Ci..j	Set Zernike coefficients ci . . j of wavefront. Fit Zernike coefficients to the actual wavefront at a specific field using the ZRN WAV command. (see above) and subsequently edit them by the EDI ZRN command.
	continued on next page


continued from previous page		
WZRN Ck fk	In macros or from the commandline, retrieve a specific wavefront   Zernike coefficient, where $c k$ is the $\mathrm{k}^{\text {th }}$ coefficient, and fk is field   k.   Example: eva [wzrn c3 f1]	

## Example 1:

Typical surface irregularities caused by fabrication errors can be simulated by adding Zernike deformations to particular surfaces. A likely effect in "synchro-speed" generation of spherical surfaces can be modelled with good approximation using only one Fringe Zernike term, Z9, as shown in Fig. 8.44. We assume a measured irregularity $\tau=0.5$ waves $P V$ at 633 nm on a surface exhibiting only this defect. Since in the unit circle $-0.5<Z_{9}<1.0$, the PV value of $Z_{9}$ in the unit circle is 1.5 , the coefficient $Z_{9}$ calculates to

$$
\begin{equation*}
Z_{9}=\frac{\tau \cdot \lambda_{633}}{P V_{\text {unit-circ }}}=\frac{0.5 \cdot 0.000633}{1.5}=2.11 \cdot E^{-4} \tag{8.86}
\end{equation*}
$$

$\lambda_{633}$ is the interferometer wavelength ( 633 nm ). This deformation is entered by the following commands (without typing the exclamation mark and the text right to it):

```
SUT s2 SZ ! surface type is spherical + Zernike
ZRN s2 c9 2.11e-4 !enters Zernike coefficient Z9 at surface 2
```

Alternatively, we may enter the coefficients in the Zernike spreadsheet editor, which is invoked by the EDI ZRN command. Find a more detailed explanation of the Zernike spreadsheet editor in section 8.29.1, page 149. The surface type can be changed in the surface spreadsheet editor, (use command EDI SUR, if not already open).


Figure 8.44: Fringe Zernike deformation, using only coefficient 9.

## Example 2:

Fitting Zernike polynomials to the actual wavefront aberration at a particular field is accomplished with the ZRN WAV command. Suppose, we want to see the Zernike terms at field 2, we must first specify, which coefficients are to be included (activated) in the fitting process. Subsequently, fitting can be performed. Both operations are done, for example, by the commands

```
ZWACT 0 1 1 1 1 1 1 1 1 1 ! activate Fringe Zernike coefficients 2-8 for wave-
 front fitting. Coefficients 1 and 9-36 are excluded from fitting.
ZRN WAV f2 !Perform Fringe Zernike fitting of system wavefront at field 2.
```

and obtain the following output of the fitted Fringe Zernike coefficients at field 2 (the reference wavelength number is 2 ):

```
Zernike polynomial fit of wavefront at field 2 colour 2
 # coefficient coefficient Description of Fringe Zernike Coeff.
 (unit = micron) (unit = wave)
 -0.817072827 -1.39053 Y-Tilt
 1.184744104 2.01624 Defocus
 -1.401898817 -2.38580 Astigmatism 3rd Order, 0 and 90 deg.
 0.000000000 0.00000 Astigmatism 3rd Order, +/-45 deg.
 0.000000001 0.00000 X-Coma and Tilt, 3rd Order
 -2.191878576 -3.73022 Y-Coma and Tilt, 3rd Order
 1.450299352 2.46817 Spherical and Focus, 3rd Order
```


### 8.29.1 Zernike Spreadsheet Editor

Editing of Zernike coefficients can be performed in a more convenient manner via the Zernike spreadsheet editor (see Fig. 8.29.1). It is started from the command line by EDI ZRN and allows input of Zernike deformation coefficients at surfaces as well as fitting of the wavefront aberration. Any surface in the optical system (except the object and image surface) may be selected. If "wavefront" is selected, the Zernike coefficients relate to the wavefront aberration in the exit pupil. For this case, it does not make much sense to enter coefficients (although it is possible), but this option is merely used to fit a Zernike polynomial to the existing wavefront. Select (activate) in the second column, which coefficients shall be included in the fit.

Zernike coefficients may be loaded from a file or stored into a file. The latter is particularly useful for fitted wavefront aberrations.

### 8.29.2 Definition of Zernike Polynomials

Zernike polynomials are circle polynomials in radius and azimuth.They are favoured in representing wavefront because they are orthogonal and normable within the unit circle. This implies that each term is independent from all others. Therefore, neither the inclusion or exclusion of a given term will affect the values of the other terms. This is strictly true only for continuous data, but it is approximately true for data that is uniformly spaced over a circular aperture. The Zernike polynomials have the general form

$$
\begin{equation*}
Z_{n}^{m}(r, \phi)=R_{n}^{m}(r)[\cos m \phi+\sin m \phi] \tag{8.87}
\end{equation*}
$$

where $r$ and $\phi$ are polar coordinates within the unit circle. Typically, wavefront data are represented in the pupil of an optical system in cartesian pupil coordinates $x_{p}, y_{p}$. The relationship between $[r, \phi]$ and $x_{p}, y_{p}$ is

$$
\begin{align*}
x_{p} & =r \cos \phi  \tag{8.88}\\
y_{p} & =r \sin \phi \tag{8.89}
\end{align*}
$$

activate / deactivate coefficients
coefficient is variable in optimization

(0) Zernike Coefficients		$\nabla \nabla$			- $\square$	
Suface :		Coefficient	On	Var	Description	$\pm$
1 -	1	0.000000			Offset	
Deformation typeSurfacePhase	2	0.000000	-		$X$-Till	
	3	0.000000			Y-Tilt	
	4	$0.1000000 \mathrm{E}-03$	$\checkmark$		Defocus	
	5	-0.3650000E-03	$\checkmark$		Astigmatism 3rd Order, 0 and 90 deg.	
	6	0.000000			Astigmatism 3rd Order, +/-45 deg.	
Load coeffs from file	7	0.5000000			X-Coma and Till, 3rd Order	
	8	0.5873000E-04	$\checkmark$		Y-Coma and Tilt, 3rd Order	
Save coeffs to file	9	0.000000			Spherical and Focus, 3rd Order	
Fit Wavefiont	10	10.000000			Triangular- X , 5th Order	
	11	0.000000			Triangular $-Y$, 5th Order	
Show Zernike Deformation	12	0.000000			Astigmatism, 5th Order	
	13	0.000000			Astigmatism, 5th Order	
	14	0.000000			Coma, 5th Order	$\checkmark$
Help Close	1				- - - -	

Figure 8.45: Editing of Zernike coefficients at surfaces, respectively fitting of wavefront aberration.

We shall be concerned in the following treatment with the Fringe ZERNIKE polynomials, the extended Fringe Zernike polynomials and the standard Zenike polynomials according to Born and Wolf [4].

### 8.29.3 Fringe Zernike Polynomial Terms (ZFR)

The Fringe Zernike polynomial set is limited to 36 terms with a higher order radial term ( $49^{h}$ term of the extended Fringe coefficients) appended as the $37^{\text {th }}$ term.

Table 8.33: Fringe Zernike Polynomials (ZFR)

Term	$\mathbf{n}$	$\mathbf{m}$	FRINGE-Zernike-Polynomial	Meaning	
1	0	0	1	Offset	
2	1	1	$R \cos (\phi)$	X-Tilt	
3	1	1	$R \sin (\phi)$	Y-Tilt	
4	2	0	$2 R^{2}-1$	Defocus	
5	2	2	$R^{2} \cos (2 \phi)$	Astigmatism $3^{\text {rd }}$ order   at $\phi=0$ or $90^{\circ}$	
6	2	2	$R^{2} \sin (2 \phi)$	Astigmatism $3^{\text {rd }}$ order   at $\phi= \pm 45^{\circ}$	
7	3	1	$\left(3 R^{3}-2 R\right) \cos (\phi)$	X-Coma and tilt, $3^{\text {rd }}$ or-   der	
8	3	1	$\left(3 R^{3}-2 R\right) \sin (\phi)$	Y-Coma and tilt, $3^{\text {rd }}$ order	
9	4	0	$6 R^{4}-6 R^{2}+1$	Spherical and focus, $3^{\text {rd }}$   order	


continued from previous page				
10	3	3	$R^{3} \cos (3 \phi)$	Triangular-X, $5^{\text {th }}$ order
11	3	3	$R^{3} \sin (3 \phi)$	Triangular-Y, $5^{\text {th }}$ order
12	4	2	$\left(4 R^{4}-3 R^{2}\right) \cos (2 \phi)$	Astigmatism, $5^{\text {th }}$ order
13	4	2	$\left(4 R^{4}-3 R^{2}\right) \sin (2 \phi)$	Astigmatism, $5^{\text {th }}$ order
14	5	1	$\left(10 R^{5}-12 R^{3}+3 R\right) \cos (\phi)$	Coma, $5^{\text {th }}$ order
15	5	1	$\left(10 R^{5}-12 R^{3}+3 R\right) \sin (\phi)$	Coma, $5^{\text {th }}$ order
16	6	0	$20 R^{6}-30 R^{4}+12 R^{2}-1$	Spherical, $5^{\text {th }}$ order
17	4	4	$R^{4} \cos (4 \phi)$	Quadratic-X, $7^{\text {th }}$ order
18	4	4	$R^{4} \sin (4 \phi)$	Quadratic-Y, $7^{\text {th }}$ order
19	5	3	$\left(5 R^{5}-4 R^{3}\right) \cos (3 \phi)$	Triangular, $7^{\text {th }}$ order
20	5	3	$\left(5 R^{5}-4 R^{3}\right) \sin (3 \phi)$	Triangular, $7^{\text {th }}$ order
21	6	2	$\left(15 R^{6}-20 R^{4}+6 R^{2}\right) \cos (2 \phi)$	Astigmatism, $7^{\text {th }}$ order
22	6	2	$\left(15 R^{6}-20 R^{4}+6 R^{2}\right) \sin (2 \phi)$	Astigmatism, $7^{\text {th }}$ order
23	7	1	$\left(35 R^{7}-60 R^{5}+30 R^{3}-4 R\right) \cos (\phi)$	Coma, $7^{\text {th }}$ order
24	7	1	$\left(35 R^{7}-60 R^{5}+30 R^{3}-4 R\right) \sin (\phi)$	Coma, $7^{\text {th }}$ order
25	8	0	$70 R^{8}-140 R^{6}+90 R^{4}-20 R^{2}+1$	Spherical, $7^{\text {th }}$ order
26	5	5	$R^{5} \cos (5 \phi)$	5 -fold, $9^{\text {th }}$ order
27	5	5	$R^{5} \sin (5 \phi)$	5 -fold, $9^{\text {th }}$ order
28	6	4	$\left(6 R^{6}-5 R^{4}\right) \cos (4 \phi)$	Quadratic, $9^{\text {th }}$ order
29	6	4	$\left(6 R^{6}-5 R^{4}\right) \sin (4 \phi)$	Quadratic, $9^{\text {th }}$ order
30	7	3	$\left(21 R^{7}-30 R^{5}+10 R^{3}\right) \cos (3 \phi)$	Triangular, $9^{\text {th }}$ order
31	7	3	$\left(21 R^{7}-30 R^{5}+10 R^{3}\right) \sin (3 \phi)$	Triangular, $9^{\text {th }}$ order
32	8	2	$\left(56 R^{8}-105 R^{6}+60 R^{4}-10 R^{2}\right) \cos (2 \phi)$	Astigmatism, $9^{\text {th }}$ order
33	8	2	$\left(56 R^{8}-105 R^{6}+60 R^{4}-10 R^{2}\right) \sin (2 \phi)$	Astigmatism, $9^{\text {th }}$ order
34	9	1	$\left(126 R^{9}-280 R^{7}+210 R^{5}-60 R^{3}+5 R\right) \cos (\phi)$	Coma, $9^{\text {th }}$ order
35	9	1	$\left(126 R^{9}-280 R^{7}+210 R^{5}-60 R^{3}+5 R\right) \sin (\phi)$	Coma, $9^{\text {th }}$ order
36	10	0	$\begin{aligned} & 252 R^{10}-630 R^{8}+560 R^{6}-210 R^{4}+ \\ & 30 R^{2}-1 \end{aligned}$	Spherical, $9^{\text {th }}$ order
37	12	0	$\begin{aligned} & 924 R^{12}-2772 R^{10}+3150 R^{8}-1680 R^{6}+ \\ & 420 R^{4}-42 R^{2}+1 \end{aligned}$	spherical, $11^{\text {th }}$ order

### 8.29.4 Extended Fringe Zernike Polynomial Terms (ZFE)

The extended Fringe Zernike coefficients 1-36 are identical to the Fringe Zernike coefficients and have the same order (see table 8.33), so they are not repeated here. The $49^{\text {th }}$ term of the extended Fringe coefficients is identical to the $37^{\text {th }}$ term of the Fringe coefficients.

Table 8.34: Extended Fringe Zernike Polynomials (ZFE)

Term	n	m	Extended FRINGE-Zernike-Polynomial	Meaning
37	6	6	$R^{6} \cos (6 \phi)$	Hexafoil, primary X
38	6	6	$R^{6} \sin (6 \phi)$	Hexafoil, primary Y
39	7	5	$R^{5}\left(7 R^{2}-6\right) \cos (5 \phi)$	Pentafoil, secondary X
40	7	5	$R^{5}\left(7 R^{2}-6\right) \cos (5 \phi)$	Pentafoil, secondary Y
41	8	4	$R^{4}\left(28 R^{4}-42 R^{2}+15\right) \cos (4 \phi)$	Tetrafoil, tertiary X
42	8	4	$R^{4}\left(28 R^{4}-42 R^{2}+15\right) \sin (4 \phi)$	Tetrafoil, tertiary Y
continued on next page				


continued from previous page						
43	9	3	$R^{3}\left(84 R^{6}-168 R^{4}+105 R^{2}-20\right) \cos (3 \phi)$	Tetrafoil, quaternary X		
44	9	3	$R^{3}\left(84 R^{6}-168 R^{4}+105 R^{2}-20\right) \sin (3 \phi)$	Tetrafoil, quaternary Y		
45	10	2	$R^{2}\left(210 R^{8}-504 R^{6}+420 R^{4}-140 R^{2}+\right.$   $15) \cos (2 \phi)$	Astigmatism, quinterary,   0 or 90 deg.		
46	10	2	$R^{2}\left(210 R^{8}-504 R^{6}+420 R^{4}-140 R^{2}+\right.$   $15) \sin (2 \phi)$	Astigmatism, quinterary,   $\pm 45$ deg.		
47	11	2	$R\left(462 R^{10}-1260 R^{8}+1260 R^{6}-560 R^{4}+\right.$   $\left.105 R^{2}-6\right) \cos (\phi)$	Coma, quinterary, X		
48	11	2	$R\left(462 R^{10}-1260 R^{8}+1260 R^{6}-560 R^{4}+\right.$   $\left.105 R^{2}-6\right) \sin (\phi)$	Coma, quinterary, Y		
49	12	0	$924 R^{12}-2772 R^{10}+3150 R^{8}-1680 R^{6}+$   $420 R^{4}-42 R^{2}+1$	Spherical, quinterary		
50	7	7	$R^{7} \cos (7 \phi)$	Heptafoil, primary X		
51	7	7	$R^{7} \sin (7 \phi)$	Heptafoil, primary Y		
52	8	6	$R^{6}\left(8 R^{2}-7\right) \cos (6 \phi)$	Hexafoil, secondary X		
53	8	6	$R^{6}\left(8 R^{2}-7\right) \sin (6 \phi)$	Pentafoil, secondary Y tertiary X		
54	9	5	$R^{5}\left(36 R^{4}-56 R^{2}+21\right) \cos (5 \phi)$	Pentafoil, tertiary Y		
55	9	5	$R^{5}\left(36 R^{4}-56 R^{2}+21\right) \sin (5 \phi)$	Tetrafoil, quaternary X		
56	10	4	$R^{4}\left(120 R^{6}-252 R^{4}+168 R^{2}-35\right) \cos (4 \phi)$	Tetrafoil, quaternary Y		
57	10	4	$R^{4}\left(120 R^{6}-252 R^{4}+168 R^{2}-35\right) \sin (4 \phi)$	Trefoil, quinternary X		
58	11	3	$R^{3}\left(330 R^{8}-840 R^{6}+756 R^{4}-280 R^{2}+\right.$   $35) \cos (3 \phi)$	Trefoil, quinternary Y   59 11	3	$R^{3}\left(330 R^{8}-840 R^{6}+756 R^{4}-280 R^{2}+\right.$
:---						
$35) \sin (3 \phi)$						

### 8.29.5 Standard Zernike Polynomial Terms (ZRN)

The standard Zernike polynomials are defined according to Born and Wolf [4], and are identical with the first 53 Extended Fringe Zernike terms but are arranged in a different order.

Table 8.35: Standard Zernike Polynomials after Born and Wolf (ZRN)

Term	Standard-Zernike-Polynomial	Meaning
1	1	Offset
2	$R \cos (\phi)$	X-Tilt
3	$R \sin (\phi)$	Y-Tilt


continued from previous page		
4	$R^{2} \cos (2 \phi)$	Astigmatism $3^{\text {rd }}$ order, 0 or 90 deg.
5	$2 R^{2}-1$	Defocus
6	$R^{2} \sin (2 \phi)$	Astigmatism $3^{\text {rd }}$ order, $\pm 45 \mathrm{deg}$.
7	$R^{3} \cos (3 \phi)$	Triangular-X, $5^{\text {th }}$ order
8	$\left(3 R^{3}-2 R\right) \cos (\phi)$	X-Coma and tilt, $3^{\text {rd }}$ order
9	$\left(3 R^{3}-2 R\right) \sin (\phi)$	Y-Coma and tilt, $3^{\text {rd }}$ order
10	$R^{3} \sin (3 \phi)$	Triangular-Y, $5^{\text {th }}$ order
11	$R^{4} \cos (4 \phi)$	Quadratic-X, $7^{\text {th }}$ order
12	$\left(4 R^{4}-3 R^{2}\right) \cos (2 \phi)$	Astigmatism, $5^{\text {th }}$ order
13	$6 R^{4}-6 R^{2}+1$	Spherical and focus, $3^{\text {rd }}$ order
14	$\left(4 R^{4}-3 R^{2}\right) \sin (2 \phi)$	Astigmatism, $5^{\text {th }}$ order
15	$R^{4} \sin (4 \phi)$	Quadratic-Y, $7^{\text {th }}$ order
16	$R^{5} \cos (5 \phi)$	5 -fold, $9^{\text {th }}$ order
17	$\left(5 R^{5}-4 R^{3}\right) \cos (3 \phi)$	Triangular, $7^{\text {th }}$ order
18	$\left(10 R^{5}-12 R^{3}+3 R\right) \cos (\phi)$	Coma, $5^{\text {th }}$ order
19	$\left(10 R^{5}-12 R^{3}+3 R\right) \sin (\phi)$	Coma, $5^{\text {th }}$ order
20	$\left(5 R^{5}-4 R^{3}\right) \sin (3 \phi)$	Triangular, $7^{\text {th }}$ order
21	$R^{5} \sin (5 \phi)$	5-fold, $9^{\text {th }}$ order
22	$R^{6} \cos (6 \phi)$	Hexafoil, primary X
23	$\left(6 R^{6}-5 R^{4}\right) \cos (4 \phi)$	Quadratic, $9^{\text {th }}$ order
24	$\left(15 R^{6}-20 R^{4}+6 R^{2}\right) \cos (2 \phi)$	Astigmatism, $7^{\text {th }}$ order
25	$20 R^{6}-30 R^{4}+12 R^{2}-1$	Spherical, $5^{\text {th }}$ order
26	$\left(15 R^{6}-20 R^{4}+6 R^{2}\right) \sin (2 \phi)$	Astigmatism, $7^{\text {th }}$ order
27	$\left(6 R^{6}-5 R^{4}\right) \sin (4 \phi)$	Quadratic, $9^{\text {th }}$ order
28	$R^{6} \sin (6 \phi)$	Hexafoil, primary Y
29	$R^{7} \cos (7 \phi)$	Heptafoil, primary X
30	$R^{5}\left(7 R^{2}-6\right) \cos (5 \phi)$	Pentafoil, secondary X
31	$\left(21 R^{7}-30 R^{5}+10 R^{3}\right) \cos (3 \phi)$	Triangular, ${ }^{\text {th }}$ order
32	$\left(35 R^{7}-60 R^{5}+30 R^{3}-4 R\right) \cos (\phi)$	Coma, $7^{\text {th }}$ order
33	$\left(35 R^{7}-60 R^{5}+30 R^{3}-4 R\right) \sin (\phi)$	Coma, $7^{\text {th }}$ order
34	$\left(21 R^{7}-30 R^{5}+10 R^{3}\right) \sin (3 \phi)$	Triangular, ${ }^{\text {th }}$ order
35	$R^{5}\left(7 R^{2}-6\right) \cos (5 \phi)$	Pentafoil, secondary Y
36	$R^{7} \sin (7 \phi)$	Heptafoil, primary Y
37	$R^{8} \cos (8 \phi)$	Octafoil, primary X
38	$R^{6}\left(8 R^{2}-7\right) \cos (6 \phi)$	Hexafoil, secondary X
39	$R^{4}\left(28 R^{4}-42 R^{2}+15\right) \cos (4 \phi)$	Tetrafoil, tertiary X
40	$\left(56 R^{8}-105 R^{6}+60 R^{4}-10 R^{2}\right) \cos (2 \phi)$	Astigmatism, $9^{\text {th }}$ order, 0 or 90 deg.
41	$70 R^{8}-140 R^{6}+90 R^{4}-20 R^{2}+1$	Spherical, $7^{\text {th }}$ order
42	$\left(56 R^{8}-105 R^{6}+60 R^{4}-10 R^{2}\right) \sin (2 \phi)$	Astigmatism, $9^{\text {th }}$ order, $\pm 45$ deg.
43	$R^{4}\left(28 R^{4}-42 R^{2}+15\right) \sin (4 \phi)$	Tetrafoil, tertiary Y
44	$R^{6}\left(8 R^{2}-7\right) \sin (6 \phi)$	Hexafoil, secondary Y
45	$R^{8} \sin (8 \phi)$	Octafoil, primary Y
		continued on next page


continued from previous page		
46	$R^{9} \cos (9 \phi)$	Nonafoil, primary X
47	$R^{6}\left(8 R^{2}-7\right) \cos (7 \phi)$	Heptafoil, secondary X
48	$\left(36 R^{9}-56 R^{7}+21 R^{5}\right) \cos (5 \phi)$	Pentafoil, tertiary X
49	$\left(84 R^{9}-168 R^{7}+105 R^{5}-20 R^{3}\right) \cos (3 \phi)$	Trefoil, quaternary X
50	$\left(126 R^{9}-280 R^{7}+210 R^{5}-60 R^{3}+5 R\right) \cos (\phi)$	Coma, quaternary X
51	$\left(126 R^{9}-280 R^{7}+210 R^{5}-60 R^{3}+5 R\right) \sin (\phi)$	Coma, quaternary Y
52	$\left(84 R^{9}-168 R^{7}+105 R^{5}-20 R^{3}\right) \sin (3 \phi)$	Trefoil, quaternary Y
53	$\left(36 R^{9}-56 R^{7}+21 R^{5}\right) \sin (5 \phi)$	Pentafoil, tertiary Y
54	$R^{6}\left(8 R^{2}-7\right) \sin (7 \phi)$	Heptafoil, secondary Y
55	$R^{9} \sin (9 \phi)$	Nonafoil, primary Y
56	$R^{10} \cos (10 \phi)$	Decafoil, primary X
57	$\left(10 R^{10}-9 R^{8}\right) \cos (8 \phi)$	Octafoil, secondary X
58	$\left(45 R^{10}-72 R^{8}+28 R^{6}\right) \cos (6 \phi)$	Hexafoil, tertiary X
59	$\left(120 R^{10}-252 R^{8}+168 R^{6}-35 R^{4}\right) \cos (4 \phi)$	Tetrafoil, quaternary X
60	$\left(210 R^{10}-504 R^{8}+420 R^{6}-140 R^{4}+15 R^{2}\right) \cos (2 \phi)$	Astigmatism, 0 or 90 deg.
61	$252 R^{10}-630 R^{8}+560 R^{6}-210 R^{4}+30 R^{2}-1$	Spherical, quaternary
62	$\left(210 R^{10}-504 R^{8}+420 R^{6}-140 R^{4}+15 R^{2}\right) \sin (2 \phi)$	Astigmatism, 土45 deg.
63	$\left(120 R^{10}-252 R^{8}+168 R^{6}-35 R^{4}\right) \sin (4 \phi)$	Tetrafoil, quaternary Y
64	$\left(45 R^{10}-72 R^{8}+28 R^{6}\right) \sin (6 \phi)$	Hexafoil, tertiary Y
65	$\left(10 R^{10}-9 R^{8}\right) \sin (8 \phi)$	Octafoil, secondary Y
66	$R^{10} \sin (10 \phi)$	Decafoil, primary Y

### 8.30 Zernike Phase Surface

The Zernike phase surface adds terms to the nominal wave front aberration of an optical system. It is most useful for the inclusion of measured interferometer data. Zernike phase surfaces must be defined on surfaces with the same medium on both sides of the surface (preferably AIR/AIR interfaces).

The following examples show definition of the Zernike phase surface, assuming surface 4.

## In the command line :

```
zrn pha s4 ! define Zernike phase surface
inr s4 10 ! Connects Zernike unit circle to physical aperture
zrn s4 c5 0.00123 ! Zernike coefficient c5 at surface s4 is 0.00123
zact s4 c5 1 ! activate/enable coefficient c5 at surface s4
```


## In the user dialog:

Invoke the Zernike editor from the menu Edit / Zernike Coefficients or from the command line by entering "EDI ZRN" (without the quotes). A dialog box will pop up. The dialog is partially shown in Fig. 8.30.

Check the radio button "phase" and enter the appropriate coefficients. Do not forget to activate (enable) the coefficients by checking the "On" field for each coefficient.


Figure 8.46: Editing of Zernike phase coefficients.

### 8.31 User-Defined Surface (UDS)

The user-defined surface allows interrupting the internal ray trace algorithms in OpTaliX and take control of the ray trace. Internally, the ray trajectory is computed up to the surface immediately preceding the user surface, calls a user-written subroutine specified for the surface and then completes the ray trace through the remaining surfaces.

The designation of a surface as user-defined is done by entering the UDS command on that surface or setting the surface type (SUT sk U) directly. Coefficients for the user-defined surface, if any, are defined by the UCO command.
indexUser-defined!surface type

UDS si..j\|sk	Change surface type to user-defined surface on surface(s)   si..j, respectively surface sk. Alternatively, the sur-   face type can be set to "U" (see SUT command on page   67). The UDS surface shape is entirely defined by the   UCO coefficients (see below) and the user-written subrou-   tine "usersur.f $90 "$ contained in a DLL.
UCO si..j\|sk ci..j   coefficient	Coefficient for describing user-defined surface (UDS) type   on surface(s) si. j\| sk using the user-written subroutine   usersur.f90. The maximum number of coefficients is
	91.

### 8.31.1 Creating a User-Defined Subroutine

The user need only program the (continuous) surface function and the surface derivatives in a FORTRAN or C subroutine called "usersur. f 90 " respectively "usersur. c". Note: The subroutine name must be exactly "usersur", no other name is permitted.
OpTaliX provides a sample subroutine in both FORTRAN and C programming languages, which is kept simple in order to demonstrate the programming interfaces. The sample subroutine defines a parabolic surface. It is found in the directories

```
\optalix\usersur\Fortran for FORTRAN
\optalix\usersur\C for C/C++
```

with appropriate subdirectories for Lahey/Fujitsu FORTRAN, Compaq Visual FORTRAN, Intel Fortran Parallel Studio, and Microsoft Visual C compilers. The source code of the usersur subroutine is given for each language and compiler in sections 8.31.3 to 8.31.6.
The usersur subroutine can also, if needed, call other subroutines or read data files. The subroutine usersur is successively called to iteratively compute the intersection point of a ray with a UDS type surface. After computing the intersection point of the ray with the surface, the surface slope at that point is determined. A special variable icalc must be queried in the usersur subroutine depending on whether the intersection point or the surface slope is to be calculated.
The usersur subroutine that you write in FORTRAN or C must have the following parameters:
usersur(icalc,isur, curv,sdata, $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{xn}, \mathrm{yn}, \mathrm{zn}, \mathrm{i}$ _err)
where

icalc	Calculation mode (input). Indicates whether to calculate   the surface function or the surface slope.   $1=$ calculate surface z coordinate at coordinates $\mathrm{x}, \mathrm{y}$   $2=$ calculate xn,yn,zn direction cosines at $\mathrm{x}, \mathrm{y}, \mathrm{z}$
isur	Current surface number for which the function is to be   evaluated. This is an input parameter which may be used   to distinguish between various algorithms on different   surfaces. If only one UDS type surface is used, this pa-   rameter is normally not needed. See also the note below.
curv	Surface vertex curvature (input). This parameter does   not have to be used in the usersur subroutine, how-   ever, its value is also used to calculate first and third or-   der properties of the optical system.
sdata	Data array with 91 elements for passing data between   OpTaliX and the usersur subroutine. The elements   of data correspond to the UCO coefficients C1 to c91.   Coordinates at a point along the ray.
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	Direction cosines of the surface normal at the point   (x,y,z).
i_err $\mathrm{yn}, \mathrm{zn}$	Error flag. It should be set to 0 if there is no error gener-   ated and set to 1 otherwise.

Note: Only one usersur subroutine can be linked to $O p \operatorname{TaliX}$ at one time. Therefore all UDS type surfaces in the optical system must use the same usersur subroutine. However, it is possible to program more than one UDS surface description with different coefficients in the same usersur subroutine. The parameter isur designates the surface number currently in use for finding the surface intersection or surface slope. The following FORTRAN sample code illustrates this:

```
if(isur .eq. 3) then
 ! add code for surface 3 here
elseif(isur .eq. 7) then
 ! add other code for surface 7
endif
```

With this technique, there is virtually no limit on the number of different user-defined surface types in an optical system.

### 8.31.2 Languages and Compilers Supported

Both FORTRAN and C programming languages are supported. The following sections describe the specifics for various compilers. Sample subroutines are supplied with OpTaliX in both languages Fortran and C. These sample subroutines are located in the \optalix\usersur directory with subdirectories according to the programming language and compiler used.
Creating user defined surfaces is described for the following compilers:

- Lahey/Fujitsu FORTRAN,
- Compaq Visual FORTRAN,
- Intel FORTRAN Parallel Studio
- Intel oneAPI Fortran
- Microsoft Visual Studio

All supported compilers are 32 bit and 64 bit versions. 16 bit versions are no longer supported. All compilers must have version numbers equal or higher as listed below:

Lahey Fujitsu	FORTRAN-95, version 5.7 or later
Compaq/Intel	Visual FORTRAN, version 6.6 or later
Intel Parallel Studio	version 11 or higher
Intel oneAPI Fortran	version 18 or higher
Microsoft Visual Studio	2012 or later

### 8.31.3 Compiling with Lahey/Fujitsu Fortran 90

Source code example of a user defined surface (UDS) in FORTRAN with specific instructions for the Lahey/Fujitsu compiler:

```
subroutine usersur(icalc,isur,curv,sdata,x,y,z,xn,yn,zn,i_err)
Evaluate the function and its derivatives of a user defined surface
Parameters:

icalc = 1 : calculate surface z coordinate at coordinates x,y (input)
 = 2 : calculate xn,yn,zn direction cosines at x,y,z
isur : surface number (input)
curv : curvature (input)
sdata(91) : Array containing the user-defined parameters (input)
 For example, sdata(1) is the value entered with the
 command UCO C1.
x,y,z : Coordinates of the current position of the ray with
 respect to the origin of the surface (input)
xn,yn,zn : Derivatives of the surface at coordinates (x,y,z) (output)
i_err : Error flag (O = no error, 1 = error) (output)
Notes:
The example code given below calculates coordinates and derivatives
of a parabolic surface based on the curvature "curv".
The user will typically substitute his own FORTRAN code for a
particular surface.
More than one surface description can be programmed in this subroutine.
Use the "isur" parameter to distinguish between surfaces and
```

```
determine the interpretation of the coefficients stored in "sdata"
dll_export usersur
integer :: icalc,i_err,isur
double precision :: x,y,z,xn,yn,zn,curv,sdata(91)
double precision :: fnorm
i_err = 0
z = 0.5d0*curv*(x*x + y*y) ! surface z-value, paraboloid
if(icalc.ge.2) then ! calculate surface derivatives at x,y,z
 xn = x*Curv
 yn = y*curv
 fnorm = dsqrt(xn*xn + yn*yn + 1.0do)
 xn = xn/fnorm
 yn = yn/fnorm
 zn = -1.0d0/fnorm
endif
return
end
```

$!$

The parameter list in usersur.f90 is fixed and must not be changed by the user. Compilation and creating a dynamic link library (DLL) with Lahey/Fujitsu FORTRAN-95 requires version 5.7 onwards. Note that earlier versions of Lahey/Fujitsu FORTRAN do not create compatible DLL's and libraries.

To create a 32-bit Windows DLL using Lahey/Fujitsu LF95, the - dll switch must be used. Example:

```
LF95 usersur.f90 -dll -win -ml LF90
```

In order to reference a procedure across a DLL interface, the compiler must be informed of the procedure name and told how to 'decorate' the external names in your DLL. The procedure name is defined by the 'dll_export' statement in 'usersur.f90'. Note that the procedure name 'usersur' in the 'dll_export' statement is case-sensitive. It must be written in small letters to be recognized by the OpTaliX main program.

### 8.31.4 Compiling with Intel Fortran 90 and Compaq Visual Fortran

The Intel Fortran compiler (versions $\leq 8 . x x$ ) and the Compaq Visual Fortran compiler do seamlessly coexist. Current versions tested are Compaq 6.6 and Intel 7.1. here is the source code example of a user defined surface (UDS) in FORTRAN with specific directives for the Intel/Compaq Fortran compilers:

```
 subroutine usersur_(icalc,isur,curv,sdata,x,y,z,xn,yn,zn,i_err)
!
!-------- for Intel Fortran V7.xx --
 Evaluate the function and its derivatives of a user defined surface
 Parameters:

 icalc = 1 : calculate surface z coordinate at coordinates x,y (input)
 = 2 : calculate xn,yn,zn direction cosines at x,y,z
 isur : surface number (input)
 curv : curvature (input)
 sdata(91) : Array containing the special user-defined parameters (input)
 For example, sdata(1) is the value entered with the
 command UCO C1.
 x,y,z : Coordinates of the current position of the ray with
 respect to the origin of the surface (input)
 xn,yn,zn : Derivatives of the surface at coordinates (x,y,z) (output)
 i_err : Error flag (0 = no error, 1 = error) (output)
```

```
Notes:
The example code given below calculates coordinates and derivatives
on a parabolic surface based on the curvature "curv".
The user will typically substitute his own FORTRAN code for a
particular surface.
More than one surface description can be programmed in this subroutine.
Use the "isur" parameter to distinguish between surfaces and
determine the interpretation of the coefficients stored in "sdata"
!DEC$ ATTRIBUTES DLLEXPORT:: usersur
!DEC$ ATTRIBUTES ALIAS: 'usersur_':: usersur_ ! forces lower case
integer :: icalc,i_err,isur
double precision :: x,y,z,xn,yn,zn,curv,sdata(81)
double precision :: fnorm
i_err = 0
z = 0.5d0*Curv*(x*x + y*y) ! surface z-value (paraboloid)
if(icalc.ge.2) then ! calculate surface derivatives at x,y,z
 xn = x*Curv
 yn = y*curv
 fnorm = dsqrt(xn*xn + yn*yn + 1.odo)
 xn = xn/fnorm
 yn = yn/fnorm
 zn = -1.0d0/fnorm
endif
return
end
```

The parameter list in usersur. f 90 is fixed and must not be changed by the user.

Intel compiler: Compilation and creating a dynamic link library (DLL) with Intel FORTRAN requires version 7.1 onwards. The DLL is created on the command line:

```
ifl usersur.f90 /LD
```

Compaq compiler: Compilation and creating a dynamic link library (DLL) with Compaq Visual FORTRAN from the OS-command line is accomplished by:

```
DF /dll usersur.f90
```

Both compilers Intel and Compaq FORTRAN require the following meta instructions:
The procedure name is defined by the '!DEC\$ ATTRIBUTES DLLEXPORT: : usersur_' directive. Lower case is forced by the alias instruction'!DEC\$ ATTRIBUTES ALIAS: 'usersur_' : : usersur_'.

### 8.31.5 Compiling with Intel FORTRAN Parallel Studio and Intel oneAPI Fortran

This section describes coding of user-defined surfaces for the "Intel Fortran Parallel Studio" (formerly called "Intel Visual Fortran Compiler"), versions 11.xx onwards, or the Intel oneAPI Fortran, version 18.0 or higher. Here is the source code example of a user defined surface (UDS) in Intel Fortran Parallel Studio:

```
!------- for Intel Visual Fortran Composer, > V9.xx ---- and ------------------------------
!------- for Intel one API Fortran compiler, > V18.xx --------------------------------------
!
! Evaluate the function and its derivatives of a user defined surface
! Parameters:
! ----------
 icalc = 1 : calculate surface z coordinate at coordinates x,y (input)
 = 2 : calculate xn,yn,zn direction cosines at x,y,z
 isur : surface number (input)
 curv : curvature (input)
 sdata(91) : Array containing the special user-defined parameters (input)
 For example, sdata(1) is the value entered with the
 command UCO C1.
 x,y,z : Coordinates of the current position of the ray with
 respect to the origin of the surface (input)
 xn,yn,zn : Derivatives of the surface at coordinates (x,y,z) (output)
 i_err : Error flag (0 = no error, 1 = error) (output)
 Notes:

 The example code given below calculates coordinates and derivatives
 on a parabolic surface based on the curvature "curv".
 The user will typically substitute his own FORTRAN code for a
 particular surface.
 More than one surface description can be programmed in this subroutine.
 Use the "isur" parameter to distinguish between surfaces and
 determine the interpretation of the coefficients stored in "sdata"
 !DEC$ ATTRIBUTES DLLEXPORT:: USERSUR
!
 integer :: icalc,i_err,isur
 double precision :: x,y,z,xn,yn,zn,curv,sdata(81)
 double precision :: fnorm
!
 i_err = 0
!
 z = 0.5d0*curv*(x*x + y*y) ! surface z-value (paraboloid)
!
 if(icalc.ge.2) then ! calculate surface derivatives at x,y,z
 xn = x*curv
 yn = y*curv
 fnorm = dsqrt(xn*xn + yn*yn + 1.0dO)
 xn = xn/fnorm
 yn = yn/fnorm
 zn = -1.0do/fnorm
 endif
!
 return
 end
```

The parameter list in usersur. f 90 is fixed and must not be changed by the user.

Compilation and creating a dynamic link library (DLL) with Intel Fortran Parallel Studio requires version 13.xx onwards, and for the Intel oneAPI compiler version 18.xx or higher. The DLL is created on the command line:
ifort /dll usersur.f90

The procedure name is defined by the '!DEC\$ ATTRIBUTES DLLEXPORT: : USERSUR' directive.

### 8.31.6 Compiling with Microsoft Visual Studio 2012 and higher

A program written in C must bridge the conventions on naming of functions, subroutines and arguments between FORTRAN and C. Since OpTaliX is a FORTRAN package, in the example that follows we will modify the C side accordingly.
The FORTRAN call to the subroutine USERSUR will generate a requirement for an external symbol called _USERSUR_. For a subroutine written in C the entry point name must be USERSUR. (note the absence of the leading underscore, which will be added by the C compiler).
Typically, arguments in FORTRAN are passed by reference. C compilers, on the other hand, pass scalar variables by value, rather than its address. This essentially means that C functions should be set up so as to expect that all visible arguments are being passed by reference, or as "pointers" in the C lingo (hence the ${ }^{*} *$ " in front of the variable names).
Also note that all C arrays start at 0 whereas FORTRAN arrays typically start at 1 . The parameter adjustment --sdata accounts for this fact.
Notes for $\mathrm{C}++: \mathrm{C}++$ allows function overloading. Therefore functions are stored differently in the *.lib files compared to the classical C. Because we are not overloading any functions here, we instruct the $\mathrm{C}++$ compiler that we want to use traditional C. Note the following code excerpts,

```
#ifdef __cplusplus
extern "C" {
#endif
```

before the usersur declaration, and at the end of the source code

```
#ifdef __cplusplus
}
#endif
```

This makes the linker to store functions correctly regardless of the C compiler used. Here is the sample code of usersur. c, respectively usersur . cpp :

```
#include <math.h>
#include <string.h>
#include <windows.h>
#define PI 3.14159265359
/* Subroutine */
#define usersur_ USERSUR
#ifdef __cplusplus
extern "C" {
#endif
int __declspec(dllexport) usersur_(int *icalc, int *isur, double *curv, double *sdata, double *x, double *y
 double *z_, double *xn, double *yn, double *zn, int *i_err) {
/* Builtin functions */
/* uncomment the following line only if not declared in the math.h file */
/* double sqrt(); */
/* Local variables */
double fnorm;
/* Evaluate the function and its derivatives of a user defined surface */
/* Parameters: */
/* ---------- */
```

/* icalc = 1 : calculate surface z coordinate at coordinates x,y (input) */
/* = 2 : calculate xn,yn,zn direction cosines at x,y,z */
/* isur : surface number (input) */
/* curv : curvature (input) */
/* sdata(81) : Array containing the special user-defined parameters (input) */
For example, sdata(1) is the value entered with the */
command UCO C1. */
x,y,z_ : Coordinates of the current position of the ray with */
respect to the origin of the surface (input) */
i err : Error flag (0 = no error, 1 = error) (output) */
Notes: */
/* ---- */

* The example code given below calculates coordinates and derivatives */
/* of a parabolic surface based on the curvature "curv". */
/* The user will typically substitute his own C code for a */
/* particular surface. */
/* More than one surface description can be programmed in this subroutine. */
/* Use the "isur" parameter to distinguish between surfaces and */
* determine the interpretation of the coefficients stored in "sdata" */
/* Parameter adjustments */
--sdata;
/* Function Body */
*i_err__ = 0;
*z
__ = *curv * . 5 * (*x * *x + *Y * *y);
/* surface z-value (paraboloid) */
if (*icalc >= 2) {
/* calculate surface derivatives at x,y,z */
*xn = *x * *Curv;
*yn = *y * *curv;
fnorm = sqrt(*xn * *xn + *yn * *yn + 1.);
*xn /= fnorm;
*yn /= fnorm;
*zn = -1. / fnorm;
}
return 0;
}
\#ifdef __cplusplus
}
\#endif

```

The parameter list in usersur.c or usersur. cpp is fixed and must not be changed. All entries after the comment line /* Function Body */ may be freely modified by the user.
Microsoft Visual Studio 2012 or later is recommended. The newer versions allow improved processorspecific optimizations. Creating a DLL using Microsoft Visual Studio is accomplished in several steps:
1. From Microsoft Visual Studio select File \(\longrightarrow\) New \(\longrightarrow\) Project.
2. Select Win 32 Project
3. Give the project name: usersur
4. In the Windows Desktop Project window select application type: Dynamic Link Library (.dll)
5. Uncheck the "Precompiled Header"
6. Uncheck the "Security Development Lifestyle (SDL)" checks
7. In the Solution Explorer \(\longrightarrow\) usersur \(\longrightarrow\) Source Files, find the code usersur. cpp and delete it.
8. Right click the Source Files folder, select Add \(\longrightarrow\) Existing item, and add the template usersur. cpp source code copied from the OpTaliX-PRO\usersur \C\MS-Visual-Studio_2015 directory.
9. Select Configuration Manager and make sure that Platform setting corresponds to the OpTaliX edition used, i.e., x64 for 64 bit version and Win32 for 32 bit version of OpTaliX .
10. Compile your code by selecting Build \(\longrightarrow\) Build usersur (or Build \(\longrightarrow\) Rebuild usersur). When compilaton is successfull, the Output window reports locaton of created libraries.
11. Find the files usersur.lib and usersur. dll in the location above and copy them into the OpTaliX installation directory C:\Program Files \(\backslash\) OpTaliX-PRO

It is advised to make backup copies of original usersur. lib and usersur. dll files. OpTaliX will not start if the libraries are not valid.

\subsection*{8.32 Lens Modules}

A lens module is a black box with defined optical parameter on input and output, but hiding all internal properties and structure. Lens modules are usually selected when the detailed optical prescription is not known or only a conceptual layout of an optical system is required. Only first order properties of a lens can be modelled by a lens module. As a minimum parameter, the module focal length (MFL) must be provided.
\begin{tabular}{|l|l|}
\hline MOD sk|si..j & \begin{tabular}{l}
Converts the surface type of two surfaces into a lens module. \\
The surfaces must exist. If only one surface is specified, the \\
surfaces sk and sk+1 will be converted.
\end{tabular} \\
\hline \begin{tabular}{l}
MFL sk \\
mod_focal_length
\end{tabular} & Module focal length. sk is the first surface of the module range. \\
\hline MRD sk red_ratio & \begin{tabular}{l}
Module reduction ratio. Note that MRD is the negative magni- \\
fication of the module. By default MRD \(=0\).
\end{tabular} \\
\hline MCO sk ci..j & Module coefficients (reserved for future editions) \\
\hline
\end{tabular}

A lens module behaves as a perfect lens only at a single magnification which is defined by MRD. A lens module must always be defined by two consecutive surfaces of surface type "L". These surfaces define the entrance surface and exit surface of the lens module. Entrance and exit surface represent the principal planes of the module. For thick lenses or lens systems, the separation of the principal planes is defined by the thickness assigned to the entrance surface. All module parameters (MFL, MRD) must be specified at the entrance surface.
Lens modules can be applied only to finite conjugates. Infinite conjugates (object or image space) are approximated. For example, a reduction ratio of zero is modelled internally by \(10^{-16}\). Similarly, infinite magnifications are treated as \(10^{+16}\).

Example setting up a lens module:

Figure 8.47: Lens module (perfect lens).
```

ins s3..4 ! insert two surfaces which shall define the module
sut s3..4 L ! make surfaces 3 to 4 module surfaces by setting surface type to '"L",
! alternatively use the MOD s3 command
mfl s3 100 ! module focal length is 100 mm
mrd s3 1 ! module reduction ratio =1 (module magnification = -1)

```

\subsection*{8.33 Surface Apertures}

Apertures on surfaces are used to define and limit the light beam passing through a lens system. Up to 10 basic aperture shapes (rectangular, elliptical, circular and polygon) can be assigned to a surface.
Note that surface apertures must not be confused with the system aperture. For a detailed explanation of defining system aperture see sect. 7.3.5 (page 50).

Each basic aperture on an individual surface may be transmitting or obstructing, it can be decentered in X- and Y-direction from the local surface vertex and it can be rotated. Basic apertures may be logically combined by . and. respectively. or. operators. The operator p is used to address the different basic apertures on a given surface.
The following commands define apertures at surfaces:
\begin{tabular}{|c|c|}
\hline ```
REX si..j pi..j
 [OBS |HOL|EDG|.or . | . and.]
x_height
``` & Rectangular aperture. xheight is the semiaperture in X-direction. See also notes below. \\
\hline ```
REY si..j pi..j
    [OBS |HOL | EDG|.or.| . and.]
y_height
``` & Rectangular aperture. Y_height is the semiaperture in Y-direction. See also notes below. \\
\hline ```
ELX si..j pi..j
[OBS |HOL|EDG|.or.|.and.]
x_half_width
``` & Elliptical aperture. x_half_width is the semiaperture (half width) in X-direction. See also notes below. \\
\hline ```
ELY si..j pi..j
    [OBS | HOL | EDG|.or . | . and.]
Y_half_width
``` & Elliptical aperture. Y_half_width is the semiaperture (half width) in Y-direction. See also notes below. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline ```
CIR si..j|sk pi..j
[OBS|HOL|EDG|.or.|.and.]
radius
``` & Defines circular aperture. radius is the semiaperture of the circle. See also notes below. \\
\hline \[
\begin{aligned}
& \text { REC si..j|sk pi..j } \\
& \text { [OBS|HOL|EDG|.or.|.and.] } \\
& \text { x_height y_height }
\end{aligned}
\] & Defines rectangular aperture. x_height and y_height describe the semi-apertures in Xdirection and Y-direction respectively. If only x_height is specified, a square aperture is assumed. \\
\hline APT si..j cir|rec|ell|pol & Set aperture type, i.e. the form of a surface aperture. It can be circular, rectangular, elliptical, or a polygon. This command is synonymous to the "CIR", "ELX", "ELY", "REX", "REY" commands. It was introduced to facilitate aperture shape definitions in a zoom/multiconfiguration environment. \\
\hline ADX si..j pi..j x_offset & X-offset of aperture center \\
\hline ADY si..j pi..j Y_offset & Y-offset of aperture center \\
\hline ARO si..j pi..j rot_angle & Rotate designated aperture on surface(s) si . .j. Rotation is performed after \(A D X, A D Y\). \\
\hline \begin{tabular}{l}
PLG si..j pi..j ck xk_vertex yk_vertex \\
PLG si..j pi..j file data.plg
\end{tabular} & \begin{tabular}{l}
Polygon aperture. Two forms of defining polygon vertices are possible: The first form defines a single polygon vertex on surface(s) si..j, aperture element(s) pi..j and vertex (coefficient) ck. xk_vertex, yk_vertex are the polygon vertex coordinates. Example: plg s3 p2 c4 \(12.0 \quad 3.0\) \\
The second form reads all polygon vertices from a file data.plg. Note that the "file" qualifier in the command is obligatory to interpret the subsequent string as a file name. The file format follows the conventions of INT files (see page 516 ). See also the detailed description for dialog-based entering of polygon data (section 8.33.1) and for reading polygon data from a file (section 8.33.1.2)
\end{tabular} \\
\hline DEL APE sk|si..j pi..j|EDG & Delete aperture definition pi..j on surface(s) si..j. The alternate form DEL APE sk|si..j EDG deletes edges on the designated surfaces. \\
\hline
\end{tabular}

\section*{Notes:}
- The parameter p may be omitted for the first sub-aperture, i.e. the commands
cir s1 p1 30
cir sl 30
are identical.
- OBS means this is an obstructing aperture. Rays which hit the surface inside the border of an obstructing aperture element are blocked.
- HOL denotes a hole at the designated aperture, that is, rays inside a hole aperture are not affected by refraction or reflection on that surface, they "pass through" without any interaction. HOL aperture elements are used with sequential and non-sequential surfaces (see also sect.8.33.2).
- EDG means this is the edge of the element following the designated surface. That is, it is only necessary to specify the EDG for the first surface of an element. EDG values specified on the rear surface of an element are ignored. Element edges are shown in the lens layout plots, are used in weight calculation and in lens element drawings. Edges, however, do NOT generate clear apertures. Use the FHY command instead for defining hard limiting (fixed) apertures.
- EDG apertures are deleted by defining a zero value, for example CIR EDG s4 0, or by the command DEL APE sk|si..j EDG.
- The EDG option used in REX, REY, ELX, ELY, CIR or REC commands must not be confused with the EDG command, which only defines how edges are drawn in the lens layout plot (VIE).
- By default, apertures do not limit or truncate ray beams, except where an obstructing (OBS) property is specified. However, apertures may limit or truncate beams by defining it "fixed" using the FHY command (see section 8.33.3, page 169 below). Then rays hitting a surface outside the aperture bounds will be blocked.

Examples of aperture shapes are shown below to illustrate usage of the commands:


Circular aperture with central obscuration:
cir s1 50 cir s1 p2 obs 15


Circular aperture with rectangular obscuration:
cir s1 50
rex s1 p2 obs 20
rey s1 p2 obs 5

Circular aperture with circular central obstruction and spider with 3 vanes:

```

cir s1 50
cir s1 p2 20 obs
rex s1 p3 30 obs
rey s1 p3 5 obs
adx s1 p3 25
aro s1 p3 0
\vdots

```

\subsection*{8.33.1 Polygon Apertures}

Polygon aperture elements are constructed from up to 50 vertices and allow almost arbitrary aperture shapes. Polygon vertices are given as \((X, Y)\) data pairs and are referred to the vertex of the optical surface. The entire polygon can be shifted and rotated by the ADX, ADY and ARO commands.
Polygon apertures must be closed, i.e. the last vertex must have the same coordinates as the first vertex. Polygon apertures need NOT to be convex and any shape is allowed as indicated in Fig. 8.48. Up to ten polygon apertures are allowed on each surface, however, the total number of polygon apertures in an optical system is limited to 50 .

\subsection*{8.33.1.1 Dialog-based editing of polygon apertures}

Polygon apertures are edited in the surface spreadsheet editor (invoked by EDI SUR command) in the "special apertures" tab. Set the aperture type in the first column of this tab to "polygon". The appropriate check box in the last column will be activated. Click on this check box and a dialog box as shown in Fig. 8.48 will be displayed.
The shape of the polygon (but not its absolute size) will always be updated as new vertices are entered. The polygon data can be uniformly scaled respectively a new set of polygon data can be imported from a file.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{(*)Polygon Aperture} & - \(\square\) \\
\hline \multicolumn{4}{|c|}{Surface 3 Pupil 2} & \multicolumn{2}{|l|}{\multirow{5}{*}{\begin{tabular}{l}
Number of data points
\(\square\) \\
12
\end{tabular}}} \\
\hline & X & Y & \multirow[t]{19}{*}{-} & & \\
\hline 1 & 10.0000 & 0.0000 & & & \\
\hline 2 & 0.0000 & 10.0000 & & & \\
\hline 3 & -5.0000 & 5.0000 & & & \\
\hline 4 & -2.0000 & 3.0000 & & - & \\
\hline 5 & -4.0000 & 0.0000 & & - & \\
\hline 6 & -7.0000 & 4.0000 & & 4 & \\
\hline 7 & -10.0000 & 0.0000 & & \(\sim\) & \\
\hline 8 & -10.0000 & -5.0000 & &  & \\
\hline 9 & -5.0000 & -5.0000 & & - & \\
\hline 10 & 0.0000 & -10.0000 & & & \\
\hline 11 & 0.0000 & -3.0000 & & & \\
\hline 12 & 10.0000 & 0.0000 & & Scale polugon data & \\
\hline 13 & & & & Scale polygon data & \\
\hline 14 & & & & Import from File & \\
\hline 15 & & & &  & \\
\hline 16 & & & & & \\
\hline 17 & & & & Cancel \(\quad\) OK & \\
\hline 18 & & & & & \\
\hline
\end{tabular}

Figure 8.48: Dialog-based editing of polygon apertures.

\subsection*{8.33.1.2 Reading polygon apertures from a file}

Complex polygon shapes can also be read in from an ASCII file. The data must be stored as (X,Y) data pairs, the file format must conform to the definition of INT-files as given in section 32.11, page 516. The file extension is preferably . plg, however, any other extension is also accepted. Fig. 8.49
shows an example polygon file of a five-pointed star (note that the first two lines in the file are mandatory):

Command:
plg s3 p2 file c:\star.plg Contents of file star.plg:


Figure 8.49: Defining and assigning a five-pointed star polygon aperture from file star.plg to surface 3 , pupil number 2.

\subsection*{8.33.2 Hole Aperture}

On a "hole" aperture element, rays inside the specified hole aperture are passing through unaffected, i.e. they do NOT undergo refraction, reflection or diffraction on that surface. Hole apertures can be applied to both sequential and non-sequential surfaces. Hole apertures cannot be applied to the base aperture on a surface (i.e. aperture pointer p1), use p2 or higher. Here is a concise command sequence for entering hole apertures:
```

cir s3 p2 5.0 hol ! Defines a circular hole on surface 3, aperture element 2, with 5mm radius,
rex s4 p2 4.0 hol ! Rectangular hole on surface 4, aperture element 2, X-height is 4mm,
rey s4 p2 2.0 hol ! Rectangular hole on surface 4, aperture element 2, Y-height is 2mm,

```

Note that special apertures (such as obscurations, holes, polygons, etc.) are only active if the the fixed height (FHY) attribute has been assigned to the designated surface. A detailed description on "fixed heights" is given in section 8.33.3.
In sequential systems only, hole apertures are ignored for calculation of the principal properties of an optical system, such as focal length, focus position, aperture ratio, etc., and for all ray aiming purposes. This behaviour assumes that sequential models are primarily based on traditional systems where the imaging function is determined by unobscured lenses/mirrors, and hole apertures were added for modeling additional features. Thus, for determination of system parameters (EFL, BFL, etc.) holes are ignored, whereas in all analysis options holes are correctly taken into account.
In order to study the effects of hole apertures, a simple example has been prepared. Load (restore) the file \(\$ i \backslash\) examples \(\backslash\) Complex_Aperture \(\backslash\) hole.otx from the examples directory. A single lens is shown (see Fig. 8.50) bearing two hole apertures on surfaces 2 and 3.


Figure 8.50: Hole apertures. Rays inside the hole aperture pass through unaffected. Here shown on a sequential model.

\subsection*{8.33.3 Fixed Apertures (Heights)}

It is sometimes necessary to set the aperture radius on a surface to a fixed value which must not change. In a pictorial way, one may say the aperture is "frozen" to a certain dimension. This can be accomplished by the FHY command. Surfaces with fixed apertures are marked by a * (asterix) right to the APE-Y column in the prescription listing (LIS command) and in the surface editor. Rays outside the surface aperture marked by FHY are blocked.
\begin{tabular}{|l|l|}
\hline & \\
FHY [si..j] 0/1 & \begin{tabular}{l} 
Sets the apertures of surfaces si..j to fixed \\
or floating. Surfaces marked by FHY \(=1\) \\
block all rays which exceed the aperture ra- \\
dius. Also, aperture values of these sur- \\
faces will not be altered by the program, e.g. \\
in modules which automatically set apertures \\
(see SET MHT command).
\end{tabular} \\
\hline SET MHT [si...j, fi..j, zi...j, & \begin{tabular}{l} 
Automatically determines the maximum re- \\
quired surface apertures within the surface \\
range si..j. The program takes the aper- \\
tures of the stop surface and all surfaces \\
marked FHY and computes the light beams \\
over_X, over_y] \\
marked FHY will be changed in according to \\
the light beam. Note: Ray failures may be re- \\
ported during maximum aperture determina- \\
tion, for example if total internal reflection oc- \\
curs during ray iteration. This, however, will \\
be resolved if there is a feasible solution. \\
over_x and over_y are the oversizing fac- \\
tors for surface apertures (only for lens layout \\
plot).
\end{tabular} \\
\hline
\end{tabular}

\section*{Example:}

Light beams entering the system in Fig. 8.51 are defined by the stop surface (no. 5) and the surface apertures (heights) of surfaces 2 and 7 . This way all off-axis beams get vignetted.


Figure 8.51: Defining vignetting characteristics with fixed apertures.

\subsection*{8.33.4 Editing Fixed Apertures in the Surface Editor}

The fixed height (FHY) property may be edited in the surface editor in the column right to the APE-Y (aperture height) column:


Figure 8.52: Defining fixed (frozen) apertures in the surface editor.

A fixed (frozen) aperture height is defined by 1 in the \(*\)-column right to APE-Y (corresponds to command FHY sk 1).
Floating apertures are defined by 0 in the \({ }^{*}\)-column right to APE-Y (corresponds to command FHY sk 0).

\subsection*{8.34 Surface Comments}

A comment field is provided for each surface, which accepts up to 80 characters of user text. This field is used for improving the readability of the lens data and has no impact on the lens analysis. Surface comments are entered using the command token "COM". For example:
```

COM s3..4 this is my comment
COM sl..2 "this is my comment"

```

Surface comments are listed by the command LIS COM or together with LIS ALL.

\subsection*{8.35 Insert, Invert, Copy, Move and Delete Surfaces}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Insert surfaces si..j before target surface. The optional pa- \\
rameter [file file_spec] inserts surfaces from a file. Ex- \\
amples: \\
INS si..j target_surf \\
[file file_spec] \\
ins s3..4 \\
The second example inserts surfaces 3 to 4 from the file \\
c:/temp/mylens. otx before surface 1 of the current sys- \\
tem.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline INS MIR sk & \begin{tabular}{l}
Insert mirror surface before surface sk. \\
By convention, the sign of radii, thicknesses and aspheric coefficients are reversed on surfaces following a mirror surface, which can be tedious if done manually. This command automatically inserts a surface, converts it to a mirror and reverts all necessary signs on subsequent surfaces. \\
Example: ins mir s3
\end{tabular} \\
\hline COP si..j target_surf [file file_spec] & \begin{tabular}{l}
Copies surfaces si..j to target surface. The target surfaces must exist. The optional parameter [file file_spec] copies the surfaces from a file. By default, the current directory is searched. Specify the full path if the file resides in a different directory. Examples: \\
copy s3..4 8! copy surfaces 3-4 to surface 8 \\
copy s3..4 8 file mylens.otx! copy surfaces 3.4 from file mylens. otx to surface 8 and the following. \\
copy s3..4 8 file c:\temp\mylens.otx ! As above but surfaces are copied from a file in a directory other than the current directory. The full path must be specified.
\end{tabular} \\
\hline MOV si..j target_surf & Move surfaces si..j to the position of surface target_surf. \\
\hline DEL si..j & Deletes surfaces si..j \\
\hline DEL MIR sk & \begin{tabular}{l}
Delete mirror surface sk. \\
This command combines two operations: It deletes the designated surface sk and reverts all necessary signs on subsequent surfaces. Surface sk must be a mirror surface, otherwise the command is ignored. \\
Example: del mir s3
\end{tabular} \\
\hline INV si..j & Invert surfaces si..j \\
\hline
\end{tabular}

\subsection*{8.36 Coatings / Multilayer Stacks}

A complete package for design, analysis and optimization of thin film coatings is implemented in OpTaliX . This section describes how predefined coatings may be assigned (i.e. attached) to optical surfaces.

\subsection*{8.36.1 Attach Coatings to Surfaces}

In the command line, attaching coating definitions to optical interfaces (surfaces) is accomplished by the following commands:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
ATT si..j [ FILE \\
coating_name ]
\end{tabular} & \begin{tabular}{l} 
Attach a multilayer coating to surfaces si..j The \\
coating_name refers to a file containing the coat- \\
ing prescription. It must exist. If the option [FILE \\
coatingname] is absent, the default coating (if loaded) \\
will be attached.
\end{tabular} \\
\hline COO si..j aut |nor|inv & \begin{tabular}{l} 
Orientation of coating when attached to an \\
optical surface. \\
aut = the orientation of the coating stack is \\
automatically determined. \\
nor = normal orientation, i.e. as defined in \\
the coating file, \\
inv = the coating is inverted (for example on \\
a glass-air interface). \\
Example: \\
coo s1..3 aut
\end{tabular} \\
\hline DEL COA si..j & \begin{tabular}{l} 
Delete multilayer coating from surfaces si..j
\end{tabular} \\
\hline
\end{tabular}

In the surface editor, coatings (or multilayer stacks) may easily attached to surfaces by entering the coating file name into the "coating" column of the surface editor, as shown in Fig. 8.53. The corresponding coating file must exist, either in the current directory (i.e. where the current optical design is stored) or in the general coating directory as defined in theprogram preferences (page 23).


Figure 8.53: Enter coating name on optical surfaces. The coating name corresponds to the coating file name (without the extension . otc). The coating (file) is first searched in the current directory (i.e. where the current optical system resides) and, if not found, in the coating definition directory as defined in the program preferences (page 23).

\subsection*{8.36.2 Coating Orientation}

Coatings are attached to surfaces as defined in the corresponding coating file. The regular orientation of coatings in OpTaliX is air - layers - substrate, respectively for cemented surfaces, cement - layers - substrate.

When attaching coatings to specific surfaces, \(\operatorname{OpTaliX}\) automatically detects the correct orientation of coatings. For example, on an air-glass interface, the coating is attached in normal orientation, i.e. as stored in the coating file, on glass-air interfaces, the coating is automatically inverted. This does not require any user interaction.
In special cases, however, it is advisable to explicitly specify the coating orientation to avoid any ambiguities. For example, cemented surfaces are a good example of overriding the automatic determination. Use the "COO NOR" or "COO INV" commands (without the double quotes), depending on how the layer sequence is defined in the coating file.
A detailed description on creating, changing and optimizing coatings is given in chapter20 on page 381.

\subsection*{8.37 Image Surface Definition}

The image surface is typically the last surface in an optical system, however, it can be freely defined by use of the IMG command:

Defines the image surface number. sk must be less or equal the total number of surfaces in the optical system. The IMG command does not
IMG sk change the total number of surfaces in a system. Surfaces greater than IMG are 'inactive' surfaces (i.e. not included in the ray trace) but are always stored/restored, irrespectively of the IMG setting.
Defining the image surface number is particularly useful in systems with intermediate images. The IMG command allows the re-definition of the image surface and the subsequent analysis and optimization at the new surface with a single command.
Note that the IMG command does not alter the total number of surfaces. That is, moving the image surface to a lower surface number still keeps surface data of all surfaces higher than IMG in memory. Also on storing/restoring optical systems, the total number of surfaces in a system is retained, irrespectively of the IMG setting.
For example, the system shown in Fig. 8.54 exhibits an intermediate image. Both the intermediate image and the final image can be simultaneously analyzed/optimized by defining the image surface number separately for each zoom position.
In the surface editor, surfaces greater than IMG are marked by blue colour to indicate that these surfaces are currently not active. Fig. 8.55 gives an example. Notice that parameters of inactive surfaces can always be edited.
There are a few restrictions connected with the IMG command:
- The IMG surface number must be less or equal the total number of surfaces in the optical system.
- The IMG surface number must not be the first surface or the object surface.
- The IMG surface number must always be greater than the stop surface number. If required, move the stop surface to a surface number lower than IMG (for example by zooming the stop surface).


Figure 8.54: Re-defining the image surface number (IMG command) in a zoom/multi-configuration system. Top: Image surface is defined at an intermediate surface (IMG s15). Bottom: Image surface is the last surface in the system (IMG si). The corresponding zoom definitions are shown in the lower right corner (dialog box). The example file is found at:



Figure 8.55: Inactive surfaces (i.e. surface numbers greater than IMG sk ) are marked by blue colour in the surface editor, but still can be edited.

\section*{9}

\section*{Listings, Reports}

The LIS command gives an output of a complete lens description of the optical system. The listing also includes the first order properties as obtained from the FIR command.

\subsection*{9.1 List Prescription Data}

Listings of prescription data and reports are obtained by the command:
```

LIS [si..j] [ri..j] [options]

```
or:
LIS [options] > prn|filespec
where options can be one of the following parameter
```

RAY |GLA|ALG| IND|PIK| CNF|TXT|MUL|OPT|APE|TOL|TPL| COM|
CAM|OSP|PAR|DNDT|EXC|ALL

```

Description of list options:
\begin{tabular}{|l|l|}
\hline ALL & all options, list everything \\
\hline ALG & alternative glasses with respect to a base glass. See also sect. 12.5 below. \\
\hline APE & surface apertures (heights) \\
\hline CAM & cam parameter. \\
\hline COM & surface comment \\
\hline CNF & configuration data \\
\hline DNDT & absolute dn/dT of selected glasses. See also the notes below. \\
\hline EXC & Linear expansion coefficient of selected glasses. \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{4}{|l|}{ continued from previous page } \\
\hline & \begin{tabular}{l} 
Lists all glasses in glass catalogue, which match a specified string. For \\
example, \\
gla bk \(~=~ a l l ~ g l a s s e s ~ b e g i n n i n g ~ w i t h ~ " b k " ~\) \\
GLA sch \(: \mathrm{bk}\) = all glasses from SCHott beginning with "bk", \\
GLA sch \(: *=\) all glasses from Schott
\end{tabular} \\
\hline \begin{tabular}{l} 
Note the use of the asterisk symbol "*", which does the wildcard matching. \\
For example, the pattern sf* lists all glasses beginning with "sf", hence it \\
will list SF1, SF2, SF11, SF6 and so on. The pattern "sf" without asterisk will \\
search for the glass "sf", which does not exist.
\end{tabular} \\
\hline IND & refractive indices used in current system \\
\hline MUL & multilayer definition \\
\hline OPT & optimization data \\
\hline OSP & optical spectrum \\
\hline PAR & paraxial system data. See also FIR (page 248). \\
\hline PIK & surface pickups (see also PKL surface pickups) \\
\hline RAY & all rays \\
\hline REM & remarks \\
\hline TOL & tolerances \\
\hline TPL & test plate list \\
\hline
\end{tabular}

\section*{Notes:}
1. The redirection symbol ">" allows immediate text-output to the printer (prn) or graphics output to the printer/plotter (plt) or to a file (filespec).
Note: The output unit redirection is active only for one single command. Subsequent outputs will then appear on the default output device (screen) again.
2. The LIS DNDT command accepts an additional parameter, the temperature (in \({ }^{\circ} \mathrm{C}\) ) at which \(d n / d T\) shall be calculated. For example, \(d n / d T\) data of Schott BK7 glass at \(50^{\circ} \mathrm{C}\) are listed by:
lis dndt bk7 50
Omission of the temperature parameter resorts to the default temperature \(20^{\circ} \mathrm{C}\). \(d n / d T\) data is always listed for wavelengths defined in the system configuration. Glasses or wavelengths where \(d n / d T\) data is unavailable return -999.

\section*{Command Examples:}
```

lis all!List all relevant surface data
lis > prn !Surface listing is redirected to printer (prn)
lis s1..5 !List surfaces 1 to 5
lis ra ! List all rays
lis r1..5 !List rays 1 to 5
lis gla sf* ! List all glasses beginning with "sf"
lis dndt bk* 50 ! List absolute dn/dT for all glasses beginning with "bk" at 500}\textrm{C

```

\subsection*{9.2 List Alternative Glasses}

Lists alternative (replacement) glasses with respect to a base glass. Alternative glasses are glasses having similar properties on refractive index and dispersion compared to the base glass and therefore may be used to replace the base glass in an optical system. The choice of alternative glasses is based on the given index difference ( \(\Delta n_{d}\) ) and the dispersion difference \(\left(\Delta \nu_{d}\right)\) at the d-line.
The syntax for listing alternative (replacement) glasses is:
```

LIS ALG base_glass
[delta_n delta_V]}\mp@subsup{}{}{1
List alternative (replacement) glasses with respect to a base_glass. By default, the tolerances on selecting an alternative glass are $\Delta n_{d}=0.001$ on refractive index and $\Delta \nu_{d}=0.8 \%$ on dispersion, however, they may be overwritten by specifying delta_n and delta_V. See also the direct command 'ALG' (page 199).

```

Notice that the choice of alternative glasses is solely based on the \(\Delta n_{d}\) and \(\Delta \nu_{d}\) differences. It is the designers responsibility to take other glass properties into account, such as partial dispersion, TCE, \(d n / d T\), etc, depending on a particular application. This list is only intended to support you in selecting glasses from alternate vendors.

\section*{Example:}

LIS ALG N-BK7
produces the following output:


\section*{Notes:}
- dndT values are always given as \(10^{-6}\) units
- Melt indicates the glass manufacturers melt frequency. 1 corresponds to very high melt frequency, 5 corresponds to very low melt frequency. 0 means that there is no information available or that the glass is discontinued.
- Price is given relative to SCHOTT BK7. In absence of information, the relative price is 0.00 .

\footnotetext{
\({ }^{1}\) Note that the previous command 'LIS ALT' is obsolete, however, still supported for backwards compatibility.
}

\subsection*{9.3 Description of Standard Listing Output}

The data output with the LIS command are formatted to a fixed number of significant digits. If this is insufficient for a given item of data, full precision can be obtained with theEVA command (see also page 458). There are many options to the LIS command as described in section 9.1, however, the simplest form is just LIS. There are no qualifiers or data associated with the command (except for LIS DNDT, see page 178). You may also wish to direct output to a file with the OUT command (see page 443) prior to applying the LIS command.
The individual data listed with the LIS command, can be listed separately, as described in section 9.1. A standard listing is invoked by the command LIS, which is divided into three parts,
1. System data,
2. Surface data (standard),
3. Paraxial (first order) data.

An example listing (Double-Gauss lens from the examples library) indicates the three-parts logic as shown below:

Part 1, System Data:
```

FILE = DOUBLE_GAUSS.OTX 11.Jul.2004 15:49
Remarks:
DOUBLE GAUSS - U.S. PATENT 2,532,751
Wavelength : 0.65630 0.58760 0.48610
Weight : 1 1 1
REF = 2

XAN	0.00000	0.00000	0.00000
YAN	0.00000	10.00000	14.00000
FWGT	100	100	100
FACT	1	1	1

PIM = yes
SYM = yes
EPD = 25.0000

```

Part 2, Standard Surface Data:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# TYPE & RADIUS & DISTANCE & GLASS & INDEX & APE-Y & AP & CP & DP & TP & MP & GLB \\
\hline OBJ S & Infinity & \(0.10000 \mathrm{E}+21\) & & 1.000000 & 0.00 & C & 0 & 0 & 0 & 0 & 0 \\
\hline \(1>S\) & 28.7249 & 4.37333 & BSM2 4 & 1.617644 & 15.00* & C & 0 & 0 & 0 & 0 & 0 \\
\hline 2 S & 94.2300 & 0.14909 & & 1.000000 & 14.60 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 3 S & 17.4436 & 6.21211 & SK1 & 1.610248 & 12.71 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 4 S & Infinity & 1.88848 & F15 & 1.605648 & 12.26 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 5 S & 10.7346 & 7.55393 & & 1.000000 & 8.48 & C & 0 & 0 & 0 & 0 & 0 \\
\hline STO S & Infinity & 6.46060 & & 1.000000 & 7.74 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 7 S & -13.5175 & 1.88848 & F15 & 1.605648 & 8.44 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 8 S & Infinity & 5.41696 & SK16 & 1.620408 & 10.45 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 9 S & -17.4934 & 0.14909 & & 1.000000 & 11.06 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 10 S & 293.3702 & 3.42909 & SK16 & 1.620408 & 11.94 & C & 0 & 0 & 0 & 0 & 0 \\
\hline 11 S & -31.5576 & 31.52335 & & 1.000000 & 12.00* & C & 0 & 0 & 0 & 0 & 0 \\
\hline IMG S & Infinity & & & 1.000000 & 12.62 & C & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Part 3, Paraxial Data:

PARAXIAL DATA AT INFINITE CONJUGATES:
EFL
50.00024
FNO 2.00001

PARAXIAL DATA AT USED CONJUGATE:
MAG (Magnification) 0.00000
NAO (Num.ape.object) 0.00000
NA (Num.ape.image) 0.25000
BFL 31.56893
DEF (Defocus) - 0.04558
IMD (Image distance) 31.52335
OID (Object->Image) \(0.10000 \mathrm{E}+21\)
\begin{tabular}{lrr} 
SH1 (Princ.Plane 1) & 34.36081 \\
SH2 (Princ.Plane 2) & -18.43131
\end{tabular}
\begin{tabular}{lr} 
SEP (Entr.Pup.Loc.) & 27.93312 \\
EPD (Entr.Pup.Dia.) & 25.00000 \\
APD (Exit Pup.Dia.) & 28.68792 \\
SAP (Exit Pup.Loc.) & -25.80720 \\
PRD pupil relay dist & -16.21914 \\
OAL (S1->Image) & 69.04452 \\
SYL (System Length) & 37.52117
\end{tabular}

\subsection*{9.4 List Global Coordinates and Global Matrices}

Normally an optical system is described with respect to a chain of local coordinate systems for each surface (sequential model). However, it may be desirable to obtain the coordinates of each surface vertex in a global coordinate system. The following commands output the coordinates of surface vertices and the corresponding transformation matrices referred to a given surface.
For reference, see also the related commands for entering surface data referred to another surface (GLO command, page 116).
\begin{tabular}{|c|c|}
\hline GSC [si..j] & Reports global surface coordinates referred to a reference surface which is defined by the GLO command (see below). \\
\hline GSM [si..j] & Reports global surface matrix, referred to a reference surface which is defined by the GLO command (see below). The global surface matrix is a 3 by 4 matrix describing the global tilts and offsets of the surface vertices. \\
\hline GLO sk [yes|no] & \begin{tabular}{l}
Set global coordinates analysis on/off. X/Y/Z surface coordinates for SIN, RSI and GSC (see above) are expressed relative to the single global origin defined by GLO. If GLO is not defined, sk defaults to \(s 1\). If sk is specified, the global surface coordinate output is referred to surface sk, otherwise s1 is used. \\
Examples: \\
glo s3! global surface coordinates are referred to surface 3 \\
glo y! Sets global surface output on. Reference surface is 1 . \\
glo yes!As above, sets global surface output on. Reference surface is 1 . \\
glo! Restore previous sk. If no previous GLO, uses s1. \\
glo no! Turn off global coordinate output.
\end{tabular} \\
\hline
\end{tabular}

Global coordinates of surface vertices may also retrieved from the lens database in EVA commands (page 26.9), in macros (page 451) and in optimization constraints (page 19.7):

XSC, YSC, ZSC - global vertex coordinates, referred to surface defined by GLO sk.
XSG, YSG, ZSG - global vertex coordinates, always referred to global system (no surface reference).
CXG, CYG, CZG - global direction cosines of surface normal

Example Output: Global Surface Coordinates (GSC)

Command: gsc
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*********** ABSOLUTE VERTEX COORDINATES REFERRED TO SURFACE 1 *********** \\
Surface vertex coordinates : Direction cosine of surface normal
\end{tabular}}} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\#} & X & Y & Z & : & NX & NY & NZ \\
\hline & & & & & Alpha & Beta & Gamma \\
\hline \multirow[t]{2}{*}{1} & 0.00000 & 0.00000 & 0.00000 & : & 0.0000000 & 0.0392598 & 0.9992290 \\
\hline & & & & & 2.25000 & 0.00000 & 0.00000 \\
\hline \multirow[t]{2}{*}{2} & 0.00000 & -116.19792 & -1476.43457 & : & 0.0000000 & -0.0155134 & 0.9998797 \\
\hline & & & & & -0.88889 & 0.00000 & 0.00000 \\
\hline \multirow[t]{2}{*}{3} & 0.00000 & -308.74461 & 273.85521 & : & -0.0000020 & -0.1651447 & 0.9862693 \\
\hline & & & & & -9.50564 & 0.00012 & 0.00000 \\
\hline
\end{tabular}

The GSC command outputs X/Y/Z coordinates of each surface vertex referred to an arbitrary surface (see GLO command), the direction cosine of the surface normals and the global \(\alpha, \beta, \gamma\) Euler tilt angles (in the sequence \(\alpha, \beta, \gamma\).

\section*{Example Output: Global Surface Matrices (GSM)}

Command: gsm
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{GLOBAL SURFACE VERTEX COORDINATES AND TRANSFORMATION MATRICES} \\
\hline \multicolumn{8}{|l|}{Reference surface \(=1\)} \\
\hline \multirow[t]{3}{*}{\#} & M11 & M12 & M13 & X & Alpha & Beta & Gamma \\
\hline & M21 & M22 & M23 & Y & & & \\
\hline & M31 & M32 & M33 & Z & & & \\
\hline \multirow[t]{3}{*}{1} & 1.0000000 & 0.0000000 & 0.0000000 & 0.000000 & 2.25000 & 0.00000 & 0.00000 \\
\hline & 0.0000000 & 0.9992290 & 0.0392598 & 0.000000 & & & \\
\hline & 0.0000000 & -0.0392598 & 0.9992290 & 0.000000 & & & \\
\hline \multirow[t]{3}{*}{2} & 1.0000000 & 0.0000000 & 0.0000000 & 0.000000 & -0.88889 & 0.00000 & 0.00000 \\
\hline & 0.0000000 & 0.9998797 & -0.0155134 & 116.197921 & & & \\
\hline & 0.0000000 & 0.0155134 & 0.9998797 & 1476.434571 & & & \\
\hline \multirow[t]{3}{*}{3} & 1.0000000 & 0.0000000 & -0.0000020 & 0.000000 & -9.50564 & 0.00012 & 0.00000 \\
\hline & -0.0000003 & 0.9862693 & -0.1651447 & 308.744609 & & & \\
\hline & 0.0000020 & 0.1651447 & 0.9862693 & -273.855207 & & & \\
\hline
\end{tabular}

Surface tilts and decentrations can be conveniently described by a \(3 \times 4\) matrix of the form:
\[
\left[\begin{array}{llll}
m_{1,1} & m_{1,2} & m_{1,3} & -X  \tag{9.1}\\
m_{2,1} & m_{2,2} & m_{2,3} & -Y \\
m_{3,1} & m_{3,2} & m_{3,3} & -Z
\end{array}\right]
\]

The \(m_{i, k}\) coefficients hold the tilts whereas the fourth column contains the \(X / Y / Z\) decentrations of the surface vertex with respect to the chosen reference. For a more detailed explanation of tilts defined by matrix notation see also section 8.19 , page 113. In addition the \(\alpha, \beta, \gamma\) Euler tilt angles (in the sequence \(\alpha, \beta, \gamma\) are listed in the rightmost three columns.

\subsection*{9.5 List User-Defined Variables}
\begin{tabular}{|l|l|}
\hline LVR & \begin{tabular}{l} 
Allows output of information about user-defined variables. Lists the current \\
variable names and the associated arguments (numeric values or string). \\
See also definition of variables in section 26.11, page 459.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.6 List User-Defined Functions}

\section*{LFC}

Allows output of information about user-defined functions. Lists the current function names and the associated function definitions. See also definition of functions in section 26.16, page 464.

\section*{10}

\section*{Lens Layout Plot}

Plots the optical system as a cross-section or 3-D perspective drawing. The command accepts optional parameters to control the type of representation. See also the GRA command (section 25.1, page 444) for output to the printer and for export to other graphics formats.
\begin{tabular}{|c|c|}
\hline ```
VIE
[sec|si..j|zk|scale|?]
``` & \begin{tabular}{l}
Plots cross-section or perspective view of lens layout. sec is a single character describing the type of layout plot (optional): \\
X : cross section in \(\mathrm{X} / \mathrm{Z}\) plane \\
Y : cross section in \(\mathrm{Y} / \mathrm{Z}\) plane \\
P : perspective view (wire frame) \\
si. . j = surface range, e.g. s3..7, (optional) \\
\(\mathrm{zk}=\) zoom position (optional) \\
scale = plot scale (optional) \\
? invokes a dialog box to edit lens plotting parameters. \\
Example command: vie Y s3..7 z4 0.5
\end{tabular} \\
\hline VPT azimuth elevation & Defines the azimuth and elevation angles (in degree) for three-dimensional perspective plot. The azimuth angle is measured in the X/Z-plane from \(-180^{\circ}\) to \(+180^{\circ}\), with \(0^{\circ}\) directing to the -X axis. The elevation angle is measured in the X/Y-plane, ranging from \(-180^{\circ}\) to \(+180^{\circ}\). The perspective distance is always at infinity (parallel projection). The graphics window containing the perspective plot will be automatically updated if it is opened. \\
\hline LDS & Same as VIE, however, the layout plot is always drawn in a screen window, irrespective of other settings of graphics output units. See also setting of other graphic output units by the GRA command, page 444. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline REN & \begin{tabular}{l}
Create an almost photo-realistic rendered image of the lens \\
system. The rendering information is written to the file \\
"optix.pov" in the OpTaliX temporary directory (usually \\
/optix/temp) and the POV rendering engine is subse- \\
quently called. See also section 10.1 on how to interface \\
OpTaliX to POV. The rendering information (POV-file) \\
may also be separately written (exported) to a specific file \\
using the EXP POV command (see page 493).
\end{tabular} \\
\hline RSP & \begin{tabular}{l}
Traces a single ray in the Y/Z lens layout plot. The start \\
coordinates of the ray can be interactively adjusted in field \\
and aperture using slider bars in a dialog box. This com- \\
mand does not output any ray trace data. Use the command \\
RSI on page 238 to obtain precise ray coordinates.
\end{tabular} \\
\hline AAP yes |no & \begin{tabular}{l}
Plots asymmetric apertures. In lens plot, draws only the \\
used aperture of a surface. AAP no plots the full surface \\
aperture, irrespective of the actual area used by the light \\
beams (surfaces are drawn symmetrical to their local axis). \\
AAP no is the default.
\end{tabular} \\
\hline POX, POY, POZ [zi..j|zk] & \begin{tabular}{l}
Plot offsets (in paper coordinates). Shifts the lens layout \\
plot in x- and y-direction on the paper. For "zoomed" sys- \\
tems, individual values for Pox,POY,PoZ may be specified. \\
In this case, the plot offsets must be preceded by a zoo \\
qualifier and specified as described in the zoom section (see \\
page 192).
\end{tabular} \\
\hline EDI LDR & \begin{tabular}{l}
Edit lens draw parameter for lens layout plot. A dialog box \\
is invoked.
\end{tabular} \\
\hline PPOS plot_pos & \begin{tabular}{l}
Plot zoom position. This is an extended variant of the \\
POS command for setting a specific zoom position. If \\
plot_pos, an integer number between 1 and the maximum \\
defined zoom positions, is specified, only the layout of posi- \\
tion plot_pos will be drawn. If plot_pos is 0, all positions \\
will be plotted.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline ```
EDG [si..j|yes|no]
edge_type_no
or
EDG [si..j|yes|no]
edge_string
``` & \begin{tabular}{l}
Edge drawing. Specifies how edges of lens elements are drawn. Edges may be specified by number (edge_type_no) or by a descriptive string (edge_string). See also Fig. 10.1 for an explanation of the various edge types. \\
Example: \\
edg s5 3 or edg s5 rec ! Draws edges on lens element as rectangular facet.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples:}
```

vie y s1..5 2.5
vie 1.5
vie 0
vie ?
edg s5 3
edg s5 rec
Lens draw, Y/Z-section, surfaces $1-5$, scale $=2.5$
Lens draw , scale $=1.5$, the other parameters are taken from the previous settings.
Plot scaling is automatic. The program internally adjusts the plot scale to fit the layout plot onto the paper.
Invokes a dialog box for adjustment of plot parameters prior to layout plotting.
Draws edges on lens element as rectangular facet.
As above, draws edges on lens element as rectangular facet.

```

\subsection*{10.1 Using POV Rendering Engine}

Creating photo-realistic pictures is accomplished by invocation of the Persistence of Vision (POV) renderer. POV is free and may be downloaded from http://www.povray.org. It must be installed separately and OpTaliX provides an interface to POV via the export module. In order to tell OpTaliX the location of POV, the path to the rendering engine must be modified in the OpTaliX configuration file optix.cfg. This may be accomplished in two ways:
1. Modify the file optix.cfg, which resides in the OpTaliX installation directory. Search for the key-word RENDER and change the path accordingly. Path names containing blanks must be enclosed in apostrophes. A typical example is


Figure 10.1: Various types of edge drawing.

RENDER = "c:/pov31a/bin/pvengine.exe"
2. From the main menu, select FILE \(-->\) PREFERENCES. A dialog box appears to modify default search paths. The path to POV may be entered directly into the appropriate field or searched by clicking on the button right to the path-field.

Information: In order to use the POV interface, OpTaliX must be installed on a writeable medium. If OpTaliX is executed from a non-writeable medium (a CD_ROM for example), the whole OpTaliX tree must be copied to a medium, which has write access.

\subsection*{10.2 Plot Rays}

Only for purposes of plotting the lens layout, a set of special rays (hereafter denoted as plot rays) may be generated and stored with the optical system. These rays, however, are completely independent from rays generated internally by the program for image analysis.
Plot rays are generated by the following commands:
\begin{tabular}{|c|c|}
\hline SET RAY & \begin{tabular}{l}
Generates a set of standard plot rays. These are typically 5 rays per field point: - a chief ray going through the stop center ( or the entrance pupil center depending on the ray aiming method RAIM), \\
- a meridional (tangential) upper limit ray \\
- a meridional (tangential) lower limit ray \\
- a sagittal upper limit ray \\
- a sagittal lower limit ray.
\end{tabular} \\
\hline SET FAN [Y] [num_fan_rays] & Sets a fan of rays in Y-direction. The number of rays (num_fan_rays) is uniformly distributed across the entrance pupil. Vignetted rays are not shown. Omission of the optional parameter \(Y\) or num_fan_rays uses the previous setting or the default setting (11 rays across aperture in Ydirection). \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline SET FAN [X] [num_fan_rays] & \begin{tabular}{l} 
Sets a fan of rays in X-direction. The number \\
of rays (num_fan_rays) is uniformly distributed \\
across the entrance pupil. Vignetted rays are not \\
shown. Omission of the optional parameter X \\
or num_fan_rays uses the previous setting or \\
the default setting (11 rays across aperture in Y- \\
direction).
\end{tabular} \\
\hline SET FAN [XY] [num_fan_rays] & \begin{tabular}{l} 
Sets a fan of rays in both X-direction and Y- \\
direction. The number of rays (num_fan_rays) \\
is uniformly distributed across the entrance pupil. \\
Vignetted rays are not shown. Omission of the \\
optional parameter XY or num_fan_rays uses \\
the previous setting or the default setting (11 rays \\
across aperture in Y-direction).
\end{tabular} \\
\hline SET FAN [C] [num_circ_rays] & \begin{tabular}{l} 
Sets a fan of rays uniformly distributed around \\
the used aperture circumference. Vignetting of \\
the entrance beam is considered, thus, the plot \\
rays may become elliptical in shape. Omission of \\
the optional parameter C or num_fan_rays uses \\
the previous setting or the default setting (11 rays \\
across aperture in Y-direction).
\end{tabular} \\
\hline RAYX ri..j abs_X_value & \begin{tabular}{l} 
Absolute start coordinate X in entrance pupil for \\
plot ray(s) i. .j.
\end{tabular} \\
\hline RAYY ri..j abs_Y_value & \begin{tabular}{l} 
Absolute start coordinate Y in entrance pupil for \\
plot ray(s) i. .j.
\end{tabular} \\
\hline RAYCX ri..j cosine_X & \begin{tabular}{l} 
Direction cosine in X-direction in the entrance \\
pupil for plot ray(s) i.. j.
\end{tabular} \\
\hline RAYCY ri..j cosine_x & \begin{tabular}{l} 
Direction cosine in Y-direction in the entrance \\
pupil for plot ray(s) i. .j.
\end{tabular} \\
\hline DEL ri..j & Deletes plot rays i..j. \\
\hline DEL ra & Deletes all plot rays. \\
\hline
\end{tabular}

Note: Ray definitions may be overwritten, if automatic ray generation is checked in the lens layout plot (see command EDI LDR).


Figure 10.2: Examples of generating plot rays.

\section*{11}

\section*{Zoom and Multi-Configuration}

The term "zoom" is used throughout the manual as a generally accepted synonym for "multiconfiguration" systems (bearing in mind that classical zoomed systems mainly alter the air-space between lenses while true multi-configuration systems allow the modification of any parameter). Thus, in "true" multi-configuration systems, the lens can be used at different wavelengths, different tilt/scan angles, different object fields, to name a few.
The zoom features are:
- Almost any lens data parameter which can be edited may be zoomed
- all zoom data are saved as part of the lens,
- "dezoom" lens data to any selected zoom position

A zoom or multi-configuration system is set up by the following steps:
1. Define the number of configurations
2. Define the parameter for each zoom configuration
3. define the optimization parameter for each configuration (if any)

Each step is described in detail in the following sections.

\subsection*{11.1 Number of Zoom Positions}

The number of zoom positions in \(O p T a l i X\) is theoretically unlimited, however, there may be practical limitations imposed by your hardware configuration. The number of zoom positions is set by the command
ZOO n_pos
with n_pos = number of zoom positions.

\subsection*{11.2 Define Zoom Parameter}

A "zoomed" parameter always requires a preceding ZOO qualifier, if entered from the command line. For example, to make the thickness at surface 3 variable in a zoom/multiconfigurationn systems, the command would be:

ZOO THI S3 1.0 12.0 16.0
The number of parameter must match the number of zoom positions entered by the ZOO n pos command. If the number of variables entered is less than the number of zoom positions, then the remaining variables are assumed zero ( 0 ).
Also note the command EDI ZOO which invokes a spreadsheet-like editor to define zoom/multiconfiguration parameters (sect. 11.3).
The command syntax is:
\begin{tabular}{|c|c|}
\hline ZOO n_pos & Define the number of zoom positions. \\
\hline EDI ZOO & Edit zoom parameter. Invokes a spreadsheet editor. \\
\hline \begin{tabular}{l}
ZOO operand \\
parameter_1 ... \\
parameter_n
\end{tabular} & Converts a non-zoomed parameter into a zoomed parameter. "operand" can be any OpTaliX -command, "parameter" any value appropriate for the operand. Examples are given below this table. \\
\hline ZED & Text based editor for editing zoom parameters. This option is only recommended if more than 100 zoom positions or more than 250 zoom parameter rowws/lines shall be handled. Otherwise use the "EDI ZOO" command explained above. The ZED command invokes an ASCII editor for modifying zoom position parameters in a command-like fashion. \\
\hline POS zoom_pos & \begin{tabular}{l}
Sets a zoomed system to the zoom position "zoompos", which is then the current zoom position. All subsequent performance analysis (e.g. MTF, PSF, etc) are performed at the currently selected position. It is important to note, that the overall zoom parameter are not destroyed (as in DEZ command, see below). Example: \\
POS 3 selects the current zoom position 3. A subsequent system listing (LIS-command) or a MTF-analysis will then be performed at zoom position 3 . \\
See also the PPOS command on page 186 for plotting only one specific zoom position.
\end{tabular} \\
\hline DEZ zoom_pos & Dezoom: Freezes a zoomed system to a non-zoomed (single position) system at the position "zoom_pos". All zoom parameter are lost. \\
\hline ```
ZOO POX value(z1)
value (zn)
ZOO POY value(z1)
value (zn)
ZOO POZ value(z1)
value (zn)
``` & \begin{tabular}{l}
Set the plot offset for each zoom-position referred to the center of the paper plotting area. The offset values are given in mm . These commands were introduced to place the lens layout plots (lens drawings) on the paper for each zoom position individually. \\
Example: \\
zoo poy \(80400-40-80\) ! Plots the lens layout plots for the zoom positions 1-5 vertically in Y-direction on the paper, that is position 1 is plotted 80 mm above the paper center, position 2 is plotted 40 mm above the paper center, and so on.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples:}
```

continued from previous page
ZOO THI s2 2 4 6
ZOO ADE s3..6 10 20 30
DEZ 2
ZOO STO s1 s4 s6
ZOO STO 1 4 6
ZOO GLA s1 bk7 sf6 f2
Zoom thickness s 2 is $2 \mathrm{~mm}, 4 \mathrm{~mm}, 6 \mathrm{~mm}$ at position 1 to 3
Zoom X-tilt of surfaces 3-6 to values 10, 20 and 30 degree at positions 1 to 3
"Dezooms" a system to a non-zoomed system at position 2. For the example given above, the following fixed settings are selected: THI s2 4, and ADE s3.. 620
Zoom stop surface.
as above, but without explicit surface qualifier.
zoom glasses

```

\subsection*{11.3 Spreadsheet Zoom Editor}

Zoomed parameter may also be conveniently entered in a spreadsheet like editor. The zoom spreadsheet editor window is capable of displaying and editing up to \(50 \mathrm{zoom} /\) multiconfiguration positions. If more than 50 positions are needed, enter zoom parameters in the command line or use the text base zoom editor (ZED command). The zoom editor spreadsheet is invoked by the command
```

EDI ZOO

```

Each parameter in the editor is displayed in a separate cell. For example, three fields (YAN) and three axial separations (THI) are zoomed in the examples file \$i\examples \(\backslash\) zoom\laikin-35-1.otx. In the command line, the zoom parameters would be entered as
```

zoo 4
zoo yan f1 0 0 0 0
zoo yan f2 15.0 7.0 3.0 1.5
zoo yan f3 28.0 14.0 6.5 3.05
zoo thi s5 0.1330000E+01 0.2435000E+02 0.4013000E+02 0.5095000E+02
zoo thi s10 0.5688000E+02 0.3234000E+02 0.1431000E+02 0.1000000E+00
zoo thi s15 0.4300000E+00 0.1950000E+01 0.4210000E+01 0.7600000E+01
zoo poy 70 20 -20 -70

```
and in the zoom spreadsheet editor as shown in Fig. 11.1.
Notice that there is a limit on the maximum number of zoom parameter entries (rows/lines) in the spreadsheet zoom editor. Currently only \(\mathbf{1 2 0}\) zoom parameter lines are accepted. This limit is only defined to limit system resources and allow OpTaliX to be run also on computers with limited memory.
The first column, labelled "VARIABLE", always holds the parameter to be zoomed. This can be any parameter describing the optical system such as curvatures (CUY), radii (RDY), distances (THI), tilt/decenter (XDE, ADE, ...), wavelength (WL), aperture (EPD,NA,NAO) and so on. Any parameter which can be changed in the command line will also be accepted in the zoom editor.
The second column, labelled "SUR/FLD" specifies surface number or field number or wavelength number. Since the cells in the zoom editor are a direct representation of the (string) parameters entered in the command line, a corresponding surface or field or wavelength letter symbol must preceding. Thus, like in the command line, surface 3 is specified as "s 3 " (without the quotation marks) in the corresponding cell. Field number 2 would be specified as " \(£ 2\) " and wavelength number 4 as "w4".
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{(v-2oom/Multiconfiguration Data} & - \(\square\)] \(x\) \\
\hline \multicolumn{8}{|l|}{\#\#\# \#\#} \\
\hline & VARIABLE & SUR/FLD & Pos. 1 & Pos. 2 & Pos. 3 & Pos. 4 & \(\triangle\) \\
\hline 1 & VAN & F1 & 0 & 0 & 0 & 0 & \\
\hline 2 & YAN & F2 & 15.0 & 7.0 & 3.0 & 1.5 & \\
\hline 3 & YAN & F3 & 28.0 & 14.0 & 6.5 & 3.05 & \\
\hline 4 & THI & 55 & \(0.1330000 \mathrm{E}+01\) & \(0.2435000 \mathrm{E}+02\) & \(0.4013000 \mathrm{E}+02\) & \(0.5095000 \mathrm{E}+02\) & \\
\hline 5 & THI & 510 & \(0.5688000 \mathrm{E}+02\) & \(0.3234000 \mathrm{E}+02\) & 0.1431000E+02 & \(0.1000000 \mathrm{E}+00\) & \\
\hline 6 & THI & S15 & \(0.4300000 \mathrm{E}+00\) & \(0.1950000 \mathrm{E}+01\) & 0.4210000E +01 & 0.7600000E +01 & \\
\hline 7 & POY & & 70 & 20 & -20 & -70 & - \\
\hline \multicolumn{8}{|l|}{(1)} \\
\hline Row & 1 & Column & 1 & & & & , \\
\hline
\end{tabular}

Figure 11.1: Zoom Editor window, showing the zoom parameters on the example of \$i\examples \(\backslash\) zoom\laikin-35-1.otx

All subsequent columns hold the parameter data for each zoom position.

\section*{Notes:}

There are a few parameters which are not dependent on either field, surface or wavelength. These are 'PIM', 'POX', 'POY', 'POZ', 'DEF', 'EPD', 'FNO', 'NA ', 'NAO', 'MAG', 'RED', 'STO', 'WRX', 'WRY', 'ZWX', 'ZWY', 'RCX', 'RCY', 'M2 ', 'MFR'. For these cases the corresponding cell in the second column is greyed, indicating that no entry is required in this cell.

Analysis options such as MTF, PSF, etc) are always calculated at the currently selected zoom/multiconfiguration position. Thus, to do performance analyses for various zoom positions, the corresponding zoom position must be selected prior to the dedicated analysis. The zoom position is set by the command "POS \(i\) " where " \(i\) " is the zoom position. A few options such as spot diagram (SPO), rim ray fan (FAN) and lens layout (VIE) are designed to plot all positions in one graph.

\subsection*{11.4 Insert, Copy, Delete Zoom Positions}
\begin{tabular}{|l|l|}
\hline INS zi..j & \begin{tabular}{l}
Insert zoom positions zi..j. Zoom data at higher position \\
numbers will be shifted accordingly.
\end{tabular} \\
\hline DEL zi..j & \begin{tabular}{l}
Delete zoom positions zi..j. Zoom data at higher position \\
numbers will be shifted accordingly.
\end{tabular} \\
\hline COP zk target_pos & \begin{tabular}{l}
Copy zoom position zk to target_pos. This command \\
overwrites data at the new position (target_pos). If re- \\
quired, insert a new zoom position (INS zi..j) prior to \\
copying zoom position data. Only one position can be copied \\
at a time.
\end{tabular} \\
\hline
\end{tabular}

Zoom positions may also be inserted or deleted from the zoom editor window by clicking on the appropriate icons in the zoom editor toolbar as shown in Fig. 11.1. An explanation of the icons is given below.
Insert a new zoom parameter row.
Insert a zoom position before the selected position (=column). To select a
zoom position, put the cursor into any cell of the desired column (=position).
Delete a zoom parameter row.
Delete a zoom position (column in the surface editor).

\subsection*{11.5 Text based Zoom Editor}

In addition to the spreadsheet zoom editor, a text based editor for zoom/multiconfiguration data is available. This option is offered because the spreadsheet zoom editor is currently limited to 120 parameter definitions (rows/lines). The reason is caused by the fact that the number of cells in a grid editor corresponds to the system resources. The larger the grid, the more system resources are required. In order to allow \(O p\) TaliX to be run on computers with limited memory, this limitation has been deliberately defined.

However, the number of zoom/multiconfiguration parameters that can be edited in the text based zoom editor is unlimited. The text based zoom editor is invoked by the command
ZED Invoke text based zoom/multiconfiguration editor. A spreadsheet zoom editor, if opened, is automatically closed.
This command opens an editor window similar to figure 11.2.

Figure 11.2: Text based Zoom Editor, showing the zoom parameters on the example of \$i\examples \(\backslash\) zoom \(\backslash\) laikin-35-1.otx. See also the command "EDI ZOO" which displays the spreadsheet zoom editor (default).

\subsection*{11.6 Solves in Zoom Systems}

Solves are active only in the first zoom position. The solved parameter is then unchanged for remaining positions.

\section*{12}

\section*{Tools and Utilities}

\subsection*{12.1 Autofocus}

Finds the best focus of an optical system by adjusting the back focal distance or any other selectable axial separation. It provides an easy and quick means to put the image plane in focus. There are several function types according to which the focus is determined: minimum rms-spot size (also in X- or Y-direction), minimum wavefront error, maximum MTF or maximum coupling efficiency. The best focus location depends upon the criterion selected. Focusing can be accomplished at selected fields and wavelengths or as an average over the full field. For zoom systems, focusing is always performed at the currently selected position (see POS command).
Since only axial separations are altered, autofocus does not account for a tilted image plane. Adjusting the image plane tilt as well (for instance in non-symmetric systems) requiresoptimization by proper setting of surface tilts \(A D E, B D E, C D E\) as variables.
```

AF function_type [ fi..j | wi..j | si | ? ]
Searches best focus (autofocus) at selected fields and wavelengths by adjusting the axial separations (thicknesses). By default, the back focus will be adjusted. In case of "PIM yes", the defocus (DEF) is changed. In case of "PIM no", autofocus uses the axial separation of the last surface. In case a dedicated surface is specified (eq. sk), the axisl distance (thickness) at this surface is used to adjust the best focus.
function_type is one of the 3-character strings:
SPD spot diameter, rms
SPX spot diameter, rms, in X-direction only
SPY spot diameter, rms, in Y-direction only
WAV wavefront error, rms
MTF modulation transfer function (MTF). The spatial frequency, at which MTF-autofocus is performed, is set by AFR (see page 269), or below
CEF Coupling efficiency.

AFR autofocus_frequency	Spatial frequency used in AF command (see above). It is   given in $\mathrm{Lp} / \mathrm{mm}$ for focal systems, in $\mathrm{Lp} / \mathrm{mrad}$ for afocal   systems

```

\section*{Examples :}
```

af
af ?
af spd f1..3 w3
afr freq
af ?
af spd f1..3 w3

```
```

af mtf s4 fl

```
```

af mtf s4 fl

```
```

afr freq

```

Autofocus without any parameter adjusts the back focus (default) for all wavelengths and fields at the currently selected zoom position. invokes a dialog box to select from various autofocus options. determines the best focus for minimum rms-spot diameter at fields 1-3 and wavelength number 3 .
searches best focus on the basis of maximum MTF at field point 1 and uses thickness 4 as variable.
Sets spatial frequency for autofocus optimization to \(f r e q\), in \(\mathrm{Lp} / \mathrm{mm}\) for focal systems, respectively Lp/mrad for afocal systems. This setting does not affect analysis frequencies, such as MFR, MFRD, MFRF.

\subsection*{12.2 Scaling}

Scales the optical system (or part of it) by a defined factor. The command syntax is
\begin{tabular}{|l|l|}
\hline SCA si..j scale_factor & Scale range of surfaces si..j by scale_factor. \\
\hline SCA sa scale_factor & \begin{tabular}{l}
Scale entire system (sa = all surfaces) by \\
scale_factor.
\end{tabular} \\
\hline SCA [EFL|OID|SYL|EPD|OAL] & \begin{tabular}{l}
Scale entire system by specifying a target value for \\
either EFL, OID, SYL, EPD or OAL. \\
target_value
\end{tabular} \\
\begin{tabular}{l}
Example: \\
sca efl 100 ! Scales entire system such that \\
a focal length (EFL) of 100mm is obtained.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{12.3 Invert System}

Inverts the optical system (or part of it). Parameters, which describe the usage of the system (aperture, field, etc.), however, are not altered.
\begin{tabular}{|l|l|}
\hline INV si..j & Invert (reverse) a range of surfaces si..j. \\
\hline
\end{tabular}

\subsection*{12.4 Convert fictitious Glasses to real Catalogue Glasses}

Converts a fictitious glass to a catalogue glass (a "regular" glass). Fictitious glasses are characterized either by a 6 -digit MIL-number as described on page 227 or by DNO or DVO offsets (see page 235). The conversion searches for a nearest glass in the glass catalogues, based on \(n_{d}\) and \(\nu_{d}\). Partial dispersions are not taken into account.

There exist special glasses (like gradient index glasses, "infrared" glasses) for which no valid MIL representation exist. In this case the program will not return meaningful results.
```

REG [si..j | cat_code1 ...
cat_code10 | ? ]

```

> Convert a fictitious glass to a regular catalogue glass by searching the nearest glass in the \(n-\nu\) domain (glass map). The cat_code is a three character short code identifying the manufacturer. The allowed short codes are found in table 13.2 (page 222). Up to 10 catalogue codes may be specified simultaneously. Examples:
> REG sa SCH : replace all fictitious glasses by nearest Schott glasses.
> REG s 2.5 HOY HIK : replace fictitious glasses on surfaces 2 to 5 by nearest catalogue glasses from Hoya or Hikari.

The catalogues to be searched for a nearest glass may also be conveniently selected in a dialog, accessible from the main menu "Tools" -- > "Fictitious glass to catalogue glass" as shown in Fig. 12.1. Select all glass catalogues that apply.

Figure 12.1: Select glass catalogues for converting fictitious glasses to regular catalogue glasses.

\subsection*{12.5 Find Alternative Glasses}

Find alternative (replacement) glasses from a different vendor with respect to a base glass. Alternative glasses are glasses having similar properties on refractive index and dispersion compared to the base glass and therefore may be used to replace the base glass in an optical system. The choice of alternative glasses is based on the given index difference (\(\Delta n_{d}\)) and the dispersion difference (\(\Delta \nu_{d}\)) at the d-line. Hence, alternative glass finding is valid only for the visible (\(400-700 \mathrm{~nm}\)) spectral range.
\begin{tabular}{|l|l|}
\hline ALG base_glass [delta_n delta_V] & \begin{tabular}{l}
Find alternative (replacement) glasses with re- \\
spect to a base_glass. By default, the \\
tolerances on selecting an alternative glass
\end{tabular} \\
are \(\Delta n_{d}=0.001\) on refractive index and \\
\(\Delta \nu_{d}=0.8 \%\) on dispersion, however, they \\
may be overwritten by specifying delta_n \\
and delta_V.
\end{tabular}

Notice that the choice of alternative glasses is solely based on the \(\Delta n_{d}\) and \(\Delta \nu_{d}\) differences. It is the designers responsibility to take other glass properties into account, such as partial dispersion, TCE, \(d n / d T\), etc, depending on a particular application. This list is only intended to support you in selecting glasses from alternate vendors.

\subsection*{12.6 Weight and Volume}

This option calculates the weights, volumes and center of gravity of lenses in the optical system. Only the glass weight of the system is included, mechanical spacers and housing are ignored. The volume of spherical lenses with circular base aperture is calculated analytically. Aspheric surfaces and lenses with rectangular or elliptical base aperture are integrated numerically. The weight is computed from the specific gravity of the material as stored in the glass catalogues.
The diameter of the lens is taken from the maximum surface aperture (see sect. 8.33), independent of whether they are checked (fixed aperture) or not. The edge of the surface with the smaller aperture is squared up to the larger aperture.
If edges are specified (see EDG option in section 8.33), they define the enclosed volume. Use of EDG apertures allow the definition of 'edge allowances', or to match values assigned from the housing design.
The weight of front surface mirrors can be calculated provided thickness and specific gravity of the mirror are supplied using the THM and SPG commands (see table below). The back surface of front surface mirrors is always assumed plano.
\begin{tabular}{|l|l|}
\hline WEI [sk|si..j] & \begin{tabular}{l}
Compute weight and volume of lenses. Includes \\
aperture obscurations and holes. Tilted surfaces are \\
not supported. For mirror surfaces, check also the \\
commands THM and SPG for setting mirror thick- \\
ness and specific gravity of mirror material.
\end{tabular} \\
\hline SPG [sk|si..j] gravity & \begin{tabular}{l}
Specific gravity in \(\mathrm{g} / \mathrm{cm}^{3}\). This command over- \\
writes any pre-defined value stored in the glass cat- \\
alogues. Enter SPG sk \(\mid \mathrm{si} \ldots j\) o to delete any \\
user-defined specific gravity data.
\end{tabular} \\
\hline \begin{tabular}{l}
THM [sk|si..j] \\
mirror_thickness
\end{tabular} & \begin{tabular}{l}
Center thickness of mirror. This command has \\
no influence on the construction parameter, it \\
is only required for weight calculation and for \\
ISO element drawing of mirrors.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 1:}

The following example is a standard double Gauss lens, taken from the examples library \optix \(\backslash\) examples \(\backslash \mathrm{misc} \backslash\) double_gauss.otx as shown in Fig. 12.2. It also indicates how edges are assumed in the WEI option.
The output table contains surface and element number, volume, specific gravity, weight and center of gravity. The centers of gravity given for the individual lenses refer to the vertex of the front surface, whereas the center of gravity for the entire system is referred to the first surface of the system.

\footnotetext{
WEIGHT CALCULATION:
Element Volume Gravity Weight ---- Center of Gravity ----
}

Figure 12.2: Double-Gauss example, showing edges used for weight calculation.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Surf. & Number & \(\left(\mathrm{cm}{ }^{\wedge} 3\right)\) & \(\left(\mathrm{g} / \mathrm{cm}^{\wedge} 3\right)\) & (g) & X & Y & Z \\
\hline 1-2 & 1 & 2.05929 & 6.300 & 12.974 & 0.000 & 0.000 & 3.280 \\
\hline 3-4 & 2 & 1.84480 & 3.560 & 6.567 & 0.000 & 0.000 & 4.052 \\
\hline 4-5 & 3 & 2.34401 & 3.480 & 8.157 & 0.000 & 0.000 & 2.676 \\
\hline 7-8 & 4 & 1.31742 & 3.480 & 4.585 & 0.000 & 0.000 & -0.163 \\
\hline 8-9 & 5 & 1.35685 & 3.580 & 4.858 & 0.000 & 0.000 & 1.947 \\
\hline 10-11 & 6 & 0.96652 & 3.580 & 3.460 & 0.000 & 0.000 & 1.299 \\
\hline & Total : & 9.88889 & & 40.600 & 0.000 & 0.000 & 16.629 \\
\hline
\end{tabular}

Notes: Center of gravity of lenses are referred to the front surface of each element. Center of gravity of total system is referred to first surface.

We will now make all surfaces aspheric (use command sut sa a), which forces 2-D numerical integration. Volume and weights of the elements are slightly different due to the numerical integration.

WEIGHT CALCULATION:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Surf. & \begin{tabular}{l}
Element \\
Number
\end{tabular} & Volume (cm^3) & \begin{tabular}{l}
Gravity \\
(g/cm^3)
\end{tabular} & \begin{tabular}{l}
Weight \\
(g)
\end{tabular} & \multicolumn{3}{|l|}{\begin{tabular}{ccr}
-- Center of Gravity & --- \\
X & Y
\end{tabular}} \\
\hline 1-2 & 1 & 2.05960 & 6.300 & 12.975 & 0.000 & 0.000 & 3.280 \\
\hline 3-4 & 2 & 1.84512 & 3.560 & 6.569 & 0.000 & 0.000 & 4.052 \\
\hline 4-5 & 3 & 2.34416 & 3.480 & 8.158 & 0.000 & 0.000 & 2.676 \\
\hline 7-8 & 4 & 1.31743 & 3.480 & 4.585 & 0.000 & 0.000 & -0.163 \\
\hline 8-9 & 5 & 1.35702 & 3.580 & 4.858 & 0.000 & 0.000 & 1.947 \\
\hline 10-11 & 6 & 0.96664 & 3.580 & 3.461 & 0.000 & 0.000 & 1.299 \\
\hline & Total : & 9.88996 & & 40.605 & 0.000 & 0.000 & 16.628 \\
\hline
\end{tabular}

Notes: Center of gravity of lenses are referred to the front surface of each element. Center of gravity of total system is referred to first surface.

\section*{Example 2:}

This example shows how to calculate the weight for systems containing (front-surface) mirrors. In order to obtain reasonable weight figures, a center thickness and a specific gravity of the mirror material must be assigned to mirror surfaces. This is accomplished by the commands THM and SPG
We restore (load) the Cassegrain telescope from the examples library \optix\examples \(\backslash\) mirror \(\backslash\) cassegrain and assign the following thicknesses to primary and secondary mirror:
```

thm s1 10.0
thm s2 5.0

```

Note that mirror thicknesses are always given as positive values. Next, specific gravities \(\rho\) must be specified for the mirrors. For example,
```

spg s1 3.1
spg s2 2.5

```
which specifies \(\rho\) in \(\mathrm{g} / \mathrm{cm}^{3}\) units. Now that all relevant data are entered, the WEI command outputs weight and center of gravity.

Since a central obstruction has been assigned to the primary mirror (surface 1), weight calculation also reports the weight of the solid (unobstructed) mirror and the fictitious weight corresponding to the central obstruction, which is subtracted from the weight of the solid mirror.

\subsection*{12.7 Maximum Incidence Angles}

This option traces ray bundles through the optical system for a given range of fields and zoom positions. The output reports the maximum ray incidence/refraction angles and the mean (average) incidence/refraction angles for each surface. Because the analysis is based on a full aperture ray trace, accuracy of the results may be increased by increasingNRD (number of rays across diameter).
Knowing the range of ray incidence angles is often helpful for designing multilayer coatings appropriately matched to the optical use of surfaces.
\begin{tabular}{|l|l|}
\hline MAXAOI \([f \mathrm{k} \mid \mathrm{fi} . . j\) & \begin{tabular}{l}
Calculates the maximum angle of incidence on all opti- \\
cal surfaces for a given range of field numbers \(\mathrm{fi} . \mathrm{zi} \ldots j]\) \\
and zoom positions zi..j. A description of the output \\
is given below. Related commands: AOI, AOR, NRD.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description of output:}
```

RAY INCIDENCE ANGLES:
Analysis is based on a full-aperture ray trace with 32 x 32 rays
in the entrance pupil for each field and zoom position.
Average values are given with consideration of uniform and apodized
intensity in the entrance pupil.
All incidence angles are given in degrees.
Zoom Positions : 1 - 1

```
\begin{tabular}{|c|c|c|c|c|}
\hline & Average () & Average () & Maximum () & Surface comment \\
\hline Sur & (uniform) & (apodized) & & \\
\hline 1 & 0.00000 & 0.00000 & 0.00000 & \\
\hline 2 & 2.87489 & 1.64474 & 4.37264 & Lens 1 \\
\hline 3 & 9.62708 & 5.50348 & 14.70824 & \\
\hline 4 & 1.77709 & 1.01125 & 2.78751 & Lens 2 \\
\hline 5 & 8.90122 & 5.09164 & 13.55067 & \\
\hline 6 & 6.74561 & 3.85643 & 10.30278 & \\
\hline
\end{tabular}

The average incidence angles are calculated in two variants. The column labeled 'uniform' assumes that all rays within the pupil have identical intensity (i.e. uniform intensity distribution), whereas the values in the column labeled 'apodized' take pupil apodization into account. The latter is often specified in systems using laser beams with a Gaussian intensity profile across the aperture.

\subsection*{12.8 Optimal Coating Indices for Gradient Index Surfaces}

This option determines the optimal index of refraction to use when AR coating a gradient index lens (front and back surfaces). Particularly for steeper curvatures the refractive index may vary considerably (as this is the intention in the design process), however, some unique index must be determined for the coating substrate. A commonly accepted estimate is the index at \(70 \%\) of the clear aperture. Another, probably better, approach is the area-weighted index value, which is calculated by
\[
\begin{equation*}
n=\frac{\sum_{i=1}^{k} n_{i}\left(r_{i}^{2}-r_{i-1}^{2}\right)}{r_{\max }^{2}} \tag{12.1}
\end{equation*}
\]

Both cases are calculated and the indices at the surface vertex and the clear aperture are given in addition. The command syntax is
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l}
Output refractive indices to be used for coating a gradient index \\
surface sk within clear apertures ape1 and ape2 of front and \\
rear surface respectively. If ape1 and ape2 are omitted, the \\
currently set apertures are used.
\end{tabular} \\
Example: \\
Cind s2 \(10 \quad 9 \quad\) ! Calculate optimal refractive indices at \\
10mm clear aperture (front surface) and 9mm clear aperture \\
(rear surface).
\end{tabular}

A typical output in the text window would be

\subsection*{12.9 Surface Sag}

Surface sag computes the sag at any point on any surface in the optical system. The command syntax is:
\begin{tabular}{|l|l|}
\hline SAG sk x_height \\
Y_height [?]
\end{tabular}\(\quad\)\begin{tabular}{l}
Surface sag (z-component) at surface sk and surface coordinates \\
x_height, y_height, measured from the surface vertex with- \\
out regard to tilt and decentration.
\end{tabular}

\subsection*{12.10 User Defined Graphics (UGR)}

In addition to graphics predefined by the program, graphics defined by the user can be created. These are two-dimensional plots of any variable parameter against any performance measure known to OpTaliX . Parameters and functions may be composed from any command, arithmetic expression, function or macro as it would be entered in the command line. For example, changing the lateral displacement of a fiber in a fiber coupling optics is accomplished by the command
```

FRY . 001

```
which offsets the receiving fiber \(1 \mu m\) from the nominal chief ray intercept in the image plane. In an user defined graphics (UGR), this misalignment may become a variable parameter by simply writing ' fry'. The function depending on this parameter, can also be any part of a command sequence, for instance 'SPD f3', which is the rms spot diameter at field number 3.
Let us assume, we want a plot of the coupling efficiency vs. the fiber misalignment. The commands required to achieve this are:
```

UGR X 'fry' LIM -0.005 0.005 0.001
UGR Y 'cef' LIM 0 1.0

```

The first line defines the variable parameter 'fry' to be plotted at the X-axis, the second line defines the dependent function 'cef', which is plotted at the Y-axis. The values following the token LIM define the lower and upper plot limits for X - and Y-axis and the variable step respectively. That is essentially all what is needed to define a user defined graphics (UGR). We may also want to add axis labels and a title to the plot:
```

UGR TIT 'Coupling efficiency vs. fiber misalignment'
UGR XLAB 'fiber decenter'
UGR YLAB 'CEF'

```

The plot is created with the command

UGR go

Here is a summary of all commands related to UGR:
\begin{tabular}{|c|c|}
\hline UGR X var_string [LIM xlow xhigh xstep] & Define a variable used in UGR. var_string is a string (enclosed in apostrophes) containing the variable definition. LIM is optional. If given the plot limits are explicitly specified. Omitting LIM scales the X -axis automatically. For example, \\
\hline UGR Y func_string [LIM ylow yhigh] & Define a function used in UGR. var_string is a string (enclosed in apostrophes) containing the variable definition. LIM is optional. If given the plot limits are explicitly specified. Omitting LIM scales the Y-axis automatically. For example, \\
\hline UGR TIT title_string & Title string displayed in user-defined graphics. title_string should be enclosed in apostrophes if the string contains blank characters, otherwise apostrophes can be omitted. For example, \\
\hline \begin{tabular}{l}
UGR XLAB \\
x_label_string
\end{tabular} & X-label displayed in user-defined graphics. x-label_string should be enclosed in apostrophes if the string contains blank characters, otherwise apostrophes can be omitted. For example, \\
\hline \begin{tabular}{l}
UGR YLAB \\
y_label_string
\end{tabular} & Y-label displayed in user-defined graphics. y-label_string should be enclosed in apostrophes if the string contains blank characters, otherwise apostrophes can be omitted. For example,
```

ugr ylab 'spd ! Plots 'Y variable' (without apostro-
f1' phes) as Y-label.
ugr xlab spd ! Plots 'y-value'(without apostrophes) as Y-label.

``` \\
\hline UGR LOG floor & Select logarithmic display. \\
\hline
\end{tabular}

A more user-friendly way is from the menu TOOLS \(->\) User Defined Graphics, which invokes a dialog box to enter all required parameters. Our example discussed above as well as the resulting plot would look like (Fig. 12.3 and Fig. 12.4),

The string fields for the variable parameter and the function can be edited and expanded within the

Figure 12.3: Dialog box to create an user defined graphics.
syntax rules given for each command. There are a limited number of predefined variables and functions, which may be accessed by clicking on the associated down arrows. A concise descriptive text is given to each variable/function string, separated by an exclamation mark "!". Text after the exclamation mark is considered as a comment and will thus be ignored. It is not part of the variable/function definition.
UGR definitions may be saved or restored (loaded) to/from a macro file with extension * . ugr.
Due to the numerous number of plots which can be created with user defined graphics, there are no intelligent defaults for the independent variables or the dependent functions. In case of uncertainty, it is advisable to test the commands and the resulting function values in the command line prior to using them in the UGR option.
Also note, that some variables only work if the corresponding system parameter are properly defined. For example, a variable decenter (XDE or YDE) requires that the surface can be decentered (add "D" to surface type if needed).

\subsection*{12.10.1 Variable Parameters in User-defined Graphics}

Variable parameters in user-defined graphics (UGR) can be specified as follows:
- Any construction parameter that can be entered/edited on the command line can be made variable in UGR. For example, THI s4 (thickness at surface 4). Enter the parameter plainly, without quotes or apostrophes.

Specify any construction parameter as variable in UGR, just as you would enter it in the command line or in a macro.

Figure 12.4: Example output of user defined graphics: CEF vs. fiber misalignment.
- Specify any valid user-defined variable. Note for brevity: User-defined variables must begin with a "\$" character followed by at least one alpha-numerical character.

Enter a user-defined variable directly. The variable need not exist before, it is created during UGR execution.

\subsection*{12.10.2 Functions and Macros in User-defined Graphics}

In user-defined graphics (UGR), the function values to be plotted on the Y-axis of a graph can be defined by various methods:
- A lens database item (LDI) provides the easiest access to a lens construction parameter. See for example Fig. 12.3 which asks for coupling efficiency (CEF). Enter the name of this parameter enclosed in square brackets in the function field. For example,
Function:
[EFL]

Specify a lens database item (LDI) directly. In this example, the function value is the "equivalent focal length" (EFL).
- Specify an arithmetic expression which may include variables and lens database items (LDI).
\begin{tabular}{l}
Function: \\
\hline \(2^{\text {x }}\) sqrt \([[\mathrm{EFL}])\) \\
Define an arithmetic expression, including a \\
\hline
\end{tabular}
- Specify a function which must have been previously defined in a separate command or amacro. For example, if we have defined the function "myfunc \(==\$ x^{\wedge} 2\) " (without the quotes), the square of variable \(\$ \mathrm{x}\) would be returned.

Use a function previously defined for calculating the function value.
- Specify a macro which returns a value. In macros, (function-) values can be passed to the calling module using the RETURN statement (see page 468).

Run a macro which evaluates and returns the function value. See also
Function:
\begin{tabular}{|r|}
run my_macro.mac
\end{tabular} RETURN (page 468), and RUN (page 452). The macro file is assumed in the macro directory as defined in the preferences settings (page 23) which is typically c:\programs\optalix\macro. For any different location you must explicitly specify the path.

\subsection*{12.10.3 UGR Command Example}

In addition to the menu-based entry of user-defined parameters, as described in the previous sections, this section gives a concise overview on defining user-defined graphics from the command line respectively from macros.
\begin{tabular}{|c|c|}
\hline ugr X 'thi s2' LIM 0.51 .00 .05 & Define the independent parameter (variable) range for UGR-plot. The variable parameter in this case is 'THI s2', thickness at surface 2. The variable parameter (thi s2) is varied within the limits 0.5 to 0.1 at steps of 0.05 . \\
\hline ugr Y 'spd f1 w1' LIM 00.1 & Specify the dependent parameter (i.e. function value). In this case the spot diameter at field 1 , wavelength 1 , (spd f1 w1) shall be calculated. The plot limits (i.e. along the Y-axis) are between 0.0 and 0.1 . Note that these limits may change according to the parameter and functions defined. \\
\hline
\end{tabular}
```

ugr tit 'My UGR Graphics'

```

\subsection*{12.11 Analytical Setup}

A few optical systems may be created from scratch by entering a few basic system parameters like focal length, aperture, field of view, etc. They are then automatically generated on the basis of thirdorder theory. This means, that the aberrations of the resulting systems are corrected to third order, neglecting any higher order aberrations. However, these systems provide a good starting point for further refinement or as building blocks to construct more complex systems.

\subsection*{12.11.1 Lens of best Form}

Constructs a lens of best form, for which the third-order spherical aberration reaches a minimum for a given object distance \(s\) and power \(\varphi\). Without reiterating third-order theory, we first define auxiliary variables
\[
\begin{equation*}
A=\frac{2 n+1}{n-1}, \quad B=\frac{n+1}{n}, \quad C=\frac{n+2}{n} \tag{12.2}
\end{equation*}
\]

The curvatures of the lens are then obtained by
\[
\begin{align*}
c_{1} & =\frac{A \varphi+4 B \cdot \frac{1}{s}}{2 C} \varphi \tag{12.3}\\
c_{2} & =\left(c_{1}-\frac{1}{n-1}\right) \varphi \tag{12.4}
\end{align*}
\]

Command Syntax:
SETUP SLE
Single lens setup. The lens bending is chosen to minimizing thirdorder spherical aberration. This command invokes a dialog box.

\subsection*{12.11.2 Achromatic Doublet}

Constructs a thin-lens achromatic doublet from selected materials and a given focal length. The algorithm is found in Laikin [29].

Command Syntax:
SETUP ACR Thin-lens achromatic doublet setup. This command invokes a dialog box.

\subsection*{12.11.3 Lurie-Houghton Telescope}

Constructs a catadioptric telescope of Luri-Houghton form. The "Lurie-Houghton" telescope combines design elements from Lurie's original proposal [31] (two-lens full-aperture corrector) with elements of the Houghton telescope [21] (spherical corrector). Both modifications greatly simplify manufacturing, however, at the expense of astigmatism. A distinct advantage of this design form is the improved correction of coma compared to other catadioptric telescopes (Schmidt-Newton, Wright). A design example of the Lurie-Houghton design form can be found in the /examples/catadiop directory.
Analytical setup of the Lurie-Houghton design form is accomplished by a few simple equations. From the auxiliary variables
\[
\begin{array}{rlrl}
A=\frac{n+2}{n(n-1)^{2}}, \quad B=\frac{2(2 n+1)}{(n-1)^{2}}, & C=\frac{2(n+1)}{n(n-1)} \\
D=d \cdot \varphi, & L=\frac{(D-2)(2 A-B)}{C}, & Q=\frac{(2-D) L^{2}}{2 C} \tag{12.6}
\end{array}
\]
we obtain the radii of the corrector
\[
\begin{equation*}
r_{1}=-r_{3}=\frac{2 L(n-1)}{(Q+1) \varphi} \tag{12.7}
\end{equation*}
\]

Figure 12.5: Lurie-Houghton design form.
\[
\begin{equation*}
r_{2}=-r_{4}=\frac{2 L(n-1)}{(Q-1) \varphi} \tag{12.8}
\end{equation*}
\]
with
\(\varphi\) optical power of the primary mirror \(=2 / r_{m}\)
\(d\) distance of last corrector surface to primary mirror
Command Syntax:
SETUP LURIE
Setup of a Lurie-Houghton Telescope. A dialog box is invoked.

\subsection*{12.11.4 Reflecting Telescopes}

This section describes the theory for the setup of basic reflective telescopes (e.g. Parabola, Cassegrain, Gregory, Ritchey-Chretien, etc.).

Figure 12.6: Paraxial quantities at a compound telescope

\section*{Command Syntax:}
\begin{tabular}{|l|l|}
\hline SETUP TEL & \begin{tabular}{l}
Setup of compound reflecting telescopes such as Cassegrain, Richey- \\
Chretien, Gregory or Parabola. A dialog box is invoked, which allows \\
selection of the various design forms.
\end{tabular} \\
\hline
\end{tabular}

The equations and formulae presented hereafter are deduced from R.N.Wilson [61]. The variables as shown in Fig. 12.6 are defined as
\(d_{1} \quad\) Separation of primary mirror and secondary mirror
\(L \quad\) Distance of focus from secondary mirror
\(B F \quad\) Back focus (distance of focus from primary mirror)
\(f_{1} \quad\) Primary mirror focal length
\(f_{2} \quad\) Secondary mirror focal length
\(m_{2} \quad\) Secondary mirror magnification
Note, that the sign convention is in accordance with the definitions given in chapter2.

\subsection*{12.11.4.1 Classical Cassegrain and Gregory Form}

These forms are defined by a primary mirror of parabolic form \(\left(K_{1}=-1\right)\). The position of the secondary mirror is defined by:
\[
\begin{equation*}
d_{1}=\frac{m_{2} f_{1}+B F}{1-m_{2}} \tag{12.9}
\end{equation*}
\]

The power \(\Phi_{2}\) of the secondary mirror is:
\[
\begin{equation*}
\Phi_{2}=\frac{1}{f_{2}}=\frac{1}{B F-d_{1}}-\frac{1}{f_{1}-d_{1}} \tag{12.10}
\end{equation*}
\]

The conic constant of the secondary mirror is then a function of the secondary mirror magnification \(m_{2}\) :
\[
\begin{equation*}
K_{2}=-\left(\frac{m_{2}-1}{m_{2}+1}\right)^{2} \tag{12.11}
\end{equation*}
\]

\subsection*{12.11.4.2 The Aplanatic Telescope and its Ritchey-Chretien Form}

The Ritchey-Chretien (RC) form is an important modification of the Cassegrain telescope. The RCsolution solves for the field coma of a 2-mirror telescope, which is zero for an aplanatic condition. The solution of the aspheric conic constants is achieved by:
\[
\begin{gather*}
K_{1}=-1+\frac{2 L}{d_{1} m_{2}^{3}} \tag{12.12}\\
K_{2}=-\left[\left(\frac{m_{2}-1}{m_{2}+1}\right)^{2}+\frac{2 f^{\prime}}{d_{1}\left(m_{2}+1\right)^{3}}\right] \tag{12.13}
\end{gather*}
\]

The power of the secondary mirror \(M_{2}\) is obtained from Eq. 12.10.

\subsection*{12.12 Slider Control}

Sliders are used to interactively change any system or surface parameter. The result on system layout or performance can be immediately viewed in any analysis window. That is, the effect of changing values in the prescription of an optical system is immediately displayed in open analysis windows.

Sliders are invoked by the command SLID or from the main menu Tools - Sliders. A a dialog showing up to five slider controls is displayed (see Fig. 12.7).

Figure 12.7: Slider Dialog. Allows definition of arbitrary construction parameters to be adjusted interactively while immediately viewing the analysis result in open windows.

Description of slider controls:
On Turns on/off a specific control.
Construction This is any construction or system parameter which can be entered Parameter

SUR/FLD/WL This field expects a surface, field or wavelength qualifier such as S3, F2, or W4. The allowable range of surface/field/wavelength qualifiers in the current optical system may be selected from the pull down menu.

Range min. The minimum allowable value of a construction or system parameter.
Range max.
The maximum allowable value of a construction or system parameter.

\section*{Notes:}
- Changes made to slider controls are immediately reflected in the surface editor. However, changes made in the surface editor directly (for example inserting or deleting surfaces) will not be updated in the slider dialog. If the optical system is changed, you are requested to close and reopen the slider dialog to update for the new parameters.
- Analysis windows that require long computing times (such as MTF, PSF, etc) may slow down window update significantly. If necessary, close computing intensive analysis windows.
- A copy is made of the data to be modified prior to displaying the slider dialog. The "Restore" button then restores the state of the optical system before the slider dialog was invoked.
- Slider settings can be saved with the current system by checking the "save with prescription data" check box found in the lower left corner of the dialog. This also implies that slider settings are specific to the current system.
- On closing the slider control dialog, the current slider settings are used for all subsequent analyses. Click on the "Restore" button before leaving the slider dialog if you want to return to the previous system (i.e. before the slider dialog has been invoked).

\subsection*{12.13 ECHO Command Line}
\begin{tabular}{|l|l|}
\hline ECHO Y \(\mid \mathrm{N}\) & \begin{tabular}{l}
Echoes commands (entered in the command line) in the text output window. \\
Enabled by "Y" and disabled by "N". The default setting is "ECHO N". The \\
ECHO command is only active for a particular session of OpTaliX . ECHO \\
does not apply to commands executed within a macro. If you want to disable \\
all text output, use the "OUT SILENT" option (page 446).
\end{tabular} \\
\hline
\end{tabular}

\subsection*{12.14 CLS (Clear Screen)}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l}
Clears the contents of the text window ("clear screen"). For Code V com- \\
patibility, the CLS command can also be used for defining plot colours. See \\
Sections
\end{tabular} \\
7.2 (page 47) for defining field colours, \\
20.1 (page 384) for defining coating colours.
\end{tabular}

\subsection*{12.15 Time}
\begin{tabular}{|l|l|}
\hline TIM & \begin{tabular}{l}
Outputs an character string with the current time in 24 hour format \\
HH:MM:SS.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{12.16 Date}
\begin{tabular}{|l|l|}
\hline DAT & \begin{tabular}{l}
Outputs an character string with the current date in the format DD MMMM \\
YYYY.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{12.17 File Name}
\begin{tabular}{|l|l}
\hline FILENAME & Outputs an character string containing the file name (without path). \\
\hline
\end{tabular}

\subsection*{12.18 File Path}
\begin{tabular}{|l|l}
FILEPATH & Outputs an character string containing the file path. \\
\hline
\end{tabular}

\subsection*{12.19 Operating System Command}
\begin{tabular}{|c|l|l|}
\hline & & \begin{tabular}{l}
Opens a command window (DOS-box) to exe- \\
cute operating system (OS) commands. Con- \\
trol is then transferred to the operating system \\
and OpTaliX waits until the OS command win- \\
dow is closed (terminated). Under Windows
\end{tabular} \\
\(95 / 98 /\) Me operating systems command.com is in- \\
syS ['cmd_string' | ?] Windows NT/2000/XP operating systems \\
call cmd.exe by default. The optional param- \\
eter cma_string is the operating system com- \\
mand. It must be enclosed in apostrophes. The \\
question mark "?" keeps the OS command window \\
open, while omission of the question mark executes \\
cma_string in silent mode, except where SYS is \\
given without any parameters.
\end{tabular}

\section*{Examples:}

SYS invokes an OS command window. The window remains open. Type 'exit' (without the apostrophes) to close the OS command window and give back control to OpTaliX.

SYS 'dir *.*' ? invokes an OS command window, executes the system command 'dir *.*' and waits for additional OS commands. Type 'exit' (without the apostrophes) to close the OS command window and give back control to OpTaliX.

SYS 'copy a.txt b.txt' executes the OS command and gives back control to OpTaliX immediately.

Note that operating system commands may also be used in macros where the form without the question mark "?" is preferable to ensure uninterrupted execution.

\subsection*{12.20 Logging Ray Data}

It is sometimes desirable to have access to ray data, in particular if a large number of rays is concerned (such as in spot diagrams or in illumination calculations). Ray data can then be logged (written) to a file for later reuse.
RAYLOG sk|off FIL log_file

Enables logging (i.e. writing) ray data at a specific surface sk to a file log_file. Specification of surface sk at which ray data are to be logged is mandatory. If omitted, the command is ignored. The "off" option or s0 disables ray logging. Ray data are written to plain ASCII files without header. See sect. 32.13 for a description of the ray file format.
Examples:
raylog s4 fil rays.txt ! logs all rays calculated in subsequent commands.
raylog off ! disables ray logging.
raylog so ! same as above, disables ray logging

Use this command with great care! There are many analysis options (such as PSF, MTF, spot and illumination calculations) which generate a massive amount of ray data and therefore log-files may become huge. Also do not forget to disable ray logging by the "RAYLOG off" command after you have acquired ray data. Otherwise rays may be inadvertently written to the file, thus using excess hard disc space and slowing down calculations due to hard disc writing.
The RAYLOG command is favorably used in a macro environment. For example, consider the following situation where ray data resulting from an illumination calculation at the image surface (the target surface) are stored in a file:
```

raylog si fil my_rays.txt ! turn on ray logging
ill ? ! invokes illumination dialog for editing
illumination parameters
raylog off ! turn off ray logging

```

With the example above, the ray data are then found in the file my_rays.txt. See also sect. 32.13 (page 519) for a description of the ray file format.

\section*{13}

\section*{Materials, Glasses}

A large number of optical materials is available in \(O p T a l i X\). The optical and physical constants of refractive materials are stored in several catalogue files. The currently available catalogues are:
\begin{tabular}{l|l}
Identifier & Manufacturer \\
\hline SCH & Schott, 2000 catalogue \\
SCO & Schott, old catalogue \\
OHA & Ohara \\
COR & Corning \\
SUM & Sumita \\
HIK & Hikari \\
HOY & Hoya \\
CAR & Cargille liquids \\
APE & Apel series from Mitsui Chemicals \\
CDG & CDGM Glass Co. \\
EPS & EP series \\
LPT & LightPath, axial gradients \\
NHG & HuBei New HuaGuang Information Materials \\
SEL & NSG, Selfoc \({ }^{T M}\) radial gradients \\
GEL & Geltec \\
GLC & Gradient Lens Corp. \\
GRT & Grintech, Jena \\
ARC & Archer OpTx \\
OGC & Osaka Gas Chemicals \\
RPO & Rochester Precision Optics \\
RUS & Russian glass catalogue \\
SPE & Special materials (infrared, UV, plastic materials, liquids) \\
OBS & All obsolete materials from various vendors
\end{tabular}

The optical materials can be homogeneous or inhomogeneous in their refractive index. Standard materials from different suppliers are available in the spectral range from 200 nm to \(30 \mu \mathrm{~m}\). Besides the refractive index information, a large number of additional optical and physical properties are provided:
- Partial dispersion
- Linear expansion coefficient
- Transformation and melting temperature
- Thermal conductivity
- Specific weight
- Hardness
- E-Module
- Chemical properties
- Temperature coefficient of refractive index
- Internal transmission

Most of these data can be viewed and partly edited in the glass manager (see section24, page 431).
Command Summary:
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \hline \text { GLA [si..j] } \\
& \text { [zi..j|zk] } \\
& \text { [man:]glass_name }
\end{aligned}
\] & Glass name of manufacturer (e.g. BK7). man is optional and designates the manufacturer. The glass vendor may also be specified by preceding the glass name with the manufacturers short code followed by a colon, such as SCH : BK7. The length of the glass name, including the manufacturers short code is limited to 64 characters. See also section 13.3 for a list of manufacturers short codes. \\
\hline GL1 [si..j] gl1_name & Glass in front of surface (gl1_name is identical to GLA in classical (i.e. sequential) systems. \\
\hline GL2 [si..j] gl2_name & Glass at rear of surface (required for non-sequential surfaces only) \\
\hline AIR [si..j] & Medium is air \\
\hline REFL [si..j] & Medium is reflecting (mirror) \\
\hline REFR [si..j] & Medium is refracting (lens) \\
\hline \begin{tabular}{l}
RMD [si..j] \\
REFR|REFL|TIR
\end{tabular} & \begin{tabular}{l}
Refractive/reflective mode. Available modes are \\
REFR \(=\) refract all rays at surface(s) si \(. . j=\) default mode. \\
REFL \(=\) reflect all rays at surface(s) si . . j \\
TIR = only reflect rays that fulfil TIR condition \\
This command complements the REFR, REFL and TIR commands.
\end{tabular} \\
\hline ```
IND [si..j | wi..j]
val_1 val_2
val_n
``` & \begin{tabular}{l}
Refractive index (ordinary) corresponding to defined wavelengths. See also wavelength definition on page 48. Only takes effect for private glasses (see section 13.5). \\
Examples: \\
ind s3 1.5411 .5401 .490 ! defines indices for the first three wavelengths \\
ind s3 w2 1.540! defines index at wavelength number 2.
\end{tabular} \\
\hline INE [si..j] val_1 val_2 .... val_n & Refractive index (extraordinary) for defined wavelengths \\
\hline DVO [si..j] delta_nue & Dispersion shift \(\Delta \nu\) (in absolute \(\nu\)-values). Example: DVO s3..5 4.2. See also section 13.1.12 for definition of the primary dispersion. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline DNO \([\) si...j] delta_n & \begin{tabular}{l} 
Index shift \(\Delta n\) at reference wavelength. Note: Reference \\
wavelength is defined by REF command.
\end{tabular} \\
\hline PGO \([\) si..j] & \begin{tabular}{l} 
Offset of partial dispersion \(P_{g, F}\) from catalogue value (see sec- \\
tion 13.1.13 for definition of \(\left.P_{g, F}\right)\).
\end{tabular} \\
\hline PCO \([\mathrm{si}(\mathrm{g}, \mathrm{F})\) & \begin{tabular}{l} 
Offset of partial dispersion \(P_{C, s}\) from catalogue value (see sec- \\
tion 13.1.13 for definition of \(\left.P_{C, s}\right)\).
\end{tabular} \\
\hline
\end{tabular}

\subsection*{13.1 Dispersion}

Dispersion describes the variation of the index of refraction as a function of wavelength. It is one of the most important factors in selecting optical materials. The "old Schott" formula and the Sellmeier formula are consistently used. The coefficients are stored in glass catalogue files, which requires only specification of the glass name. The correct indices of refraction are calculated from the coefficients for all specified wavelengths.

\subsection*{13.1.1 Old Schott (Laurent) Formula}

Formerly, Schott described the index of refraction in the visible portion of the spectrum by a Laurent series, sometimes called the "Schott formula"
\[
\begin{equation*}
n^{2}(\lambda)=A_{0}+A_{1} \cdot \lambda^{2}+A_{2} \cdot \lambda^{-2}+A_{3} \cdot \lambda^{-4}+A_{4} \cdot \lambda^{-6}+A_{5} \cdot \lambda^{-8} \tag{13.1}
\end{equation*}
\]
where \(\lambda=\) wavelength in \(\mu \mathrm{m}\) and \(n=\) refractive index.

\subsection*{13.1.2 Sellmeier Formula}

The Sellmeier formula has recently been adopted by Schott and other glass manufacturers.
\[
\begin{equation*}
n^{2}(\lambda)-1=\frac{B_{1} \lambda^{2}}{\lambda^{2}-C_{1}}+\frac{B_{2} \lambda^{2}}{\lambda^{2}-C_{2}}+\frac{B_{3} \lambda^{2}}{\lambda^{2}-C_{3}} \tag{13.2}
\end{equation*}
\]
where \(\lambda=\) wavelength in \(\mu \mathrm{m}\).

\subsection*{13.1.3 Extended Sellmeier Formulas}

There are two forms to extend the standard Sellmeier formula as given in eq. 13.2 by adding more coefficients:
Sellmeier 3:
\[
\begin{equation*}
n^{2}(\lambda)-1=\frac{B_{1} \lambda^{2}}{\lambda^{2}-C_{1}}+\frac{B_{2} \lambda^{2}}{\lambda^{2}-C_{2}}+\frac{B_{3} \lambda^{2}}{\lambda^{2}-C_{3}}+\frac{B_{4} \lambda^{2}}{\lambda^{2}-C_{4}} \tag{13.3}
\end{equation*}
\]

Sellmeier 5:
\[
\begin{equation*}
n^{2}(\lambda)-1=\frac{B_{1} \lambda^{2}}{\lambda^{2}-C_{1}}+\frac{B_{2} \lambda^{2}}{\lambda^{2}-C_{2}}+\frac{B_{3} \lambda^{2}}{\lambda^{2}-C_{3}}+\frac{B_{4} \lambda^{2}}{\lambda^{2}-C_{4}}+\frac{B_{5} \lambda^{2}}{\lambda^{2}-C_{5}} \tag{13.4}
\end{equation*}
\]
where \(\lambda=\) wavelength in \(\mu \mathrm{m}\).

\subsection*{13.1.4 Reduced Sellmeier Formulas}

Sellmeier 2:
\[
\begin{equation*}
n^{2}(\lambda)-1=A+\frac{B_{1} \lambda^{2}}{\lambda^{2}-C_{1}}+\frac{B_{2}}{\lambda^{2}-C_{2}} \tag{13.5}
\end{equation*}
\]

Sellmeier 4:
\[
\begin{equation*}
n^{2}(\lambda)=A+\frac{B_{1} \lambda^{2}}{\lambda^{2}-C_{1}}+\frac{B_{2} \lambda^{2}}{\lambda^{2}-C_{2}} \tag{13.6}
\end{equation*}
\]
where \(\lambda=\) wavelength in \(\mu \mathrm{m}\).

\subsection*{13.1.5 Nikon Dispersion Formula}

This form is used by Nikon:
\[
\begin{equation*}
n^{2}(\lambda)=A_{0}+A_{1} \cdot \lambda^{2}+A_{2} \cdot \lambda^{4}+A_{3} \cdot \lambda^{-2}+A_{4} \cdot \lambda^{-4}+A_{5} \cdot \lambda^{-6}+A_{6} \cdot \lambda^{-8}+A_{7} \cdot \lambda^{-10}+A_{8} \cdot \lambda^{-12} \tag{13.7}
\end{equation*}
\]
where \(\lambda=\) wavelength in \(\mu \mathrm{m}\).

\subsection*{13.1.6 Herzberger Formula}

The Herzberger equation combines Sellmeier and power series terms. It was first developed for glasses and later applied to infrared crystalline materials.
\[
\begin{equation*}
n=A+\frac{B}{\left(\lambda^{2}-\lambda_{0}^{2}\right)}+\frac{C}{\left(\lambda^{2}-\lambda_{0}^{2}\right)^{2}}+D \lambda^{2}+E \lambda^{4}+F \lambda^{6} \tag{13.8}
\end{equation*}
\]
where the choice of the constant \(\lambda_{0}^{2}=0.028\) is arbitrary in that it is applied to all materials. The wavelength \(\lambda\) is given in \(\mu \mathrm{m}\).

\subsection*{13.1.7 Hartmann Formula}
\[
\begin{equation*}
n=A_{0}+\frac{A_{1}}{\left(A_{2}-\lambda\right)^{1.2}} \tag{13.9}
\end{equation*}
\]

The wavelength \(\lambda\) is given in \(\mu \mathrm{m}\).

\subsection*{13.1.8 Cauchy Formula}
\[
\begin{equation*}
n=A_{0}+\frac{A_{1}}{\lambda^{2}}+\frac{A_{2}}{\lambda^{4}} \tag{13.10}
\end{equation*}
\]

The wavelength \(\lambda\) is given in \(\mu \mathrm{m}\).

\subsection*{13.1.9 Conrady Formula}
\[
\begin{equation*}
n=n_{0}+\frac{A_{1}}{\lambda}+\frac{A_{2}}{\lambda^{3.5}} \tag{13.11}
\end{equation*}
\]

The wavelength \(\lambda\) is given in \(\mu \mathrm{m}\).

\subsection*{13.1.10 Handbook of Optics 1 Formula}
\[
\begin{equation*}
n^{2}=A_{0}+\frac{A_{1}}{\left(\lambda^{2}-A_{2}\right)}-A_{3} \lambda^{2} \tag{13.12}
\end{equation*}
\]

The wavelength \(\lambda\) is given in \(\mu \mathrm{m}\).

\subsection*{13.1.11 Handbook of Optics 2 Formula}
\[
\begin{equation*}
n^{2}=A_{0}+\frac{A_{1}+\lambda^{2}}{\left(\lambda^{2}-A_{2}\right)}-A_{3} \lambda^{2} \tag{13.13}
\end{equation*}
\]

The wavelength \(\lambda\) is given in \(\mu \mathrm{m}\).

\subsection*{13.1.12 Primary Dispersion}

The difference in the refractive indices at the wavelengths corresponding to the F and C lines referred to the wavelength at the d-line is called the primary dispersion. It is expressed by the Abbe number
\[
\begin{equation*}
\nu=\frac{n_{d}-1}{n_{F}-n_{C}} \tag{13.14}
\end{equation*}
\]
where \(n_{d}\) is the index of refraction at \(0.5876 \mu m, n_{F}\) is the index of refraction at \(0.4861 \mu m\) and \(n_{C}\) is the index of refraction at \(0.6563 \mu \mathrm{~m}\).

\subsection*{13.1.13 Partial Dispersion}

The partial dispersion is expressed as the ratio
\[
\begin{equation*}
P_{x, y}=\frac{n_{x}-n_{y}}{n_{F}-n_{C}} \tag{13.15}
\end{equation*}
\]
for two selected wavelengths \(x\) and \(y\). In \(O p T a l i X\), the two commonly used partial dispersions in the visible and near-infrared portion of the spectrum are
\[
\begin{equation*}
P_{g, F}=\frac{n_{g}-n_{F}}{n_{F}-n_{C}}, \quad P_{C, s}=\frac{n_{C}-n_{s}}{n_{F}-n_{C}} \tag{13.16}
\end{equation*}
\]

\section*{\(13.2 \mathrm{dn} / \mathrm{dT}\)}

The basic Schott model is used for the absolute index change from the index at standard temperature and pressure. It is given by
\[
\begin{equation*}
\frac{d n_{a b s}(\lambda, T)}{d T}=\frac{n^{2}\left(\lambda, T_{0}\right)-1}{2 \cdot n\left(\lambda, T_{0}\right)} \cdot\left(D_{0}+2 \cdot D_{1} \cdot \Delta T+3 \cdot D_{2} \cdot \Delta T^{2}+\frac{E_{0}+2 \cdot E_{1} \cdot \Delta T}{\lambda^{2}-\lambda_{T K}^{2}}\right) \tag{13.17}
\end{equation*}
\]
with:
\(T_{0}=\) Reference temperature \(\left(20^{\circ} \mathrm{C}\right)\)
\(T=\) Temperature (in \({ }^{\circ} \mathrm{C}\) )
\(\triangle T=\) Temperature difference versus \(T_{0}\)
\(\lambda \quad=\) Wavelength (in \(\mu \mathrm{m}\) ) in vacuum
\(\lambda_{T K}=\) average resonance wavelength (in \(\mu \mathrm{m}\) )
Note that some glass manufacturers only provide \(d n / d T\)-data at discrete points (wavelengths and/or temperatures). In such cases, the data is fitted according to Eq. 13.2 in order to give a continuous representation of \(d n / d T\). This may result in small (practically negligible) deviations from catalogue data in temperature calculations, when listing \(d n / d T\) (DNDT) data (see LIS DNDT command, page 177) or querying DNDT as lens database item (page 471).

\subsection*{13.3 Pre-defined Glass Catalogues}

Glasses from glass manufacturers are designated on surfaces by an alphanumeric code. This code (a character string) may contain the glass name as well as the manufacturer short code (a 3 character string). If both, manufacturer short code and glass name are provided, they are separated by a colon. The general syntax is:
\[
\text { gla si..j [manuf:]name An alphanumeric code, limited to } 64
\] characters, from a manufacturers catalogue is entered.

\section*{Examples:}
```

gla sl..3 BK7
gla s4 lak9
gla s2 sch:bk7

```

The manufacturers short codes are derived from the first 3 characters of the manufacturers name, which are given in table 13.2.

Table 13.2: Short codes of glass manufacturers
\begin{tabular}{|l|l|}
\hline & \\
Short Code & Glass Manufacturer \\
\hline SCH & Schott 2000 \\
SCO & Schott (old catalogue) \\
OHA & Ohara \\
& \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline HOY & Hoya \\
COR & Corning \\
SUM & Sumita \\
CAR & Cargille (liquids) \\
LPT & LightPath (Gradium glass) \\
GRT & GrinTech, Jena, gradient index glass \\
NSG & Nippon Sheet Glass Company \\
GLC & Gradient Lens Corp. \\
CHI & Chinese catalogue \\
ARC & Archer OpTx \\
SPE & Special Materials (Infrared, plastics, etc.) \\
\hline
\end{tabular}

Glass name and manufacturer short code are case insensitive, e.g. BK7 and bk7 are treated as identical glasses.

\subsection*{13.4 User-defined (external) Glass Catalogues}

OpTaliX provides the ability to convert external glass catalogues to a format which is used by OpTaliX. Currently the Zemax glass catalogues (extension .agf) can be converted to the OpTaliX format (extension .csv). The command to convert a glass catalogue is given in table 13.4:
\begin{tabular}{|l|l|}
\hline CONVAGF agf_filename csv_filename vendor_string \\
& \begin{tabular}{l} 
Converts a glass catalogue in Zemax AGF format to an OpTaliX CSV \\
format. If necessary, the full path information must be provided. In- \\
clude the file specification in apostrophes if it contains blank charac- \\
ters. The parameter vendor_string is a character string of min- \\
imum 3 characters and identifies the vendor (like SCH for Schott, \\
OHA for Ohara, etc.).
\end{tabular} \\
\hline CONVAGF ? & \begin{tabular}{l} 
As above, converts an AGF glass catalogue. The question mark "?" \\
invokes a dialog box for interactive editing of the file names.
\end{tabular} \\
\hline
\end{tabular}

Table 13.3: Commands for converting AGF glass catalogues.
The converted glass catalogue (in OpTaliX CSV format) must be stored in the directory of USER Glass Catalogues. This is by default C: \ProgramData \(\backslash\) OpTaliX \(\backslash g l a s s c a t \backslash\). This directory can only be redefined in the preferences, see section 3 .

Warning: Conversion of external glass catalogues can create conflicts with the built-in glass catalogues in OpTaliX and double entries of glass names may occur. To avoid this, the corresponding glass catalogue in OpTaliX can be deactivated. This can be accomplished in the main menue item Glass Manager \(-->\) Select Glass Catalogues, or by the command LOAD GCAT ?.

\section*{Example:}

Converts the Zemax glass catalogue apel.agf to an \(O p T a l i X\) glass catalogue apel.csv. The glass catalogue is denoted by the optional vendor string APEL.
convagf c:\temp\apel.agf c:\ProgramData\OpTaliX\glasscat\apel.csv APEL

\subsection*{13.5 Private Glasses}

In most cases, the refractive index is implicitly defined by specification of a glass name. The refractive index is then calculated from coefficients stored in the glass catalogues. Other than the glass name, there is no further user interaction required to obtain the correct index. In some cases, however, it is necessary to explicitly enter the refractive index for given wavelengths, for example when exact coefficients are not available or to enter data for materials that are not included with OpTaliX .
With private glasses you enter your own glass names and associated index data. Private glasses are part of the lens in memory and only apply to that lens. Private glass data will be stored with the prescription data.
Private glasses must not be confused with melt glasses as described in the glass manager section24.9, page 439. Melt glasses are also defined by wavelength/index pairs, however, they are stored in a separate glass catalogue file and are globally available within the \(O p T a l i X\) environment.
Private glasses only retain to the current lens. To make private glasses available for use with several lenses, create a sequence (.SEQ file) with the desired private glass commands for all the glasses to be included and execute this sequence with each lens. A private glass must be defined before it can be specified on a surface.
Definition of private glasses can be accomplished in three ways,
- by entering pairs of wavelength and index of refraction, or
- by Laurent dispersion coefficients, or
- by glass manufacturers Sellmeier dispersion coefficients.

\subsection*{13.5.1 Private Glass defined by Wavelength-Data Pairs}

All private glass data are enclosed by the PRV, END commands. The example below shows definition of a private glass (mybk7) using wavelength-index data pairs:
\begin{tabular}{lrrrrr} 
PRV & & & & \\
PWL & 0.435 & 0.479 & 0.547 & 0.587 & 0.656 \\
'myBK7' & 1.527 & 1.523 & 1.519 & 1.5168 & 1.514 \\
END & & & & &
\end{tabular}

\subsection*{13.5.2 Private Glass defined by Laurent Dispersion Coefficients}

Private glasses using Laurent coefficients are defined by entering the glass name, dispersion formula type and dispersion coefficients. The Laurent dispersion formula uses the LAU designator right to the glass name:
```

PRV
'myBK7' LAU A0 A1 A2 A3 A4 A5
END

```

The sequence of the LAU coefficients is according to equation 13.1.

\subsection*{13.5.3 Private Glass defined by Sellmeier Dispersion Coefficients}

The Sellmeier dispersion formula uses the GMS (glass manufacturers Sellmeier) designator right to the glass name:

PRV
'myBK7' GMS B1 C1 B2 C2 B3 C3
END

The sequence of the GMS coefficients is according to equation 13.2.

\subsection*{13.5.4 Private Glass defined by Hartmann Dispersion Coefficients}

The Hartmann dispersion formula uses the HAR designator right to the glass name:
```

PRV
'myBK7' HAR A0 A1 A2
END

```

The sequence of the HAR coefficients is according to equation 13.9.

\subsection*{13.5.5 Private Glass defined by Cauchy Dispersion Coefficients}

The Cauchy dispersion formula uses the CAU designator right to the glass name:
```

PRV
'myBK7' CAU A0 A1 A2
END

```

The sequence of the CAU coefficients is according to equation 13.10.
These command sequences may also be conveniently stored in a macro file and then executed by the RUN command. The wavelength/index pairs need not to be sorted for (ascending or descending) wavelength. Wavelength values should be specified in micrometers (the default in OpTaliX ), however, wavelengths in nanometer are also recognized to support compatibility with Code V syntax. Wavelength data \(>100\) are interpreted as nanometers ( nm ), otherwise micrometer \((\mu \mathrm{m})\) are assumed. Private glasses may be specified on surfaces like any other catalogue glass, except that the glass name must be enclosed in apostrophes. Example:
gla s2 'MYBK7'
Also note that names given to private glasses are case sensitive, i.e. 'MYBK7' and 'mybk7' are treated as two separate glasses.
\begin{tabular}{|c|c|}
\hline PRV & Start private glass entries. It accepts then PWL commands and 'glass_name' entries until terminated with and END command. Any other OpTaliX command can be used within the PRV ... END environment. See also the END command below. \\
\hline PWL wavel_1...wavel_20 & \begin{tabular}{l}
Enter wavelength (in \(\mu m\) ) for next refractive indices. This command is only required for wavelengthindex data pairs. Up to 20 wavelengths are accepted. Wavelength data may also be entered in nanometers (nm) for Code V compatibility. Values \(>100\) are interpreted as nanometers, otherwise in micrometers ( \(\mu m\) ). \\
Private wavelength data should at least span the wavelengths to be used in calculations, as defined in the system data, or by the WL command. Interpola-
\end{tabular} \\
\hline & thisPragese 25 ill be done, but accuracy is not assureQ.pTaliX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline 'glass_name' index_1...
index_20 & For wavelength-index data pairs, enter up to 20 indices for the user-defined 'glass_name' with index values corresponding in order and number to the prior PWL command. If 'glass_name' matches a catalogue glass, the catalogue glass always takes precedence, i.e. the private glass data will be ignored. \\
\hline \begin{tabular}{l}
'glass_name' \\
LAU|GMS|HAR|CAU coeff_1... coeff_6
\end{tabular} & For dispersion coefficients, enter up to 6 coefficients for the user-defined 'glass_name'. If 'glass_name' matches a catalogue glass, the catalogue glass always takes precedence, i.e. the private glass data will be ignored. \\
\hline END & Terminates entry of private glass data, started by PRV. \\
\hline IND sk [wk] & Returns index of refraction at surface sk and wavelength number wk in macros and lens database queries. Omission of wk returns the index at the reference wavelength. Note that IND may also be used for direct index specification (see obsolete commands below). \\
\hline \multicolumn{2}{|r|}{Obsolete commands:} \\
\hline ```
IND sk|si..j index_1...
index_11
``` & Directly specify indices for the wavelengths currently in use (see WL command) without an underlying dispersion model. That is, the indices entered on surface(s) sk|si..j must correspond to the system wavelengths. The obligatory glass name must be 'PRI' (without the apostrophes), see also next row. Although still available, use of this command is discouraged. Use the PRV - END construct as described in the commands above. The problem with direct index specification arises if wavelengths are changed (for example using the WL command [page 48] or the EDI CNF command [page 44] via the configuration dialog). In such cases the refractive index data assigned to the surfaces cannot be updated for glasses with direct index specification. It is therefore the users responsibility, to take care of this index to wavelength relation. \\
\hline GLA sk|si..j PRI & Defines a private glass with direct refractive index specification. The refractive indices must correspond to the system wavelengths and must be entered using the IND command. \\
\hline
\end{tabular}

\section*{General Notes on Private Glasses:}

Private glasses defined with the same name as an already existing private glass will change the data for the designated glass. Private glasses for which the glass name matches a catalogue glass, the catalogue glass always takes precedence, i.e the private glass data will be ignored.

Refracting indices for each system wavelength are fitted according to the old Schott formula (see Eq. 13.1).

\subsection*{13.6 Fictitious Glasses}

In contrast to the finite number of real glasses, fictitious glasses are defined in a continuous glass model, and in theory allow an infinite number of available glasses. The dispersion of fictitious glasses is defined internally, and is derived from the Abbe-number \(\nu\) and the partial dispersions \(P_{g, f}\) and \(P_{C, s}\). Fictitious glasses are defined by two parameter:
- the refractive index \(n_{d}\) at the wavelength \(\lambda=587.56 \mathrm{~nm}\),
- the Abbe-number, which is a measure of the refractive index change with wavelength (\(\lambda=\) 486.13 nm and \(\lambda=656.27 \mathrm{~nm}\)) (see also section 13.1.12).

Fictitious glasses are denoted by a string of numeric digits of the following forms:
\[
\begin{array}{lll}
& \mathrm{Xxx} \cdot \mathrm{YyY} & \text { where } \mathrm{Xxx}=n_{d}-1 \text { and } \mathrm{YYY}=10 \nu_{d} \\
\text { or: } & \mathrm{XxXyYy} & \text { where } \mathrm{Xxx}=n_{d}-1 \text { and } \mathrm{YYY}=10 \nu_{d}
\end{array}
\]

The six-digit representation is also known as MIL-number. The length of the string is limited to 10 characters. Fictitious glasses are identified by the decimal point (anywhere within the string) or by the first character, which is a numeric digit. Consequently, a decimal point or a numeric digit as the first character is not allowed in any other glass codes. Since fictitious glasses are generic, properties other than refractive index and dispersion are not available. The fictitious glass model is restricted to the "visible" wavelength region, i.e. between 400 nm and 700 nm . Extension to shorter and larger wavelengths is only possible with reduced accuracy.

\section*{Examples:}
\begin{tabular}{ll}
GLA s3 514.642 & \begin{tabular}{l}
Define fictitious glass at surface 3 with \(n_{d}=\) \\
\\
\\
GLA s3 514 and \(\nu_{d}=64.2\)
\end{tabular} \\
& \\
Define fictitious glass by entering the \\
SCHOTT code number (MIL-number)
\end{tabular}

\section*{Notes:}
- Fictitious (or MIL-number) glasses are an approximation to real glasses. According to its definition, fictitious glasses should only be used in the visible range. Outside the visible wavelength range (ultraviolet or infrared) the fictitious glass model is not accurate and should be avoided.
- Fictitious glasses may be automatically converted to the nearest (regular) catalogue glasses as described in section 12.4 on page 198.

\subsection*{13.7 Special Materials}
"Special" materials are all materials like plastic, crystals, liquids, semi-conductors etc. Also the Schott Glass filters are found in the special catalogue. The data used in the SPECIAL catalogue are from various literature sources and data sheets of material manufacturers. Many of the data provided are relatively inaccurate or were not measured at sufficiently small spectral intervals, respectively there are systematic differences among the literature sources. Apart from the measurement uncertainties, many of the data were taken at temperatures other than \(20^{\circ} \mathrm{C}\). This may cause incorrect results if a system is analyzed at \(20^{\circ} \mathrm{C}\) while the refractive index base is at another temperature. The user should be aware of it.

\subsection*{13.7.1 Infra-red Materials, Plastics}
\begin{tabular}{|c|c|c|c|}
\hline Material name & Spectral range (\(\mu \mathrm{m}\)) & Description & Reference \\
\hline AIR & 0.2-15 & Air & Kohlrauch [28], see also section 13.8 on page 234. \\
\hline AGCL & 0.5-14 & Silver Chloride & JOSA Vol.40, No.8, p. 540 \\
\hline AGCL_IR & 6.0-20.0 & Silver Chloride, infrared band & JOSA Vol.40, No.8, p. 540 \\
\hline ALON & 0.4-2.3 & Aluminum Oxynitride (ALON) Spinel & Handbook of Optics, Second Edition,Vol2, 1995 \\
\hline AMTIR1 & 7.0-12.0 & \(\mathrm{Ge}_{33} \mathrm{As}_{12} \mathrm{Se}_{55}\) & P.Klocek, Handbook of Infrared Optical Materials \\
\hline AMTIR1A & 1.5-12.0 & \(\mathrm{Ge}_{33} \mathrm{As}_{12} \mathrm{Se}_{55}\) & Amorphous Materials,
(www.amorphousmaterials.com) \\
\hline AQUEOUS & 0.36-1.1 & Ocular medium & Navarro et.al., JOSA A, Vol2., No.8, pp. 1274 \\
\hline AS2S3 & 1.0-9.0 & Arsenic Sulfide & Handbook of Optics, 1978 \\
\hline B270 & 0.36-1.06 & Desag float glass, superwhite & Desag data sheet \\
\hline BAF2 & 0.4-10.0 & Barium Fluoride & JOSA Vol.40, No.8, p. 540 \\
\hline BATIO3 & 0.4-0.7 & \begin{tabular}{l}
Barium \\
\(\left(\mathrm{BaTiO}_{3}\right)\)
\end{tabular} \(\quad\) Titanate & Handbook of Optics, Second Edition, Vol2, 1995 \\
\hline BGG & 0.4-5.5 & Barium Gallogermanate Glass & Appl. Opt., Vol.41, No.7, March 2002, pp. 1366 \\
\hline CAF2 & 0.42-5.0 & Calcium Fluoride & Appl.Optics, Vol.2, No.11, p. 1103 \\
\hline CAF2_IR & 3.0-9.0 & Calcium Fluoride, infrared band & Appl.Optics, Vol.2, No.11, p. 1103 \\
\hline CAF2_UV & 0.15-2.0 & Calcium Fluoride, ultraviolet band & Schott Lithotec datasheet \\
\hline CAF2_VIS & 0.365-1.06 & Calcium Fluoride, visible band, enhanced interpolation accuracy & Appl.Optics, Vol.2, No.11, p. 1103 \\
\hline CERAM-Z & 0.4-1.6 & Clearceram-Z & Zero-expansion \(\quad\) glass-ceramics,
Ohara data sheet \\
\hline \[
\begin{aligned}
& \text { CERAM- } \\
& \text { ZHS }
\end{aligned}
\] & 0.4-1.6 & Clearceram-Z HS & Zero-expansion glass-ceramics,
Ohara data sheet \\
\hline CDTE & 1.0-30.3 & Cadmium Telluride & Palik, Handbook of Optical Constants of Solids, Academic Press 1985 \\
\hline CLEARTRAM & 0.45-10.0 & "Cleartran" (water clear
ZnS) & Rohm \& Haas Advanced Materials data sheet (www.cvdmaterials.com) \\
\hline COR9754 & 0.42-5.2 & Germanate glass & Corning, France, data sheet \\
\hline CORNEA & 0.36-1.1 & Ocular medium & \[
\begin{aligned}
& \text { Navarro et.al., JOSA A, Vol2., } \\
& \text { No.8, pp. } 1274
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{continued on next page} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{continued from previous page} \\
\hline CSBR & 0.5-22.0 & Cesium Bromide & Journal of Research of the National Bureau of Standards, Vol. 51, No.3, 1953, p. 123 \\
\hline CSJ & 0.3-26.0 & Cesium Iodide & JOSA, Vol.45, No.11, p. 987 \\
\hline CSJ_IR & 9.0-40 & Cesium Iodide & JOSA, Vol.45, No.11, p. 987 \\
\hline DIAMOND & 0.3-20 & CVD-Diamond & Diamond Materials,
www.diamond-materials.com \\
\hline EYELENS & 0.36-1.1 & Ocular medium & Navarro et.al., JOSA A, Vol2.,
No.8, pp. 1274 \\
\hline GASIR1 & 2.0-14.0 & Ge22As20Se58 & Umicore technical data sheet \\
\hline GASIR2 & 2.0-14.0 & \multirow[t]{2}{*}{Germanium, poly-
crystalline} & Umicore technical data sheet \\
\hline \multicolumn{2}{|l|}{GERMANIUM 2.99-13.2} & & JOSA, Vol.48, Aug.1958, p.579, Salzberg \& Villa \\
\hline GE_POLY & 2.99-13.2 & Germanium, poly-
crystalline & JOSA, Vol.48, Aug.1958, p.579, Salzberg \& Villa \\
\hline GE_MONO & 2.9-22.0 & Germanium, mono crystalline & JOSA, Vol.48, Aug.1958, p.579, Salzberg \& Villa \\
\hline HERASIL & 0.22-2.3 & Fused quartz & Heraeus datasheet \\
\hline HOMOSIL & 0.22-2.3 & Fused quartz & Heraeus datasheet \\
\hline INFRASIL & 0.22-2.3 & Fused quartz & Heraeus datasheet \\
\hline IRG2 & 0.405-4.59 & Chalcogenide glass & Schott datasheet \\
\hline IRG3 & 0.656-4.59 & Chalcogenide glass & Schott datasheet \\
\hline IRG7 & 0.486-3.3 & Chalcogenide glass & Schott datasheet \\
\hline IRG9 & 0.404-3.3 & Chalcogenide glass & Schott datasheet \\
\hline IRGN6 & 0.486-3.3 & Chalcogenide glass & Schott datasheet \\
\hline IRG100 & 1.0-14.0 & Chalcogenide glass & Schott datasheet \\
\hline IRG11 & 0.58-4.59 & Chalcogenide glass & Schott datasheet \\
\hline IRTRAN1 & 1.1-6.2 & \(\mathrm{MgF}_{2}\) & P.Klocek, Handbook of Infrared Optical Materials \\
\hline KBR & 0.5-12.0 & Potassium Bromide & SPIE, Vol.400, p. 141 \\
\hline KCL & 0.5-12.0 & Potassium Chloride & SPIE, Vol.400, p. 141 \\
\hline KRS5 & 1.0-22.0 & Thallium Bromoiodide & JOSA, Vol.46, No.11, p. 956 \\
\hline LIF & 0.19-5.5 & Lithium Fluoride & The Infrared Handbook, IRIA, William L. Wolfe \\
\hline LIF_IR & 5.0-11.0 & Lithium Fluoride, IR-
band & Handbuch der Physik \\
\hline LIF_UV & 0.19-1.2 & Lithium Fluoride, UV-
band & Handbuch der Physik \\
\hline LUMICERA & 0.40-0.7 & Lumicera, transparent ceramics & Datasheet from Murata Manufacturing Co. Ltd., 4-4-1 HigashiOkino, Yokaichi city, Shiga 5278558, Japan. \\
\hline MACROLON & 0.36-1.06 & "Bayer" trade name & \\
\hline MGF2 & 0.2-7.0 & Magnesium Fluorite, ordinary index, wide spectral range, Sellmeier equation & Appl.Optics, Vol.23, No.12, p. 1980 \\
\hline \multicolumn{4}{|l|}{continued on next page} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{continued from previous page} \\
\hline MGF2_O & 2.2-7.0 & Magnesium Fluorite, ordinary index & Appl.Optics, Vol.23, No.12, p. 1980 \\
\hline MGF2_E & 2.2-7.0 & Magnesium Fluorite, extraordinary index & Appl.Optics, Vol.23, No.12, p. 1980 \\
\hline MGF2_VO & 0.2-3.0 & Magnesium Fluoride & Appl.Optics, Vol.23, No.12, p. 1980 \\
\hline MGO & 0.5-5.1 & Magnesium Oxide & E.D. Palik, Handbook of Optical Constants of Solids II \\
\hline MGO_IR & 2.5-5.55 & Magnesium Oxide & E.D. Palik, Handbook of Optical Constants of Solids II \\
\hline NACL & 0.5-12.0 & Natrium Chloride & \\
\hline NOA61 & 0.36-2.3 & Norland adhesive cement & Norland data sheet \\
\hline PBF2 & 0.4-10.0 & Lead Fluoride & \\
\hline PMMA & 0.36-1.06 & Polymethyl Methacrylate (Lucite, Plexiglass) & Photonics design and applications handbook, 1996 \\
\hline POLYCARB & 0.36-1.06 & Polycarbonate (Lexan, Merlon) & Germanow Simon Corp. datasheet \\
\hline QUARTZ & 0.2-3.5 & Fused quartz & equivalent to Suprasil, data from Heraeus datasheet \\
\hline QUARTZ_IR & 0.9-3.4 & Fused quartz & Heraeus datasheet \\
\hline SAPPHIRE & 0.27-5.4 & Sapphire & JOSA, Vol.52, No.12, p. 1377 \\
\hline SILICA & 0.2-3.5 & Fused quartz (Suprasil) & Heraeus datasheet \\
\hline SILICON & 2.43-11.2 & Silicon & Applied Optics, Vol.19, No.24, pp.4130, (1980), Salzberg \& Villa data. It appears that these data are also used in Code V. \\
\hline SILICON2 & 1.4-9.0 & Silicon & Eagle Pitcher data sheet \\
\hline SILICON3 & 1.5-12.0 & Silicon & H.H.Li, Refractive Index of Silicon and Germanium and its Wavelength and Temperature Derivatives, J.Phys.Chem. Ref.Data, Vol.9, No.3, 1980 \\
\hline STYRENE & 0.36-1.06 & Polystyrene (Dylene, Styron, Lustrex) & Germanow Simon Corp. datasheet \\
\hline SUPRASIL & 0.27-3.5 & fused quartz & Heraeus datasheet \\
\hline TGG & 0.38-1.6 & Terbium Gallium Garnet & U.Schlarb, B. Sugg, "Refractive Index of Terbium Gallium Garnet", physica status solidi (b) 182, K91 (1994) \\
\hline TOPAS5013 & 0.4-1.07 & Cyclic olefin copolymer (COC) & Ticona datasheet \\
\hline VACUUM & 0.2-1.1 & Vacuum & F.Kohlrauch, "Praktische Physik", 1968, Vol.1, p. 408 \\
\hline VITREOUS & 0.36-1.1 & Ocular medium & Navarro et.al., JOSA A, Vol2., No.8, pp. 1274 \\
\hline WATER & 0.38-0.72 & Water & \\
\hline WATER2 & 0.40-0.80 & Water with dn/dt data & R.C.Millard, G.Seaver [38] \\
\hline SEAWATER & 0.40-0.80 & Seawater with dn/dt data & R.C.Millard, G.Seaver [38] \\
\hline & & & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|lc|l|l|}
\hline \multicolumn{4}{|l|}{ continued from previous page } \\
\hline ZEONEX330R & \(0.36-0.80\) & Cyclo Olefin Polymer & Zeon-Europe \\
\hline ZEONEXE48R & \(0.36-1.7\) & Cyclo Olefin Polymer & Zeon-Europe \\
\hline ZEONEX480R & \(0.40-1.0\) & Cyclo Olefin Polymer & Zeon-Europe \\
\hline ZERODUR & \(0.4-0.7\) & Zerodur & \begin{tabular}{l}
Schott datasheet, and Schott TIE-43 \\
"Optical properties of Zerodur"
\end{tabular} \\
\hline ZNS & \(0.4-0.8\) & \begin{tabular}{l}
Zink Sulphide, visible and \\
medium infrared (Trade \\
name:Cleartran)
\end{tabular} & Morton datasheet \\
\hline ZNS_IR & \(3.0-12.0\) & Zink Sulphide, infrared & Morton datasheet \\
\hline ZNS_M & \(0.4-8.0\) & \begin{tabular}{l}
Zink Sulphide, multispec- \\
tral
\end{tabular} & Morton datasheet \\
\hline ZNS_M_IR & \(3.0-12.0\) & \begin{tabular}{l}
Zink Sulphide, multispec- \\
tral
\end{tabular} & Morton datasheet \\
\hline ZNSE & \(0.54-10.2\) & Zink Selenide & Morton datasheet \\
\hline ZNSE_IR & \(7.8-18.2\) & Zink Selenide, infrared & Morton datasheet \\
\hline
\end{tabular}

\subsection*{13.7.2 Schott Filter Glasses}
\begin{tabular}{|c|l|l|l|c|c|c|c|c|c|}
\hline BG3 & FG03 & GG385 & KG01 & NG01 & OG515 & RG09 & UG01 & VG06 & WG225 \\
BG4 & FG13 & GG395 & KG02 & NG03 & OG530 & RG610 & UG05 & VG09 & WG280 \\
BG7 & & GG400 & KG03 & NG04 & OG550 & RG630 & UG11 & VG14 & WG295 \\
BG12 & & GG420 & KG04 & NG05 & OG570 & RG645 & & & WG305 \\
BG18 & & GG435 & KG05 & NG09 & OG590 & RG665 & & & WG320 \\
BG20 & & GG455 & & NG10 & & RG695 & & & \\
BG23 & & GG475 & & NG11 & & RG715 & & & \\
BG24 & & GG495 & & NG12 & & RG780 & & & \\
BG25 & & & & & & RG830 & & & \\
BG26 & & & & & & RG850 & & & \\
BG28 & & & & & & RG1000 & & & \\
BG34 & & & & & & & & & \\
BG36 & & & & & & & & & \\
BG38 & & & & & & & & & \\
BG39 & & & & & & & & & \\
BG40 & & & & & & & & & \\
BG42 & & & & & & & & \\
\hline
\end{tabular}

\subsection*{13.7.3 Schott Radiation Resistant Glasses}

The impact of high energy photon- and particle radiation reduces the spectral transmission of optical glasses. For example, this effect can already be observed at Gamma radiation of \(10^{3} \mathrm{rad}(1.25 \mathrm{MeV})\) as a browning of the glass. The intensity of this change in colour is not only a function of the type of radiation and its dose, it also depends on the energy of the ionizing radiation.
Doping glasses with \(\mathrm{CeO}_{2}\) stabilizes them against colouring. Typically, the threshold at which colouring begins is raised to about \(10^{6} \mathrm{rad}\), at the expense of a reduced transmission in the blue.
The glass name of \(\mathrm{CeO}_{2}\) doped glasses is appended with the letter " G " and a 2-digit number, indicating the amount of cerium oxide. For example, BaK1 G12 corresponds to \(1.2 \%\) cerium oxide.
Available radiation resistant glasses from Schott:
\begin{tabular}{lll}
BK7G18 & SSK5G06 & BK7G25 \\
LAK9G15 & K5G20 & LF5G15 \\
BAK1G12 & F2G12 & SK4G13 \\
SF5G10 & SK5G06 & SF6G05 \\
SK10G10 & SF8G07 & KZFS4G20 \\
GG375G34 & &
\end{tabular}

\subsection*{13.7.4 Gradient Index (GRIN) Glasses}

The glass catalogues store gradient index materials with radial and axial index profile from Nippon Sheet Glass (NSG), Gradient Lens Corporation (GLC) and LightPath (LPT). The following materials are available:
\begin{tabular}{c|l|l|c|l|l|l}
Manufacturer & Code & Name & \(z_{\max }\) & \(\mathrm{n}(587 \mathrm{~nm})\) & Profile & Remarks/Product Code \\
\hline LightPath & LPT & G14SFN & 5.800 & 1.8049 & axial & \\
LightPath & LPT & G14SFP & 5.800 & 1.6489 & axial & \\
LightPath & LPT & G22SFN & 9.100 & 1.7860 & axial & \\
LightPath & LPT & G22SFP & 9.100 & 1.6569 & axial & \\
LightPath & LPT & G23SFN & 9.400 & 1.7758 & axial & \\
LightPath & LPT & G23SFP & 9.400 & 1.6561 & axial & \\
LightPath & LPT & G32SFN & 12.100 & 1.7666 & axial & \\
LightPath & LPT & G32SFP & 12.100 & 1.6731 & axial & \\
LightPath & LPT & G41SFN & 12.10 & 1.7443 & axial & \\
LightPath & LPT & G41SFP & 12.10 & 1.6961 & axial & \\
LightPath & LPT & G51SFN & 14.800 & 1.7446 & axial & \\
LightPath & LPT & G51SFP & 14.800 & 1.6982 & axial & \\
LightPath & LPT & G4LAKN & 13.931 & 1.7384 & axial & \\
LightPath & LPT & G4LAKP & 13.931 & 1.6726 & axial & \\
\hline NSG & SEL & SLN20 & - & 1.5845 & radial & \\
NSG & SEL & SLS10 & - & 1.5477 & radial & \\
NSG & SEL & SLS20 & - & 1.5477 & radial & \\
NSG & SEL & SLW10 & - & 1.5868 & radial & \\
NSG & SEL & SLW18 & - & 1.5868 & radial & \\
NSG & SEL & SLW20 & - & 1.5868 & radial & \\
NSG & SEL & SLW30 & - & 1.5868 & radial & \\
NSG & SEL & SLH18 & - & 1.6294 & radial & \\
NSG & SEL & SLA06 & - & 1.5238 & radial & \\
NSG & SEL & SLA09 & - & 1.5845 & radial & \\
NSG & SEL & SLA12 & - & 1.5930 & radial & \\
NSG & SEL & SLA06A & - & 1.5238 & radial & \\
NSG & SEL & SLA09A & - & 1.5845 & radial & \\
NSG & SEL & SLA12A & - & 1.5900 & radial & \\
NSG & SEL & SLA20A & - & 1.6098 & radial & \\
\hline Gradient Lens & GLC & EG10 & - & 1.5204 & radial & \\
Gradient Lens & GLC & EG20 & - & 1.5204 & radial & \\
Gradient Lens & GLC & EG27 & - & 1.5204 & radial & \\
Gradient Lens & GLC & EG31 & - & 1.5204 & radial & \\
\hline
\end{tabular}
continued on next page
continued from previous page
GrinTech rods: The GrinTech product code is represented in a short form. The number in the 'GT050', 'GT100', or 'GT180' strings denotes the focal length (e.g. \(050=0.5 \mathrm{~mm}\) focal length), whereas the appendix denotes the intended wavelength: \(06=670 \mathrm{~nm}, 08=810 \mathrm{~nm}, 13=1310 \mathrm{~nm}, 15=1550 \mathrm{~nm}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Grintech & GRT & GT050-06 & - & 1.62885 & radial & GT-LFRL-050-025-50-CC (670nm) \\
\hline Grintech & GRT & GT100-06 & - & 1.62885 & radial & GT-LFRL-100-025-50-CC (670nm) \\
\hline Grintech & GRT & GT180-06 & - & 1.62885 & radial & GT-LFRL-180-025-50-CC (670nm) \\
\hline Grintech & GRT & GT050-08 & - & 1.623 & radial & as above, at 810 nm \\
\hline Grintech & GRT & GT100-08 & - & 1.623 & radial & as above, at 810 nm \\
\hline Grintech & GRT & GT180-08 & - & 1.623 & radial & as above, at 810 nm \\
\hline Grintech & GRT & GT050-13 & - & 1.616 & radial & as above, at 1310 nm \\
\hline Grintech & GRT & GT100-13 & - & 1.616 & radial & as above, at 1310 nm \\
\hline Grintech & GRT & GT180-13 & - & 1.616 & radial & as above, at 1310 nm \\
\hline Grintech & GRT & GT050-15 & - & 1.615 & radial & as above, at 1550 nm \\
\hline Grintech & GRT & GT100-15 & - & 1.615 & radial & as above, at 1550 nm \\
\hline Grintech & GRT & GT180-15 & - & 1.615 & radial & as above, at 1550 nm \\
\hline Grintech & GRT & GT100 & - & 1.530 & radial & \\
\hline Grintech & GRT & GT180 & - & 1.530 & radial & \\
\hline Grintech & GRC & GC050-06 & - & 1.524 & cyl. & GT-LFCL-050-024-20 (670nm) \\
\hline Grintech & GRC & GC100-06 & - & 1.524 & cyl. & GT-LFCL-100-024-20 (670nm) \\
\hline Grintech & GRC & GC130-06 & - & 1.524 & cyl. & GT-LFCL-130-024-20 (670nm) \\
\hline Grintech & GRC & GC050-08 & - & 1.624 & cyl. & GT-LFCL-050-024-50-CC (810) \\
\hline Grintech & GRC & GC100-08 & - & 1.624 & cyl. & GT-LFCL-100-024-50-CC (810) \\
\hline Grintech & GRC & GC130-08 & - & 1.624 & cyl. & GT-LFCL-130-024-50-CC (810) \\
\hline Grintech & GRC & GC050-09 & - & 1.621 & cyl. & GT-LFCL-050-024-50-CC (940) \\
\hline Grintech & GRC & GC100-09 & - & 1.621 & cyl. & GT-LFCL-050-024-50-CC (940) \\
\hline Grintech & GRC & GC130-09 & - & 1.621 & cyl. & GT-LFCL-050-024-50-CC (940) \\
\hline
\end{tabular}

\subsection*{13.7.5 Liquids and Gels}

A few specialty optical liquids from Cargille Laboratories Inc.[8] are stored in the glass database. They are grouped according to intended application as recommended by the manufacturer:

Immersion : Immersion liquids permit detection of imperfection in transparent and translucent materials and examination for stress and strain effects.
Laser : High transmission and highly stable liquids for laser wavelengths.
EC-Series : High refractive index, abnormal dispersion liquids. Low stability.
E, H, M-Series : Ultra-high refractive index, toxic and corrosive.
Matched : Matches precisely the refractive index of fused silica and closely approximates its dispersion.
Gel : Optical couplant gel for optical fibers to reduce or eliminate internal reflections or for mode stripping.
\begin{tabular}{c|c|c}
Name & Application & \(n_{D}(589.3 \mathrm{~nm})\) at \(20.0^{\circ} \mathrm{C}\) \\
\hline CG1050_1 & Immersion & 1.400 \\
CG1050_2 & Immersion & 1.425 \\
& &
\end{tabular}
\begin{tabular}{l|l}
\multicolumn{3}{l}{ continued from previous page } \\
CG1050_3 & Immersion
\end{tabular}\(|\)\begin{tabular}{l}
\\
CG5040_4
\end{tabular} Immersion \(\quad 1.458\)

It is important to note that the index of refraction of liquids is highly dependent on temperature. Typically, the \(d n / d T\) values of liquids are about a factor of 100 larger than those of optical glasses. The dispersion coefficients stored in the glass catalogue are always based on \(25.0^{\circ} \mathrm{C}\).

\subsection*{13.8 Air, Vacuum}

There are two predefined optical "materials", air and vacuum. Physically, the refractive index of air is \(n_{\text {air }}=1.000273\) at normal temperature \(\left(20^{\circ} \mathrm{C}\right)\) and normal pressure \(\left(0.101325 \cdot 10^{6}\right.\) Pascal). According to standard practice, however, the index of air is regarded to be 1.0 , rather than its true value. This approach is justified because the vast majority of optical systems are designed and used under normal atmospheric conditions (sea level). In addition, all standard glass catalogues have indices expressed relative to 1.0 . Only very few (specialized) designs are used in vacuum. Thus, when entering the medium "air", the refractive index is uniformly set to 1.000 for all specified wavelength. The index of air is altered by temperature and pressure in accordance with standard physical models. A good approximation, which also accounts for the wavelength dependence, is [8, 48]
\[
\begin{gather*}
n_{\text {Air }}(\lambda, T, p)=1+\frac{n_{\text {Air }}\left(\lambda, 15 C, p_{0}\right)-1}{1+3.4785 \cdot 10^{-3} \cdot(T-15)} \cdot \frac{p}{p_{0}} \tag{13.18}\\
n_{\text {Air }}\left(\lambda, 15 C, p_{0}\right)=1+\left\{6432.8+\frac{2949810 \cdot \lambda^{2}}{146 \cdot \lambda^{2}-1}+\frac{25540 \cdot \lambda^{2}}{41 \cdot \lambda^{2}-1}\right\} \cdot 10^{-8} \tag{13.19}
\end{gather*}
\]
with
\[
\begin{aligned}
& p_{0}=0.101325 \cdot 10^{6} \mathrm{~Pa}(=\text { normal pressure in Pascal) } \\
& p=\text { Pressure of air in Pascal } \\
& \lambda=\text { Wavelength in } \mu m \text { in vacuum } \\
& T=\text { Temperature in }{ }^{\circ} \mathrm{C}
\end{aligned}
\]

The temperature dependance of the index of air is given by [48]
\[
\begin{equation*}
\frac{d n_{A i r}(\lambda, T)}{d T}=-0.00367 \cdot \frac{n_{A i r}(\lambda, T, p)-1}{1+0.00367 \cdot T} \tag{13.20}
\end{equation*}
\]

\subsection*{13.9 Index and Dispersion Offsets}

Offsets on refractive index and dispersion may be applied to predefined catalogue materials and fictitious materials. They are entered by the DNO and DVO commands:
\begin{tabular}{|l|l|}
\hline DNO delta_ind & Index of refraction offset. \\
\hline DVO delta_nue & \begin{tabular}{l}
Dispersion offset. The value delta_nue refers to the Abbe-number \\
\(\nu_{d}\) (also called V-number) given in absolute values. Example: The \(\nu_{d}\) \\
value of Schott BK7 is 64.17. A dispersion offset DVO 3.0 results \\
in a new dispersion \(\nu_{d}=67.17\). For special materials (e.g. infrared \\
materials), the actual synthetic \(\nu\)-value should be considered when \\
specifying DVO. See also the options on fictitious glass models below.
\end{tabular} \\
\hline DVOM 1|2 & \begin{tabular}{l}
Defines the model for calculating dispersion offsets used by the DVO \\
command. Examples: \\
DVOM 1 : Dispersion offsets are exactly calculated according to
\end{tabular} \\
the Abbe normal line as defined in the partial dispersion glass dia- \\
gram (see sect. 24.3, or command NFNC). Anomalous dispersion of \\
glasses, if present, are ignored. \\
DVOM 2 : Anomalous dispersion characteristics of special glasses \\
is maintained when applying DVO dispersion offsets.
\end{tabular}

DNO and DVO commands should be applied with great care, since the \(n\) and \(\nu\)-offsets are based on standard MIL-glasses (i.e. conform to the so-called ABBE line in the Schott glass diagram). They normally do not take the anomalous dispersion properties of many glasses into account. In addition, DNO and DVO may be used as variables during optimization, to let index and dispersion vary.
Named catalogue glasses that have DNO and DVO offsets assigned are indicated in the surface editor by red colour. In the surface listing (LIS) an asterisk is appended to the glass name. An example is given in Fig. 13.1 and in the listing below.

Figure 13.1: Glasses with DNO, DVO offsets are indicated by red colour.

\subsection*{13.10 Partial Dispersion Offsets}

Partial dispersion offsets allow the simulation of anomalous dispersion properties of a real or fictitious glass. Since the values to be entered are offsets, PGO and PCO refer to
- the actual partial dispersions in case of a real glass (i.e. a glass from the catalogue)
- the Abbe normal line in case of a fictitious glass.

It should be noted that the partial dispersion offsets are not applicable to gradient index (GRIN) glasses.
Command syntax:
\begin{tabular}{|l|l|}
\hline PGO delta_P \((\mathrm{g}, \mathrm{F})\) & \begin{tabular}{l}
Offset of partial dispersion \(P_{(g, F)}\) from the nominal (catalogue) value, \\
in case of fictitious glasses, from the Abbe normal line.
\end{tabular} \\
\hline PCO delta_P (C,s) & \begin{tabular}{l}
Offset of partial dispersion \(P_{(C, s)}\) from the nominal (catalogue) value, \\
in case of fictitious glasses, from the Abbe normal line.
\end{tabular} \\
\hline
\end{tabular}

\section*{14}

\section*{Image Evaluation}

\subsection*{14.1 Geometrical Analysis}

\subsection*{14.1.1 Paraxial Analysis}

A standard collection of paraxial quantities is given in the prescription listing (seeLIS command, page 177). These quantities refer to the entire system as indicated in Fig. 14.1. In addition, paraxial quantities may be obtained by specifying surface ranges (si..j) or zoom ranges (zi..j), as described in the table below.
\begin{tabular}{|c|c|}
\hline FIR & Evaluate first order properties, such as focal length, magnification, etc. \\
\hline ```
EFL [si..j | wi..j |
zi..j]
``` & \begin{tabular}{l}
Retrieve the equivalent focal length for a range of surfaces or zoom positions. Without parameters, the EFL of the entire system is returned for all surfaces (s1..i), at the reference wavelength, for all zoom positions. \\
Examples:
\end{tabular} \\
\hline BFL [wk|wi..j zi..j] & Back focal length (distance from last surface to image plane) at used conjugate. Options are for wavelength numbers i to \(j\) and zoom positions \(i\) to \(j\). If a wavelength qualifier ( wk ) is omitted, BFL is returned at the reference wavelength. \\
\hline SEP [zi..j] & Evaluates the location of entrance pupil referred to first surface (not yet implemented) \\
\hline SAP [zi..j] & Evaluates the location of exit pupil referred to last surface. Optional at zoom positions zi..j \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline SAPI [zi..j] & Evaluates the reciprocal value of the location of exit pupil, referred to the last surface. That is, SAPI \(=1 /\) SAP. This function is particularly useful in optimization where the location of the exit pupil approaches infinity and the SAP function would be discontinuous. Zoom positions zi. . j are optional. \\
\hline PRD [zi..j] & Evaluates the pupil relay distance, that is the axial distance between the entrance and exit pupil. Optional at zoom positions zi..j \\
\hline PRDI [zi..j] & Evaluates the reciprocal of the pupil relay distance, that is PRDI \(=1 /\) PRD. This function is particularly useful in optimization where the distance between entrance and exit pupil approaches infinity and the PRD function would be discontinuous. \\
\hline OAL si..j zi..j & Overall length: Center thickness between surfaces si..j at zoom positions \(\mathrm{zi} . . j\). If no parameters are given, the default setting for OAL is first surface to image for infinite objects, respectively object to image plane distance for finite objects. \\
\hline OBD & Object distance. It is the separation from the object surface to the first surface in the system. \\
\hline SYL si..j & Evaluate system length (= sum of thicknesses) for surface range si..j. If no surface range is specified, first surface to last surface (excluding object and image) will be assumed. \\
\hline OID [si..j] & Axial distance from object surface to image surface. If a surface range ( \(\mathrm{si} . . \mathrm{j}\) ) is specified, the axial distance between surfaces si. . j is calculated. For objects at infinity, first surface to image surface is assumed. Note: The previously used command OOS is obsolete but retained for backwards compatibility. \\
\hline SH1 [si..j] [zi..j] & Evaluates the location of the first (front) principal plane with respect to the first surface specified by si..j. If si..j is omitted, the first principal plane of the entire system is calculated. \\
\hline SH2 [si..j] [zi..j] & Evaluates the location of the second (rear) principal plane with respect to the last surface specified by si..j. If si..j is omitted, the second (rear) principal plane of the entire system is calculated. \\
\hline \multicolumn{2}{|r|}{Related Commands} \\
\hline UMY si..j zi..j & Paraxial direction angle of the marginal aperture ray (see page 106). \\
\hline HMY si..j zi..j & Paraxial height of the marginal aperture ray (see page 106). \\
\hline UCY si..j zi..j & Paraxial direction angle of the chief ray. See page 106. \\
\hline HCY si..j zi..j & Paraxial height of the chief ray. See page 106. \\
\hline
\end{tabular}

\subsection*{14.1.2 Single Ray Tracing}

Tracing a single ray through a system is accomplished by the following commands:
```

sin [si..j | gk | wi..j | zi..j | fi..j] ape_absX ape_absY
or

```


Figure 14.1: Definition of system data
rsi [ si..j | gk | wi..j | zi..j | fi..j ] ape_relX ape_rely
'sin' traces a single ray given absolute coordinates in the system entrance pupil, whereas 'rsi' traces a single ray based on relative coordinates in the system entrance pupil.

The optional parameter are the designated zoom positions, wavelength, field, surface range and aperture. The ray coordinates at each surface are relative to the local coordinate system of each surface (i.e. the surface vertex).

Specifying a global reference surface gk outputs the ray coordinates with respect to the coordinate system at gk. If global coordinates (see GLO command on page 181) are activated, the ray coordinates are relative to the coordinate system of the surface specified by the GLO-command.

\section*{Notes on global coordinates output:}

The GLO sk command is a permanent command. Once GLO sk is specified, ALL ray coordinates are referred to surface sk any time. Specify GLO N to disable global coordinates output. In contrast, in rsi gk commands (or sin gk commands), global output is active only for this particular command, irrespectively of GLO \(\mathrm{Y}|\mathrm{N}|\) sk settings.

Pupil coordinate definitions:
ape_relX X-entrance pupil coordinate, a fraction of pupil X-radius. Values are between -1 and +1 ape_rely Y-entrance pupil coordinate, a fraction of pupil Y-radius. Values are between -1 and +1 ape_absX X-entrance pupil coordinate, absolute pupil coordinate. Values are absolute in mm .
ape_absY Y-entrance pupil coordinate, absolute pupil coordinate. Values are absolute in mm .

\section*{Examples:}
```

rsi f1 w1 g3 0 1
rsi fl wl 0 1
sin f1 w1 O 15
rim ray at field 1 , wavelength 1 , global ray coordinates referred to surface 3
rim ray at field 1 , wavelength 1 , ray coordinates referred to local surface coordinates
rim ray at absolute entrance pupil coordinates $(X / Y=0 / 15)$ at field 1 , wavelength 1 , ray coordinates referred to local surface coordinates

```

\subsection*{14.1.3 Ray Aiming}
```

aim si [wi..j | zi..j | fi..j] ape_relX ape_relY

```

Aims a ray to a specific (relative) aperture coordinate at a given surface si and at the designated zoom positions, wavelengths, and fields. The ray coordinates at each surface are relative to each surface's local coordinate system. If global coordinates (seeGLO command on page 181) are activated, the ray coordinates are relative to the coordinate system of the surface specified by the GLO-command.

\subsection*{14.1.4 Single Ray Longitudinal Aberration}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
LAX [ wi..j \\
ape_relX ape_rely
\end{tabular} & zi...j] & \begin{tabular}{l} 
Computes the longitudinal aberration in the X- \\
plane (sagittal) for a single ray. The aberration \\
is always referred to the image surface.
\end{tabular} \\
\hline \begin{tabular}{l} 
LAY [ wi..j \\
ape_relX ape_rely
\end{tabular} & \begin{tabular}{l} 
Computes the longitudinal aberration in the Y- \\
plane /tangential) for a single ray. The aberration \\
is always referred to the image surface.
\end{tabular} \\
\hline
\end{tabular}

\section*{Note:}

The longitudinal aberration is defined 'along' the optical axis. For ape relX \(=0\) and ape relY \(=0\), i.e. a ray going through the center of the aperture, LAX and LAY correspond to the sagittal and tangential astigmatism for the given fields and wavelengths.

\subsection*{14.1.5 Fan Aberration Curves (RIM Rays)}

Fan rays are traced in either tangential or sagittal direction across the pupil. The aberrations may be plotted as transverse or longitudinal aberrations or as optical path difference.
\begin{tabular}{|l|l|l|}
\hline FAN [scale \(\mid\) ?] & \begin{tabular}{l} 
Transverse ray aberration fan. The optional parameter \\
"scale" sets the aberration scaling for plotting. If not pro- \\
vided, the previous scaling value will be used. "?" invokes a \\
dialog box to enter the plot scale.
\end{tabular} \\
\hline RIM [scale | ?] & \begin{tabular}{l} 
as above, only implemented as compatibility mode with CODE \\
V.
\end{tabular} \\
\hline FANL [scale \(\mid\) ?] & \begin{tabular}{l} 
Longitudinal ray aberration fan. The optional parameter \\
"scale" sets the aberration scaling for plotting. If not pro- \\
vided, the previous scaling value will be used. "?" invokes a \\
dialog box to enter the plot scale.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline OPDFAN [scale | ? ] & \begin{tabular}{l} 
Optical Path Difference (OPD). The aberrations are given in \\
fractions of the reference wavelength (wave units). The op- \\
tional parameter "scale" sets the aberration scaling for plot- \\
ting. If not provided, the previous scaling value will be used. \\
"?" invokes a dialog box to enter the plot scale.
\end{tabular} \\
\hline
\end{tabular}

The aperture axis in fan aberration plots, i.e. the axis representing the relative aperture coordinates, may be either plotted horizontal or vertical, depending on a users preference. This behaviour can be set in the program preferences (see page 3.2) by selecting from the main menu File \(-->\) Preferences and then checking/unchecking 'Align ray fan curves horizontally' in the operations tab.

\subsection*{14.1.6 Spot Diagrams}

A spot diagram collects the transverse aberrations in the image plane resulting from tracing a rectangular grid of rays (emerging from a single object point) through the system. Diffraction is ignored. The number of rays traced is approximately proportional to the square of the size of the rectangular grid in the entrance pupil as defined by theNRD command (see page 52). Increasing NRD will increase the accuracy of the spots but will also increase the computation time.
Spot diagrams may be displayed as a function of field, wavelength or zoom position. Note the optional parameter "?", which invokes a dialog box to modify the plot scale, i.e. the scale in which the aberrations are displayed. Alternatively, the plot scale may be specified explicitly as an additional parameter, which is useful in macro sequences.
\begin{tabular}{|c|c|}
\hline ```
SPO [plot_scale]
SPO FLD [?] [plot_scale]
``` & Spot diagram vs. field. This is the default. \\
\hline \[
\begin{aligned}
& \text { SPO LAM [?] } \\
& \text { [plot_scale] }
\end{aligned}
\] & Spot diagram vs. wavelength (colour) \\
\hline SPO THF [?] |
[plot_scale] [def_range] & Through Focus Spot diagram. plot_scale is the size of the aberration box in the plot and def_range is the \(\pm\) defocus range along the optical axis. \\
\hline \[
\begin{aligned}
& \hline \text { SPO RIS [?] } \\
& \text { [plot_scale] }
\end{aligned}
\] & Plots ray intersection points on a surface. See also section 14.1.8. \\
\hline SPO ZOO [?] [plot_scale] & Spot diagram vs. zoom position \\
\hline ```
SPO FF [?] | [plot_scale]
[num_fields]
``` & \begin{tabular}{l}
Array of spot diagrams extending over the full field, where plot_scale is the aberration scale of the spots, num_fields is the number of field points in X-and Ydirection \((\) default \(=3)\) \\
Example: \\
spo ff 0.025 ! Plots a \(5 \times 5\) array of spots, scale is 0.02 mm
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SPR [fi..j, wi..j, zi..j] } \\
& \text { SPD [fi..j, wi..j, zi..j] }
\end{aligned}
\] & Evaluates rms-spot radius (SPR) respectively rms-spot diameter at fields fi..j, wavelengths wi..j and zoom positions zi..j. Results are given numerically. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline \[
\begin{aligned}
& \text { SPR FLD [plot_scale ] | } \\
& \text { [?] }
\end{aligned}
\] & Plots rms-spot diameter versus field. In case of zoomed systems, the currently selected zoom position (see POS command) is used. The maximum of the field definition is used. The question mark "?" invokes a dialog box for entering plot scale, settings of X-or Y-field and reference to chief ray or spot gravity center. \\
\hline \[
\begin{aligned}
& \text { SPR LAM plot_scale [fi..j] } \\
& \text { | [?] }
\end{aligned}
\] & Plots rms-spot diameter versus wavelength ( LAM holds for \(\lambda\) ) at fields \(£ i . . j\). In case of zoomed systems, the currently selected zoom position (see POS command) is used. The wavelength range is defined by the minimum and maximum wavelengths used (see WL command). The question mark "?" allows setting of X-or Y-field and reference to chief ray or spot gravity center. Implemented in future release! \\
\hline SPO [fi..j | wi..j | zi..j] FILE file_name & \begin{tabular}{l}
Write spot aberrations to an ASCII file. No graphic output is generated. The qualifier 'FILE' is mandatory. If file_name is omitted, the user will be asked for a file name. Note that there is no default extension for the file name. The spot aberrations are written in a fixed format with the following columns: \\
pos field colour X -abe Y -abe \\
where \\
pos \(=\) zoom position number (integer), \\
field \(=\) field number (integer), \\
colour \(=\) wavelength number (integer), \\
X -abe \(=\mathrm{X}\)-aberration relative to chief ray, \\
Y -abe \(=\mathrm{Y}\)-aberration relative to chief ray.
\end{tabular} \\
\hline SPMS marker_size & Temporarily adjusts the size of markers used in spot diagrams. Marker size is defined in plot units (in mm) referred to the size of a standard A4 paper. The default spot marker size is 0.5 mm . The spot marker size is predefined in the preferences section, miscellaneous tab. \\
\hline IFO incr_in_focus & Increment in focus position \\
\hline
\end{tabular}

\subsection*{14.1.7 Spot Gravity Center}

This option calculates the gravity center of the geometrical spot for all fields and wavelengths defined in the optical system.
\begin{tabular}{|ll|l|}
\hline XGR & {\([f i \ldots j\) wi..j] } \\
YGR & {\([f i \ldots j\) wi..j] }
\end{tabular}\(\quad\)\begin{tabular}{l} 
Calculates the X-and Y-coordinates of the spot gravity center \\
on the image surface. Although XGR and YGR are functionally \\
identical for reporting the image centroid, a distinction between \\
X- and Y-coordinate is required when used in optimization, \\
user defined graphics or tolerancing. This analysis includes the \\
effects of wavelength weights (see WTW command, page 49).
\end{tabular}

\section*{Example command:}
```

ygr f3

```
gives the following output in the "Text Window":
\begin{tabular}{rrrrrrr} 
Field & Wavel. & Rel.Wgt & X-Grav. & Y-Grav. & rel.Grav-X & rel.Grav-Y \\
3 & 0.54600 & 1.00 & 0.000000 & 18.147916 & 0.000000 & -0.002189 \\
3 & 0.45000 & 1.00 & 0.000000 & 18.141295 & 0.000000 & -0.008810 \\
3 & 0.65000 & 1.00 & 0.000000 & 18.146546 & 0.000000 & -0.003559 \\
Weighted gravity center: & 0.000000 & 18.145252 & 0.000000 & -0.004853
\end{tabular}

The "X-Grav." and "Y-Grav" columns are the absolute gravity coordinates on the image surface referred to the vertex of the image surface. The "rel.Grav-X" and "rel.Grav-Y" columns are the gravity centers referred to the chief ray coordinate at the reference wavelength.

\subsection*{14.1.8 Surface Ray Intersection Plot}

A square grid of rays, evenly spaced in the entrance pupil, is traced through the optical system and the intersection points of all rays on a designated surface are plotted. See Fig. 14.2. All fields, wavelengths and zoom positions are represented. Rays that are vignetted are not drawn, independently on which surface vignetting occurs. This way, usage of the light beam on a designated surface is shown. The number of rays in the grid are defined by theNRD command. The ray intersection plot is functionally equivalent with the footprint analysis (see page 415), both indicate the area on surfaces used by the beams. Ray intersection plots are more general, because they also take obscurations into account. Due to the finite sampling spacing of the rays, however, the exact boundary of the beam cannot be determined. If precise beam boundaries are required, the footprint option should be used.
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { SPO RIS [ sk | plot_extent } \\
& \text { | ? ] }
\end{aligned}
\] & Plots the intersection points of rays on surface sk. If sk is not specified, the default (surface 1) is used on the first plot, respectively for subsequent (repeated) plots the previously specified surface is used. The parameter plot_extent is optional and defines the maximum displayed area. Absence of plot_extent or a zero value invokes automatic determination of the plot extent on sk, except where the plot extent has already been determined by a previous plot. Rays are traced only in the reference wavelength. \\
\hline
\end{tabular}

\subsection*{14.1.9 Pupil Intensity Map}

The pupil intensity map computes the intensity distribution in the system exit pupil for a given field, wavelength and zoom position. Typically, the intensity distribution across the exit pupil is uniform, however, effects like bulk material absorption or reflection losses at optical surfaces cause a spatial variation of the light intensity in the pupil. In this context, notice that any non-uniform illumination of the system pupil may be considered as apodization. Other influences leading to this effect are intensity filters (see INT command, page 138) on surfaces (loaded from an interferogram file, or nonuniform characteristics of the sources itself. For example, laser beams typically exhibit a Gaussian intensity profile which also modifies the effective intensity distribution in the pupil of a system.
Summarizing, the pupil intensity plot includes the effects of
- Pupil apodization (as defined in system configuration dialog or by PUI command, see page 53),


Figure 14.2: Ray intersection plot, indicating the area used on a surface. Here shown for a single field.
- Polarization or transmission (see POL and TRA commands, pages ?? and 331),
- Intensity filters, see INT format,
- Coatings and non-uniform coating thickness variations (seeCTV).

Plots of the pupil intensity are used to control the intensity distribution in the exit pupil. This is an important feature, as any variation of the system transmission will result in a modification of the image performance. For example, the point spread function (PSF) of most optical systems can be computed by the Fourier Transform of phase and amplitude (the complex field) in the pupil. It is evident that any amplitude modulation will change the form of the PSF.
Pupil intensity maps are obtained by tracing bundles of rays through the entire system and monitor the reduction of the intensity of each ray caused by the above mentioned effects.
Pupil intensity plots are created by the command:
\begin{tabular}{|l|l|}
\hline PMA zk fk wk \\
[WIR \(\mid\) GRY \(\mid\) FAL \(\mid\) CON \(|\mathrm{XY}|\) ?] & \begin{tabular}{l} 
Pupil map. Plots the intensity distribution across the sys- \\
tem pupil at field number fk, wavelength number wk \\
and zoom position zk. Plots can be displayed as wire \\
grid (WIR) which is the default, gray level (GRY), false \\
colour (FAL), contour plot (CON) or XY-slices (XY).
\end{tabular} \\
\hline
\end{tabular}

The command "PMA ?" (without the quotes) invokes a dialog box for editing plot parameters:
One single plot can be generated for a specific set of field, wavelength and zoom position. The check boxes "include transmission" and "include polarization" allow overriding of the configuration settings for a particular plot only. For example, unchecking the "include transmission" option ignores transmission effects in the pupil map plot, even though transmission analysis (seeTRA yes-no command) has been specified. In other words, the settings in this dialog box are temporarily and have no effect on the configuration settings (conditions of use).
The following figures (14.4 to 14.6) show various representations of pupil map intensity.


Figure 14.3: Dialog box for editing pupil intensity plot parameters.

\subsection*{14.1.10 Distortion}

The distortion is expressed as the coordinate of the real image related to the paraxial image coordinate. It is given in \% and may be analysed as chief ray distortion or spot gravity distortion.
\[
\begin{align*}
D & =\frac{y_{\text {chief_ray }}-y_{\text {paraxial }}}{y_{\text {paraxial }}} \cdot 100  \tag{14.1}\\
D & =\frac{y_{\text {gravity }}-y_{\text {paraxial }}}{y_{\text {paraxial }}} \cdot 100 \tag{14.2}
\end{align*}
\]
with
\(y_{\text {chief_ray }}=\) image height of the real chief ray
\(y_{\text {gravity }}=\quad\) image height of spot gravity center
\(y_{\text {paraxial }}=\) paraxial image height (the expected distortion-free image height)
The distortion is always given in \%. The paraxial image height \(y_{\text {paraxial }}\) is calculated in two different ways:
\[
\begin{array}{ll}
y_{\text {paraxial }}=\tan (w) \cdot E F L & \begin{array}{l}
\text { for conventional systems, i.e. the image coordinate is propor- } \\
\text { tional to the tangent of the field angle }
\end{array} \\
y_{\text {paraxial }}=w \cdot E F L & \begin{array}{l}
\text { for F-Theta systems, i.e. the field coordinate is proportional to the } \\
\text { field angle (in radians). This definition is widely used in scanning } \\
\text { systems. }
\end{array}
\end{array}
\]

Afocal systems (i.e. object and image are at infinity) are not adequately described by the equations above. It is more appropriate to define an angular distortion which is the angular deviation of the outgoing beam from a nominal (distortion free) angle. Angular distortion is defined as
\[
\begin{equation*}
D_{\alpha}=\frac{\alpha_{\text {real }}-\alpha_{\text {paraxial }}}{\alpha_{\text {paraxial }}} \cdot 100 \tag{14.3}
\end{equation*}
\]
with \(\alpha=\) angle to the optical axis.


Figure 14.4: Pupil intensity map shown in wire-grid (WIR) and gray-scale (GRY) representations. Left: Wire grid plot, command: PMA z1 f2 w3 WIR, Right: Gray scale plot, command: PMA z1 f2 w3 GRY

The so-called F-Theta distortion is only meaningful in systems with an object at infinity. Here, the image height is proportional to the field angle which is mostly required in scanning systems. Strictly speaking, distortion is only valid for centered, rotationally symmetric systems with plane image surfaces, since the paraxial approximation does not account for such special systems.
Vignetting factors are ignored for chief ray distortion. However, for spot gravity distortion, vignetting is taken into account and may have impact on distortion.

\section*{Command syntax:}
\begin{tabular}{|c|c|}
\hline & Numerical Distortion Analysis \\
\hline \[
\begin{aligned}
& \text { DISX [fi..j, zi..j, } \\
& \text { GRAV] }
\end{aligned}
\] & \begin{tabular}{l}
Distortion analysis for fields and zoom positions in X-direction. The optional parameter GRAV outputs distortion referred to the spot gravity center. \\
Examples: \\
DISX f1.. 3 computes X-distortion at fields 1 to 3 \\
DISX GRAV f3 w2 computes spot gravity distortion in X -direction at field 3 and wavelength 2 .
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { DISY [fi..j, zi..j, } \\
& \text { GRAV] }
\end{aligned}
\] & Distortion analysis in Y-direction. \\
\hline \[
\begin{aligned}
& \text { FDISX [fi..j, zi..j, } \\
& \text { GRAV] }
\end{aligned}
\] & F-Theta distortion in X-direction. \\
\hline \[
\begin{aligned}
& \text { FDISY [fi..j, zi..j, } \\
& \text { GRAV] }
\end{aligned}
\] & F-Theta distortion in Y-direction. \\
\hline \multicolumn{2}{|r|}{Distortion Plots} \\
\hline PLO DISY & Plot distortion in Y-field direction. The entire field extension is plotted. \\
\hline PLO DISX & Plot distortion in X-field direction. The entire field extension is plotted. \\
\hline PLO FDISY & Plot F-theta distortion in Y-field direction. The entire field extension is plotted. \\
\hline \multicolumn{2}{|r|}{continued on next page} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline PLO FDISX & \begin{tabular}{l} 
Plot F-theta distortion in Y-field direction. The entire field ex- \\
tension is plotted.
\end{tabular} \\
\hline PLO DIG & \begin{tabular}{l} 
Plot distortion grid. This is the deformation of a rectangular \\
object grid caused by distortion. The full field extension is plot- \\
ted. See description below.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{14.1.11 Grid Distortion Plot :}

The distortion grid plot also accounts for non-rotationally symmetric optical systems, which DISX, DISY, FDISX, FDISY do not because they are calculated in the Y/Z-plane only. Calculation of grid distortion assumes a perfectly rectangular grid at the object surface. The distortion of this grid when imaged through the system is then plotted at the image surface (see Fig. 14.7).
This analysis is performed for the full field extension in X- and Y-direction. If only the Y-field is specified (i.e. all X-field coordinates are zero), the full field is assumed circular with the maximum Y-field being the radius of the field circle. A square object field is then inscribed to this circle such that its diagonal (from lower left to upper right corner) is equal to the maximum field circle. The maximum extents of the image are derived from paraxial quantities. In extreme wide-angle systems (Fisheye) the paraxial image size may go to infinity if the full field angle approaches 180 , which may lead to problems in the plot diagram. To avoid this problem, a maximum image extension should be provided by the user. The command syntax is
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Plots the image of a rectangular object grid. \\
enlargement_factor is the factor by which \\
distortion (i.e. the deviation from the ideal grid) \\
is enlarged in the plot. The distortion grid can be \\
referred to chief rays (CHF), spot gravity centers \\
PLO DIG [CHF |GRA \(\mid\) PSF] \\
[enlargement_factor] \\
(GRA) or PSF gravity centers (PSF). The default \\
reference is chief ray (CHF). \\
Examples: \\
plo dig 10.0 ! plot distortion grid at image sur- \\
face, enlarged by factor 10. \\
plo dig gra 10! as above, however, grid is re- \\
ferred to gravity center of spot. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

In particular when distortion is small, the distortion aberration may be enlarged in the plot by a user-defined factor. This may give a better impression of the shape of distortion. The distortion enlargement is defined by
\[
\begin{equation*}
x_{\text {plot }}=d_{f}\left(x_{\text {ideal }}-x_{\text {real }}\right) \tag{14.4}
\end{equation*}
\]
where \(d_{f}\) is the enlargement_factor. That is, only distortion aberrations are plotted at an oversized (enlarged) scale, whereas the ideal grid is always plotted at the same size.

\subsection*{14.1.12 Field Aberrations - Astigmatism and Distortion Analysis}

The field aberration option computes distortion, astigmatic field curves and optionally longitudinal spherical aberration. It provides a combined plot of all these three types of aberrations. Although


Figure 14.5: Pupil intensity maps shown in false-colour (FAL) and contour (CON) representations. Left: False colour plot, command: PMA z1 f2 w3 FAL
Right: Contour plot, command: PMA z1 f2 w3 CON
longitudinal spherical aberration is not field dependent, it is sometimes desired for traditional reasons.
\(\left.\begin{array}{|ll|l|}\hline \text { FIE [LSA] [?] } & \begin{array}{l}\text { Plots field dependent aberrations: Astigmatism and distortion. } \\
\text { The optional parameter LSA also plots longitudinal spherical } \\
\text { aberration. The question mark invokes a dialog box for set- }\end{array} \\
\text { ting aberration scales (enter 0 for automatic scaling). For zoom }\end{array}\right\}\)\begin{tabular}{l} 
systems the currently selected zoom position is used (seePOS \\
command). Figure 14.8 shows the plot layout.
\end{tabular}

Distortion is the change in magnification as a function of field. It is computed from tracing chief rays and is measured in percent relative to the paraxial field height. Astigmatism is represented in terms of longitudinal defocus for tangential (Y) and sagittal (X) planes at various field heights.
In addition to the combined plot, aberrations may also plotted separately. For distortion see sect. 14.1.10, page 245, for longitudinal spherical aberration see sect. 14.1.5, page 240.

\subsection*{14.1.13 First Order Analysis}
\begin{tabular}{|l|l|l|}
\hline FIR & & \begin{tabular}{l} 
Lists table of first-order (paraxial) system parameters \\
(e.g. EFL, OAL, etc.) for all zoom positions. Note \\
that paraxial system data are always output with the LIS \\
command. See also the LIS PAR option (page 177).
\end{tabular} \\
\hline FIO [sk|si..j zk|zi..j] & \begin{tabular}{l} 
List paraxial data for marginal and chief rays for desig- \\
nated surface(s) sk \(\mid \mathrm{si} \ldots j\) and designated zoom posi- \\
tion(s) zk \(\mid \mathrm{zi} \ldots j\).
\end{tabular} \\
\hline
\end{tabular}

Although the ray-tracing equations used in \(O p T a l i X\) to evaluate an optical system are exact, they are complicated and provide little insight into the image-formation process. To reach simplified analytical results, a first order approximation is often a good starting point and in many applications precise enough. This is particularly valid when a common optical axis exists and when the light rays make small angles with the axis. Such rays are called paraxial rays and calculations in this domain are denoted as paraxial optics. Paraxial approximations were known already in the early \(1 \psi^{h}\) century and Kepler used it when he first formulated the theory of the telescope. Paraxial calculations are derived from Snell's law \(n \cdot \sin \theta=n^{\prime} \cdot \sin \theta^{\prime}\). If we recall that the sine may be expanded in a series


Figure 14.6: Pupil intensity maps shown by XY-slices (XY) representations. Command: PMA z1 f2 w3 XY
\[
\begin{equation*}
\sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots \tag{14.5}
\end{equation*}
\]
and assuming small values of \(\theta\), we may approximate \(\sin \theta \approx \theta\). This is the domain of what is called first-order or paraxial theory.
Paraxial quantities are displayed by the commands LIS, LIS PAR or FIR. For a detailed description of the output values see section 9.1 (page 177).

\subsection*{14.1.14 Third Order Analysis (Seidel Aberrations)}

Third order aberrations are an approximation to the aberrations obtained by real (skew) ray trace. The advantage of third order \({ }^{1}\) aberrations is that they can be calculated easily and quickly on the basis of paraxial quantities. In the contrary, exact ray trace equations are complicated as they involve the trigonometric functions of angles, instead of just the angles. When we speak of third order approximation, we truncate the series expansion given in Eq. 14.5 after the \(\theta^{3}\) term and only the first and third order terms in the expansion of the sine are retained. The resulting equations and corresponding aberrations are part of third order optics. In the same way that the sine was expanded in a series, the aberrations can be expanded. The first term in the expansion is known as the third order aberration (i.e. the first approximation to the total aberration).

To illustrate this point, Fig. 14.9 shows the spherical aberration of a lens based on real ray trace data. The aberration curve based on third order equations is shown as thick line.
Fig. 14.9 indicates that third order aberrations only give a more or less coarse approximation to the real aberration, in particular for larger apertures and/or fields. This behaviour depends on the system used. The beauty of third order aberrations, however, must be seen in the fact that they provide a deeper insight into the contributions of each surface onto the overall aberration of an optical system.
The astute reader may argue that an approximation involving fifth order aberrations may simulate the aberrations much better and give an even more deeper insight. However, fifth order (or even \(7 t h\) order) equations are nearly as complex as real ray trace equations. Due to the advent of fast computers, exact ray trace aberrations, which include all orders, can be computed equally fast and there is no convincing reason any more to using \(5^{\text {th }}\) order or higher order aberrations.

\footnotetext{
\({ }^{1}\) sometimes also referred to as tertiary aberrations
}


Figure 14.7: Grid distortion plots. Left: Distortion referred to chief rays. Right: Distortion referred to spot gravity center.

\section*{Command:}
\begin{tabular}{|l|l}
\hline THO & Outputs the third order (Seidel) aberrations with surface contributions. \\
\hline
\end{tabular}

\section*{Third Order Formalism:}

We refer to the paraxial quantities established in section5.3 and define some system constants:
\[
\begin{align*}
H & =n u_{a} h_{b}-n u_{b} h_{a} \quad \text { (Helmholz-Lagrange invariant) }  \tag{14.6}\\
S & =\frac{Y^{\prime}}{2 H}  \tag{14.7}\\
S_{p} & =\frac{Y^{\prime} \cdot \Delta \omega}{H}  \tag{14.8}\\
S_{s} & =\frac{Y^{\prime}}{H} \cdot\left(\frac{\Delta \omega}{2}\right)^{2} \tag{14.9}
\end{align*}
\]

The paraxial image height is \(Y^{\prime}\) and the Buchdahl chromatic variable \(\omega\) is defined as (see [7],[46]),
\[
\begin{equation*}
\omega=\frac{\lambda-\lambda_{0}}{1+2.5\left(\lambda-\lambda_{0}\right)} \tag{14.10}
\end{equation*}
\]
where \(\lambda_{0}\) is the reference wavelength. For each surface, we define the following auxiliary variables:
\[
\begin{align*}
i & =c \cdot h_{a}+u_{a}  \tag{14.11}\\
j & =c \cdot h_{b}+u_{b}  \tag{14.12}\\
b_{a} & =\frac{n}{n^{\prime}}\left(n-n^{\prime}\right) h_{a}\left(u_{a}+i\right)  \tag{14.13}\\
b_{b} & =\frac{n}{n^{\prime}}\left(n-n^{\prime}\right) h_{b}\left(u_{b}+j\right)  \tag{14.14}\\
a & =\left(n-n^{\prime}\right)\left(k \cdot c^{3}+8 A_{4}\right)  \tag{14.15}\\
d_{p} & =\frac{\partial n}{\partial \omega}-\frac{n}{n^{\prime}} \cdot \frac{\partial n^{\prime}}{\partial \omega}  \tag{14.16}\\
d_{s} & =\frac{\partial^{2} n}{\partial^{2} \omega}-\frac{n}{n^{\prime}} \cdot \frac{\partial^{2} n^{\prime}}{\partial^{2} \omega} \tag{14.17}
\end{align*}
\]


Figure 14.8: Field aberrations, astigmatism, distortion and longitudinal spherical aberration, combined in one plot.

From these constants, we obtain the surface contributions to the third order (Seidel) aberrations:
spheric terms: aspheric terms:
Spherical: \(A_{i}=S \cdot b_{a} \cdot i^{2}\)
\(+S \cdot a \cdot h_{a}{ }^{4}\)
Coma: \(B_{i}=S \cdot b_{a} \cdot i \cdot j\)
\(+S \cdot a \cdot h_{a}{ }^{3} \cdot h_{b}\)
Astigmatism: \(C_{i}=S \cdot b_{a} \cdot j^{2}\)
\(+S \cdot a \cdot h_{a}{ }^{2} \cdot h_{b}{ }^{2}\)
Petzval: \(P_{i}=S \cdot H^{2} \cdot \frac{n-n^{\prime}}{n \cdot n^{\prime}} \cdot c\)
\(+0\)
Distortion: \(V_{i}=S \cdot\left[b_{b} \cdot i \cdot j+H\left(u_{b}^{\prime 2}-u_{b}{ }^{2}\right)\right]+S \cdot h_{a} \cdot h_{b}{ }^{3}\)
Axial Color: \(F l_{i}=S_{p} \cdot d_{p} \cdot h_{a} \cdot i+0\)
Lateral Color: \(F q_{i}=S_{p} \cdot d_{p} \cdot h_{a} \cdot j \quad+0\)

The third order aberrations of the entire system are then the sum of the corresponding aberration contributions associated with the individual surfaces of the system, hence


Figure 14.9: Third order aberration in comparison to real ray trace data, shown on the example of spherical aberration.
\[
\begin{align*}
S P A & =\sum_{i=1}^{n} A_{i}  \tag{14.18}\\
C O M A & =\sum_{i=1}^{n} B_{i}  \tag{14.19}\\
A S T I & =\sum_{i=1}^{n} C_{i}  \tag{14.20}\\
P E T Z & =\sum_{i=1}^{n} P_{i}  \tag{14.21}\\
D I S T & =\sum_{i=1}^{n} V_{i}  \tag{14.22}\\
L C A & =\sum_{i=1}^{n} F l_{i}  \tag{14.23}\\
T C A & =\sum_{i=1}^{n} F q_{i} \tag{14.24}
\end{align*}
\]

\subsection*{14.1.15 Secondary Spectrum}

The secondary spectrum (longitudinal colour) is the variation of the paraxial focus along the optical axis as a function of wavelength.
\begin{tabular}{|l|l|}
\hline SSP & \begin{tabular}{l} 
Secondary Spectrum, numerical output. Since this analysis is \\
based on paraxial calculations, results may not be meaningful \\
for non-paraxial (tilted, decentered or off-axis) systems.
\end{tabular} \\
\hline \begin{tabular}{l} 
PLO SSP [ plot_scale \\
\(? \quad\) ]
\end{tabular} & \begin{tabular}{l} 
Plots the secondary spectrum. The optional question mark "?" \\
invokes a dialog box for entering the plot scale.
\end{tabular} \\
\hline SSR [wi..j \(\mid\) zi..j] & \begin{tabular}{l} 
Secondary spectrum, weighted rms-value. It is computed as the \\
rms-variation of the paraxial focus at wavelengths wi \(\ldots\) j (in- \\
cluding spectral weights) and at zoom positions zi..j. Since \\
this analysis is based on paraxial calculations, results may not \\
be meaningful for non-paraxial (tilted, decentered or off-axis) \\
systems.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{14.1.16 Lateral Colour}

For a given wavelength, the lateral colour is the distance on the image surface with respect to the reference wavelength. A curve is plotted for each wavelength. Chief rays are used for this analysis.
Quite often the lateral colour is defined as the distance on the image surface from the shortest wavelength to the longest wavelength chief ray intercept. However, a lot of information is lossed by this approach, which may be misleading because the shortest/longest wavelength may not exhibit the worst aberration. This problem is avoided in OpTaliX .
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
LAC wi..j [fi..j, \\
\(\mathrm{zi} \ldots j]\)
\end{tabular} & \begin{tabular}{l} 
Lateral colour within wavelength range wi..j. A wavelength \\
range is required, field and zoom specification are optional. \\
It is the maximum lateral deviation for all wavelengths from \\
the chief ray intercept of the ray at the reference wavelength. \\
Wavelength weights are not in effect for this type of analysis.
\end{tabular} \\
\hline PLO LAC & \begin{tabular}{l} 
Plot lateral colour vs. field. For each wavelength, the lateral \\
deviation from the chief ray intercept of the ray at the reference \\
wavelength is plotted vs. field. A dialog box is opened to enter \\
the plot scale.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{14.1.17 Ghost Image Analysis}

Optical systems can form unintended images due to reflections between pairs of surfaces. All lens surfaces reflect light to an extent depending on the refractive index of the glass itself respectively on the type of anti-reflection coating applied to these surfaces. Light reflected from the inner surfaces of a lens will be reflected again and may form reasonably well-defined images close to the image surface. Such spurious images are called ghost images.
The number of possible surface combinations (pairs) which may contribute to ghost images is \(n\) ( \(n-\) \(1) / 2\), where \(n\) is the number of lens surfaces in the system. As the number of surfaces grows, the probability of ghost problems also increases. For example, a zoom lens with 10 lenses ( 20 surfaces) gives 190 possible ghost images.
As a guideline, the transmittance of a lens including all possible multiple reflections, but ignoring any loss of light by absorption in the glass, is given by [22]
\[
\begin{equation*}
t=\frac{1-r}{1+(N-1) r} \tag{14.26}
\end{equation*}
\]
where \(r\) is the reflectance of each surface and \(N\) is the number of surfaces. Thus, the reflected portion ( \(1-t\) ) does not contribute to the image formation, it is considered stray light. On the example of the above mentioned zoom lens with 20 air-glass interfaces, the amount of ghost radiation compared to the total radiation passing the lens is \(45 \%\) for uncoated surfaces and about \(17 \%\) if the surfaces are anti-reflection coated ( \(1 \%\) reflection loss).
Most of this ghost radiation is harmless if it is diffuse enough, i.e. spread uniformly over the entire image area. However, if brought to focus near the image surface, ghost images can be quite intense even in case of anti-reflection (AR) coatings. It is therefore of utmost importance to control not only the amount of ghost (stray) radiation but also its intensity distribution.
OpTaliX provides four types of analyses to study the effects of ghost images.
- Paraxial Analysis: Find the paraxial location and apparent diameter of the ghost image with respect to a target surface (typically the image surface, but can be any other surface as well).
- Calculate the spot diagrams based on exact ray trace along the ghost path (including the internal double-reflection).
- Plot a lens layout showing the ghost path.
- Create a photo-realistic image of ghost effects, including effects of anti-reflection coatings and ghost spot distribution.
\begin{tabular}{|c|c|}
\hline GHO SUR si..j & Ghost surface range. The surfaces si . . j denote the first and last surface to be included in ghost analysis. \\
\hline GHO TAR sk [x_ext, y_ext] & Target surface at which ghost effects are to be analyzed. The optional parameter x_ext, y_ext define the extension of the analysis area at the target surface. \\
\hline GHO SRC & Include the effects of the source. That is, the analysis includes the irradiation at the target surface caused by the source itself plus the effects caused by ghost radiation. Since the expected intensity differences between direct image and ghost image may be large, logarithmic display is recommended (see GHO LOG command below). \\
\hline GHO LOG [Y|N] & Logarithmic display of ghost intensity. Y enables logarithmic display, \(N\) disables it (i.e. resorts to linear scale). Note the GHO FLOOR command below. \\
\hline GHO FLOOR i_min & \begin{tabular}{l}
Defines the lowest intensity level \(I_{\min }\) that can be displayed in logarithmic display (requires GHO LOG Y). \(I_{\text {min }}\) can be specified as linear or logarithmic value: Negative numbers are considered as \(\log \left(I_{\text {min }}\right)\), positive numbers as linear value. \\
Examples: \\
gho floor -3 ! Lowest relative intensity is \(10^{-3}=0.001\), \\
gho floor 0.001 ! Lowest relative intensity is 0.001
\end{tabular} \\
\hline GHP si..j target_sur [ALL]
GHO si..j target_sur [ALL] & Find the paraxial location and apparent diameter of the ghost image with respect to a target surface. si..j are the first and last surface where ghost reflections take place. The optional parameter ALL lists all possible surface pairs within the surface range si..j. The commands GHP and GHO are functionally equivalent. GHO was added for compatibility with Code V. See also the notes on paraxial ghosts below. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline \begin{tabular}{l}
GHS si..j target_surf \\
GHO SPO si..j target_surf
\end{tabular} & Calculate the spot diagrams based on exact ray trace along the ghost path. si..j are the first and last surface where ghost reflections take place. The target surface target_surf may be any surface including the image surface. \\
\hline GHV si..j target_surf GHO VIE si..j target_surf & View lens layout plot including ghost ray trace. si..j are the first and last surface where ghost reflections take place. \\
\hline GHR si..j target_surf x_rel_aperture y_rel_aperture GHO RAY si..j target_surf x_rel_aperture y_rel_aperture & Trace a single ghost ray. si. . j are the first and last surface where ghost reflections take place. \\
\hline GHO RGB si..j target_surf [ALL] [FILE file_spec] & \begin{tabular}{l}
Calculate an almost photo-realistic RGB-image. si..j are the first and last surface where ghost reflections take place. The optional parameter ALL includes the ghost contributions of all possible surface pairs within the surface range si..j, including coating effects (requires POL Y), transmission effects (requires TRA Y) and the spectral weighting of the system. \\
The optional parameters FILE file_spec allow export of the ghost RGB data to a file specified in file_spec. Two formats currently supported are plain ASCII and Microsoft \({ }^{T M}\) Excel. The file format is derived from the file extension, i.e. a file name test.xls will create an Excel file, whereas any other extension defaults to ASCII. \\
More information about "photo-realistic rendering of ghost effects" is also given on page 257 . \\
Example: \\
gho rgb s3..7 12 all fil \\
c: \temp \(\backslash\) ghostrgb.xls
\end{tabular} \\
\hline GHO SAV Y|N & Save ghost analysis parameters along with optical system prescription. \\
\hline
\end{tabular}

\section*{Limitations:}

The current implementation of ghost analysis (respectively the underlying inverse ray trace) takes spherical surfaces, aspheric surfaces and decentered and/or tilted surfaces into account. Gradient Index (GRIN) media are also correctly simulated in the inverse ray trace, however, the end surfaces of GRIN elements must be centered.

\subsection*{14.1.17.1 Notes on paraxial ghost analysis:}

Ghost analysis based on paraxial calculation provides a very fast means for identifying the most disturbing surface pairs. However, the results of paraxial ghost analysis should be observed with great care, because paraxial analysis does not account for geometrical aberrations along the ghost path. Ghost images, however, are not corrected to produce sharp images. Therefore, the more common case is that ghost images are blurred by large amounts of spherical aberration, coma and field curvature.
It is therefore likely that the effect of ghost images predicted by paraxial analysis does not match well with an exact ghost ray trace. Only for optical systems that exhibit small numerical apertures and small fields only, paraxial ghost quantities may reasonably represent real ghost effects. As an example, the paraxial ghost analysis shown below exhibits a relatively small ghost spot for the surface pair 5-7 (that is, first reflection is on surface 7, second reflection is on surface 5). However, the exact ghost ray trace, as shown in Fig. 14.10, reveals a large spread of the rays on the image surface caused by severe (uncorrected) spherical aberration along the ghost path.
Note that the often observed discrepancy between paraxial ghosts and real ray trace ghosts is not an implementation fault in \(O p\) TaliX but is only due to the inherent limitations of paraxial theory (i.e. linear approximation of real world effects).
Thus, be warned NOT to trust paraxial ghost analysis as the sole means of performing ghost analysis, because it is fast, but always cross-check results of paraxial ghost analysis against other methods (for example ghost spot, ghost lens view or ghost RGB-analysis).
PARAXIAL GHOST ANALYSIS:
All ghost aberrations are referred to surface 12
\begin{tabular}{rrrrr} 
1st.Refl & 2nd.Refl & GhostNA & GhostDiam & GhostFocus \\
7 & 5 & 0.18700 & 0.89666 & -2.39748
\end{tabular}


Figure 14.10: Ghost imaging. Note the spread of the rays on the image surface due to (uncorrected) spherical aberration along the ghost path as opposed to the size of the ghost image predicted by paraxial analysis.

Thus, the user should be aware of the intrinsic limitations of paraxial ghost analysis, which may be appropriate in "slow" systems but may fail in systems with large numerical aperture or systems having a wide field.

\section*{Example:}

The following example uses a Double-Gauss system (see \$i \(\backslash\) examples \(\backslash \mathrm{misc} \backslash\) double_gauss-2.otx). First reflection takes place on surface 7, directing the rays backwards. The second reflection takes
place on surface 5, directing the ghost rays back to the image surface. The ghost ray trace is visualized by the command
ghv s5..7 12
where s5.. 7 defines the surface range. The third parameter is the target surface (12). Fig. 14.11 shows the nominal imaging ray trace and the corresponding ghost ray trace for the surface pair 5 and 7. Also note the surface numbers, which are identical for both cases, indicating that extra surfaces (which describe the ghost path) are not required.


Figure 14.11: Ghost imaging. Left: conventional imaging path, right: ghost imaging path between surfaces 5 and 7.

\subsection*{14.1.17.2 Photo-realistic rendering of Ghost Effects:}

The "GHO RGB" option provides the most realistic and accurate ghost analysis. It offers a fully automatic search of ghost effects by evaluating \(A L L\) possible combinations of surface pairs in a lens which may contribute to ghosts. If enabled, the analysis also includes wavelength dependent effects of multilayer coatings on optical surfaces ('POL yes"), material absorption ('TRA yes") and vignetting.

The colors in the RGB-plot are approximate to the 'real world' colour rendition only for systems in the visible spectral range, that is approximately \(400-700 \mathrm{~nm}\). If other spectral ranges are used (for example ultra-violet or infrared spectral regions), then a 'blue' colour in the plot only represents a shorter wavelength in that spectral range, respectively a 'red' colour corresponds to a longer wavelength. In such cases, colors should be considered as 'pseudo' colors only.
In order to create photo-realistic plots of ghosts, some preparatory work is recommended:
- We define a single object which is considered as the disturbing source, being either inside the specified field of view or outside.
- All surface apertures should be fixed (FHY sa 1) so that ghost rays hitting a surfaces outside its defined aperture are effectively blocked.
- Coatings should be appropriately attached to surfaces (see ATT command) in order to model ghost reflections realistically.
- Polarization and transmission analysis must be enabled (POL Y, respectively TRA Y) to include effects of coatings in the ghost analysis. POL and TRA may also be set separately in the


Figure 14.12: Almost photo-realistic rendering of ghost effects as a RGB-image on the example of \(\$ i \backslash e x a m p l e s \backslash h i g h _n a \backslash f 15 _33\). otx. The left image was obtained by ignoring coating or Fresnel reflection effects, whereas the right image is more realistic by including coating effects (POL Y, TRA Y)
ghost analysis dialog. Note that polarization calculation is computationally intensive, which may slow down the speed of the calculation by an order of magnitude. Therefore, it is sometimes helpful to do a first ghost analysis with POL and TRA disabled and study the geometrical effects of ghosts only. For a detailed and precise analysis, POL and TRA should be enabled to include the intensities of ghost images. For the differences of enabled/disabled coatings see Fig. 14.12.

For each pair of ghost surfaces the RGB-ghost analysis outputs the location and the relative intensity of the ghost image. This information helps to identify contributions to the ghost image from particular surface combinations. A typical output from a RGB-ghost analysis would be:


Output is given for each wavelength defined in the system. The "X-grav" and "Y-grav" coordinates are the intensity-weighted gravity centers of the ghost image at the target surface. It helps to easier identify the location of a particular ghost in the RGB-image. The relative intensity (Rel.Int.) column gives the average intensity of a particular ghost in relation tho the intensity of the light entering the optical system. The Rel. Int . column does not give a measure of the ghost irradiance on the target surface.

\subsection*{14.1.17.3 Writing Ghost Data to Files (ASCII or Excel}

Irradiance distributions resulting from photo-realistic Ghost RGB (red-green-blue) analyses may also be written to a file. The supported file formats are Excel (.XLS), or ASCII (.TXT or .DAT), whereas
the file format is derived from the extension itself.
On export, all channels are written successively into a single file, that is, red, green, blue channels and the composite "white" channel.

\section*{ASCII-Format:}

Each channel of the Ghost RGB image is preceded by two comment lines indicating the channel and the maximum ray intensity (max value) in that channel. Data of each channel are then written normalized with respect to the channel maximum intensity. The typical output format is shown below:
```

! red:
! max value = 581.4250488281250
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
! green:
! max value = 406.0000000000000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···...
! blue:
! max value = 635.9754028320312
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···....
! white:
! max value = 1623.400390625000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ···...

```

\section*{Excel-Format:}

Images from ghost RGB analyses may be written to Excel. Each red-green-blue component of the ghost image is then written to a separate sheet in the Excel file. The fourth channel "white" is a composite of the three RGB channels.

\subsection*{14.1.18 Vignetting Analysis}

Vignetting is a reduction in the size of the entrance pupil, for off-axis fields, because several surfaces may limit the transverse extension of the beam. Using this definition there is no vignetting on-axis.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 53 & 4.311024 & 11.49606 & 26.86614 & 31.17717 & 11.49606 & 4.311024 & 4.748032 \\
\hline 54 & 5.748032 & 12.93307 & 57.48032 & 63.22835 & 12.93307 & 5.748032 & 4.311024 \\
\hline 55 & 5.748032 & 15.80709 & 177.189 & 200.1811 & 15.80709 & 5.748032 & 5.748032 \\
\hline 56 & 8.622047 & 11.93307 & 43.11024 & 48.85827 & 11.93307 & 8.622047 & 5.748032 \\
\hline 57 & 7.18504 & 11.05906 & 20.11811 & 24.42913 & 11.05906 & 7.18504 & 5.748032 \\
\hline 58 & 6.18504 & 10.05906 & 7.18504 & 10.05906 & 10.05906 & 6.18504 & 2.437008 \\
\hline 59 & 5.748032 & 5.748032 & 5.748032 & 8.622047 & 5.748032 & 5.748032 & 1.437008 \\
\hline 60 & 2.874016 & 5.748032 & 4.311024 & 8.622047 & 5.748032 & 2.874016 & 1.437008 \\
\hline 61 & 0 & 0 & 2.874016 & 4.311024 & 0 & 0 & 0 \\
\hline \multicolumn{8}{|l|}{It * M Tabelle1 / Tabelle2 / Tabelle3 入Red/ Green / Blue / White / | 1} \\
\hline Bereit & & & & & & & \\
\hline
\end{tabular}

Figure 14.13: The RGB components from ghost images are written to separate tabs in an Excel file, including the composite "white" channel. The preceding tabs labeled "Tabelle1" to "Tabelle3" are dummy sheets and should be ignored.

Vignetting leads to a decrease of the illuminance of the image towards the edge of the field. Also, vignetting is often used in the design stage to have a better control of aberrations.
In OpTaliX vignetting properties of an optical system are solely defined by surface apertures which have the "fixed height" property assigned (see FHY command, page 169). Vignetting analysis is always referred to the first field (F1) in the field list, which, for centered systems, is assumed the axial case. For non-centered systems, i.e. systems which contain decentered/tilted surfaces or have a non-symmetrical field, the reference field must be specified in the first position (F1) of the field list.

\section*{Commands:}
\begin{tabular}{|l|l|}
\hline VIGP & \begin{tabular}{l} 
Plots vignetting as a function of field. In case of zoom \\
systems, all vignetting is overlayed for all positions in a \\
single plot.
\end{tabular} \\
\hline VIG [fi..jwi..j zi..j] & \begin{tabular}{l} 
Evaluate vignetting numerically at discrete fields \\
fi..j, and zoom positions zi..j. Vignetting is \\
always integrated and spectrally weighted over wave- \\
lengths wi. .j. Values are returned between 0 (100\% \\
vignetting) and 1 (no vignetting). By that definition, it is \\
a measure of relative illumination. If fields are not spec- \\
ified, the maximum field will be used. If zoom positions \\
are not specified, zoom position 1 is used.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{14.1.19 Geometric Modulation Transfer Function}

Calculates the geometrical approximation of the modulation transfer function (MTF). This analysis is appropriate when the wavefront aberration is large compared with the wavelength. We may then approximate the optical transfer function (MTF) by [34]
\[
\begin{equation*}
\hat{H}\left(f_{x}, f_{y}\right)=\iint_{-\infty}^{+\infty} A(x, y) e^{i}\left(\Delta x \omega_{x}+\Delta_{y} \omega_{y}\right) d x, d y \tag{14.27}
\end{equation*}
\]
where
\[
\begin{align*}
\omega_{x} & =2 \pi f_{x}  \tag{14.28}\\
\omega_{y} & =2 \pi f_{y}
\end{align*}
\]
and \(\Delta_{x}, \Delta_{y}\) are the transverse aberrations, \(f_{x}, f_{y}\) are the spatial frequencies of interest and \(A(x, y)\) is the relative amplitude associated to each ray. The geometric aberrations ( \(\Delta_{x}, \Delta_{y}\) ) are obtained from tracing a bundle of rays through the system, rectangularly gridded across the entrance pupil. With this assumption, by dividing the aperture in small squares, the geometrical transfer function may be written as
\[
\begin{equation*}
\hat{H}\left(f_{x}, f_{y}\right)=A(x, y)\left\{\sum_{i=1}^{N} \cos \left(\Delta_{x} \omega_{x}+\Delta y \omega_{y}\right)+\sum_{i=1}^{N} \sin \left(\Delta_{x} \omega_{x}+\Delta_{y} \omega_{y}\right)\right\} \tag{14.29}
\end{equation*}
\]
where the sum is performed for all rays \(N\) on a spot diagram. This geometrical approximation is surprisingly accurate when the aberrations are larger than a few wavelength. In very well corrected systems, for example where geometric aberrations are in the order or smaller than the Airy-diameter, the geometric approximation of the MTF yields better results than are physically possible. The diffraction based MTF should be used instead (see section 14.2.1, page 268).
\begin{tabular}{|l|l|}
\hline & \\
\hline \multirow{3}{*}{ MTF FRE|FLD|DEF [NUM] GEO } & \begin{tabular}{l} 
Geometric MTF. The optional parameters can be spec- \\
ified in any order. Note that polarization effects are ig- \\
nored for geometrical response calculations. \\
Examples: \\
MTF FLD GEO! geometric MTF vs. field, \\
MTF GEO FLD NUM! only numeric output of geom. \\
MTF vs. field.
\end{tabular} \\
\hline GMTFT [fk zk] & \begin{tabular}{l} 
Tangential geometric MTF at field fk, zoom position zk. \\
For use in optimization, UGR and EVAluation commands \\
only.
\end{tabular} \\
\hline GMTFS [fk zk] & \begin{tabular}{l} 
Sagital geometric MTF at field fk, zoom position zk. For \\
use in optimization, UGR and EVAluation commands only.
\end{tabular} \\
\hline GMTFA [fk zk] & \begin{tabular}{l} 
Average geometric MTF at field fk, zoom position zk. \\
GMTFA \(=0.5\) (GMTFT + GMTFS). For use in opti- \\
mization, UGR and EVAluation commands only.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{14.1.20 Geometric Point Spread Function (GPSF)}

The GPSF analysis is a purely geometric approximation to the image of a point source. Since only ray aberrations are included, diffraction effects are completely ignored. This analysis may be useful in systems where aberrations are large compared to the diffraction limited performance. Use thePSF option (page 271) if diffraction effects shall be taken into account.
This analysis includes spectral weighting (as defined in the system configuration), transmission effects (requires POL yes and TRA yes) and aperture apodization.
By default, the calculation is performed for all fields and wavelengths defined in the system configuration.
\begin{tabular}{|c|c|}
\hline ```
GPSF zk fi..j wi..j
img_size [VIE|CON|FAL|XY]
[?]
``` & \begin{tabular}{l}
Geometric point spread function. This analysis is based on geometric effects only. It is most appropriate where aberrations are large. Use the PSF command (see page 271) to include diffraction effects. \\
img_size is the patch size at the image surface. \\
Plot options: \\
VIE: perspective plot (wire grid), \\
FAL: "false" colour geometric PSF. The intensity of the PSF is coded into a rgbmodel. Blue colour represents low intensities, red colour represents high intensities. \\
CON : contour plot of geometric PSF \\
XY: cross sectional plots (in X- and Ydirection) \\
GPSF traces grids of rays for all fields and wavelengths specified and plots the relative intensity in the image plane.
\end{tabular} \\
\hline GNRD num_rays_diam & Number of rays across diameter for geometric PSF calculations only. Note that GNRD is equivalent to NRD, however, it is effective only during GPSF-calculations. Also, GNRD does not change NRD. Any positive number for GNRD is allowed. \\
\hline
\end{tabular}

\section*{Example commands:}

GPSF f2..3 0.05 FAL Calculates geometric PSF for fields 2-3. Intensity distribution is shown on a 0.05 mm image patch as false-colour coded image.
GNRD 30 sets number of rays across diameter for GPSF calculation exclusively.
GPSF ? invokes a dialog box for adjusting parameters prior to calculating GPSF.

\subsection*{14.1.21 Encircled Energy (Geometric)}

Calculates the fraction of energy by counting all rays that pass the optical system (i.e. are not vignetted) and hit the image surface within a specified area (defined by its diameter). An evenly-spaced rectangular grid of rays in the entrance pupil (see NRD) is traced to the image surface for specified wavelengths, field and zoom positions. Each ray is assigned an energy proportional to its wavelength weight (WTW), aperture apodization and relative transmission.
\begin{tabular}{|c|c|}
\hline RAD fi..j [wi..j] diam_x [diam_y] [X posx Y posy] & \begin{tabular}{l}
Fraction of energy contained in an image area defined by diam_x, diam_y. Solely based on geometrical analysis, diffraction is ignored. For diffraction encircled energy see ECE command (page 281). If diam_y is omitted (that is only diam_x is specified), the image area is assumed circular. Both values, diam_x and diamy must be specified for a rectangular/square area. The center of the image area is assumed to lie at the location of the chief ray coordinates in the image plane, except when the optional parameter set [X posx Y posy] is specified (see below). Includes wavelength weight (WTW), transmission and apodization. \\
The optional parameter set [X posx Y posy] clamps the specified area at a fixed position (posx, posy) on the image surface rather than defining the area with respect to the chief ray locations for each field. This way, rays are integrated on the same area for all fields and zoom positions.
\end{tabular} \\
\hline ECG fi..j|zk image_radius [NUM GRV] & Plots geometric encircled energy. Entirely ray based analysis. Takes into account transmission (see TRA/POL) and apodization effects (see PUI/PUX/PUY), if enabled. Use the NUM option to list numerical values. The optional parameter GRV refers analysis to the spot gravity center. If omitted, the chief ray reference at the designated fields, respectively the last setting is used. Two curves are plotted, one for the geometric energy contained in a defined image circle (encircled energy) and one contained in a defined square (ensquared energy). See also Fig. 14.14 for the expected plot. \\
\hline
\end{tabular}

\section*{Examples:}
\begin{tabular}{|c|c|c|c|c|}
\hline RA & f3 0.01 & 0.02 & & ! Output geometric encircled energy at field 3 contained in a rectangular area of \(\mathrm{X}=0.01 \mathrm{~mm}, \mathrm{Y}=0.02 \mathrm{~mm}\). \\
\hline ev & [RAD f3 & 0.01 & \(0.02]\) & ! Evaluate geometric encircled energy at field 3 contained in a rectangular area of \(\mathrm{X}=0.01 \mathrm{~mm}, \mathrm{Y}=0.02 \mathrm{~mm}\). \\
\hline R & f1. 4 . 5 & X & 0 Y & ! Geometric encircled energy within a circular area of 0.5 mm diameter with fixed location at \(\mathrm{X}=0, \mathrm{Y}=0\). \\
\hline EC & f1..2 z3 & 0.1 & & ! Plot geometric encircled energy at fields 1-2, zoom position 3, image diameter 0.1 mm and report numerical values. \\
\hline
\end{tabular}

\subsection*{14.1.22 Quadrant Detector Analysis}

The quadrant detector analysis (QUA) option shows the scanned response of a quadrant detector to the image at each field. As in all geometric analyses, diffraction effects are ignored.

Figure 14.14: Encircled Energy geometric (ECG). Plots the fraction of energy associated to rays that hit a defined circle (or square) at the image surface. Includes transmission and apodization effects.

A quadrant detector is a semiconductor photodiode divided into four sensitive areas. Such devices are typically used to provide alignment information, as determined by comparisons of the illumination levels of opposing quadrants.
The computation lists the scanned response of a simulated quadrant detector to the image at each field point. Scanning is done for both X - and Y-directions. It assumes proper coupling of the quadrants in each half. See Fig. 14.15.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
QUA [STE scan_step_size] \\
{\([f i . . j] \quad[\mathrm{zk}]\)}
\end{tabular} & \begin{tabular}{l}
Quadrant detector analysis, showing the \\
scanned response of a quadrant detector to the \\
image at fields \(\mathrm{fi} . \mathrm{j}\) and zoom position zk. \\
Diffraction is ignored.
\end{tabular} \\
\hline QST scan_step_size & \begin{tabular}{l}
Quadrant step size, in lens units at the image \\
plane.
\end{tabular} \\
\hline QSM smooth_diam & Gaussian smoothing diameter, in lens units. \\
\hline
\end{tabular}

\section*{Notes:}

Quadrant detector analysis is based on the number of rays across the pupil diameter (NRD) and it takes into account apodization and wavelength weights. If enabled (TRA Y and/or POL Y), transmission and polarization effects are also taken into account.
The scanned response may be smoothed by a small spot of Gaussian shape. The diameter of the smoothing Gaussian (QSM) is defined at an intensity \(50 \%\) of the peak intensity.

\section*{Description of Output:}

In addition to the plot output, a listing is generated for each field activated (seeFACT command). The listed output shows the response of the two detector halves in X - and Y -direction as well as the ratio

Figure 14.15: Movement of the halves of a quadrant detector across the spot at a given field. Shown are the two scan directions, in X (left) and in Y (right).
of responses from the two halves of the detector as a function of the scan position.
As an example, we will restore the "Double-Gauss" file from the examples library (\$i\optalix\examples \double_gauss.otx). The settings are QST 0.02 and QSM 0.02 . Plot and numerical output are invoked by QUA f 1 .
\begin{tabular}{|c|c|c|c|c|}
\hline Field : 1 & X & \multicolumn{2}{|r|}{\(0.00000 \quad \mathrm{Y}=\)} & 0.00000 \\
\hline X-Shift & & Left Half & Right Half & Ratio \\
\hline -0.06000 & & 0.00000 & 1.00000 & 0.000000 \\
\hline -0.04000 & & 0.00250 & 0.99750 & 0.002507 \\
\hline -0.02000 & & 0.02293 & 0.97707 & 0.023464 \\
\hline 0.00000 & & 0.47937 & 0.52063 & 0.920737 \\
\hline 0.02000 & & 0.97707 & 0.02293 & 42.618182 \\
\hline 0.04000 & & 0.99750 & 0.00250 & 398.833333 \\
\hline 0.06000 & & 1.00000 & 0.00000 & 1000000.000000 \\
\hline Y-Shift & & Left Half & Right Half & Ratio \\
\hline -0.06000 & & 0.00000 & 1.00000 & 0.000000 \\
\hline -0.04000 & & 0.00250 & 0.99750 & 0.002507 \\
\hline -0.02000 & & 0.02293 & 0.97707 & 0.023464 \\
\hline 0.00000 & & 0.47937 & 0.52063 & 0.920737 \\
\hline 0.02000 & & 0.97707 & 0.02293 & 42.618182 \\
\hline 0.04000 & & 0.99750 & 0.00250 & 398.833333 \\
\hline 0.06000 & & 1.00000 & 0.00000 & 1000000.000000 \\
\hline
\end{tabular}

\subsection*{14.1.23 Biocular Analysis}

The term "biocular" relates to viewing viewing with both eyes simultaneously. This term must not be confused with "binocular" systems. In biocular systems, both eyes look through the same optical system, in binocular systems, the human eyes look through two identical (mirror symmetrical) optical systems (telescopes), mounted side-by-side. The latter is often denoted as "Feldstecher" (German) or field glasses.
The biocular analysis (BIO) is useful in optical systems that provide an enlarged image of a display and which is observed from different (typically two) eye locations. The BIO option computes chief rays over a grid of viewing angles and displays the differences of the images.

Essentially, a biocular magnifies a small display and presents the enlarged image to the visual system. Biocular systems are viewed through with both eyes simultaneously (as opposed to binocular systems). Other typical applications of the BIO option are head-up-displays (HUD) and simulators.
The BIO option allows analysis of the following parameters:

Convergence: The human eyes are focusing to an object at a distance closer to infinity, that is the simultaneous inward movement of both eyes toward each other.

Divergence: The human eyes are focusing to an object in excess of infinity distance (i.e. a virtual image) and the eyes are forced to simultaneously move outward with respect to each other. This is a situation that the eyes cannot perform and that leads to eye strain and headache.

Dipvergence: The two images observed by the eyes are laterally displaced in vertical directions. Again, this may lead to eye strain and headache.

Biocular FOV: The angular range within observation of the display is possible with both eyes simultaneously. Typically, the FOV seen by the left or right eyes are different and do only partly overlap. The "biocular FOV" is only the overlapping region.

The locations of the left and right eye are modelled via two zoom positions. The aperture stop is usually at the eye locations in front of the optics and is decentered to model the standard interpupillary eye distance of 64 mm . The first zoom position decenters the stop -32 mm in X-direction for the left eye while the second zoom position decenters it +32 mm in X -direction for the right eye. The stop diameter is set in accordance to the diameter of the eye pupil (typically 5 mm). Figure 14.16 indicates the preferred condition.

Figure 14.16: Optical setup for biocular analysis. Left and right eyes are modelled by small decentered apertures via two zoom positions.
\begin{tabular}{|c|c|}
\hline BIO FOV|CON|DIP [? \({ }^{\text {d }}\) NUM] & \begin{tabular}{l}
Biocular analysis. \\
FOV : Plot biocular field-of-view \\
CON : Plot convergence/divergence \\
DIP : Plot dipvergence \\
NUM : optional parameter, outputs numerical data. \\
Example: BIO FOV NUM ? : Plots biocular FOV, outputs numerical data and invokes a dialog box for setting analysis parameters.
\end{tabular} \\
\hline BIO FOVX|FOVY fov_min fov_max & \begin{tabular}{l}
Defines field-of-view (FOV) in horizontal (FOVX) or vertical (FOVY) direction. Values must be given in degrees. \\
Examples: \\
BIO FOVX -15 +15 : Defines horizontal FOV from -15 to +15 degrees. \\
BIO FOVY -12 +12 : Defines vertical FOV from 12 to +12 degrees.
\end{tabular} \\
\hline ```
BIO STPX|STPY step_x
step_y
``` & Angular steps in horizontal (STPX) and vertical (STPY) directions. The total field-of-view is therefore scanned by a rectangular array with FOVX/STPX sampling points horizontally and FOVY/STPY sampling points vertically. \\
\hline BIO LEFT|RIGHT zk & \begin{tabular}{l}
Specifies the zoom/multi-configuration position representing the left or right eye, respectively. Requires that the optical system is a zoom/multi-position system. Example: \\
BIO LEFT z1: Position 1 is taken as the left eye. \\
BIO RIGHT z2: Position 2 is taken as the right eye.
\end{tabular} \\
\hline BIO FACT scale_factor & The scale factor converting chief ray differences at the display into angular aberrations. Since scale_factor is constant for all viewing angles, a linear (perfect) optical system is assumed as a reference. \\
\hline
\end{tabular}

\section*{Example:}

An example system showing the use of the biocular option is found in the examples directory \$i\examples \biocular\biocular_1.otx, as shown in Fig. 14.17. This is a zoom system with two positions, each position representing the left and right eye respectively. The left eye pupil is decentered at \(X=-32 \mathrm{~mm}\), the right eye pupil is decentered at \(X=+32 \mathrm{~mm}\), giving a total pupil distance of a typical human body of 64 mm .

The apparent field of view (FOV) is limited for both eyes because the lens diameters are limited in size (see FHY command) and therefore truncate rays at extreme \(\pm X\) viewing directions. This condition does allow a biocular view (i.e. with both eyes simultaneously) only in the central field of view, but not over the full field. The fields, seen by the left and right eye, respectively, are indicated in the field of view (FOV) plot (see BIO FOV command, and Fig. 14.18).

The convergence and divergence plots, as shown in Fig. 14.19, indicate the amount of accommodation required by the human eye to get sharp vision at various field points.


Figure 14.17: Biocular system with left and right eye modelled in a zoom configuration. Here shown as a 3D wire grid view.

\subsection*{14.2 Diffraction Analysis}

\subsection*{14.2.1 Diffraction Modulation Transfer Function (MTF)}

The diffraction Modulation Transfer Function (MTF) takes into account the extended nature of objects. It is a measure of the accuracy with which different frequency components are reproduced in the image. By default the sine wave MTF is calculated. Note, that the accuracy of the MTF calculation also depends on the density of the ray grid going through the system. CheckNRD. The MTF is always calculated for the current zoom position. Use POS command to select a different position.
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
Plot Modulation Transfer Function versus: \\
FRE = spatial frequency
\end{tabular} \\
MTF FRE \(\mid\) FLD \(\mid\) DEF [NUM] \\
FLD = fields (default) \\
DEF = defocus \\
The optional parameter NUM gives a numerical table instead of \\
a plot.
\end{tabular}\(|\)\begin{tabular}{l} 
Calculates mean value of sagittal and tangential MTF at the \\
specified field points (fi..j), wavelengths (wi \(\ldots\) ) and \\
zoom position zi. Produces numerical output only. MTF is \\
lomputed at spatial frequency defined by the MFR command \\
(see below). The resulting MTF values are in the range between \\
0 and 1. When used as a function in UGR or optimization, only \\
one field or zoom position can be specified.
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline MTFS [fi..j wi..j zi] & \begin{tabular}{l} 
Calculate MTF in sagittal direction at specified field points \\
\((f i . . j\) ), wavelengths (wi. .j) and zoom position zi. Pro- \\
duces numerical output only. MTF is computed at spatial fre- \\
quency defined by the MFR command (see below). The result- \\
ing MTF values are in the range between 0 and 1. When used \\
as a function in UGR or optimization, only one field or zoom \\
position can be specified.
\end{tabular} \\
\hline MTFT [fi..j wi..j zi] & \begin{tabular}{l} 
Calculate MTF in tangential (meridional) direction at specified \\
field points (fi. .j), wavelengths (wi. .j) and zoom position \\
zi. Produces numerical output only. MTF is computed at spa- \\
tial frequency defined by the MFR command (see below). The \\
resulting MTF values are in the range between 0 and 1. When \\
used as a function in UGR or optimization, only one field or \\
zoom position can be specified.
\end{tabular} \\
\hline MTF2D [fi|zi|max_freq] & \begin{tabular}{l} 
Plot 2-dimensional MTF at specified field point fi and zoom \\
position zi for a maximum spatial frequency max freq. \\
MTF2D without any parameter uses field1, zoom position 1.
\end{tabular} \\
\hline MFR max_freq & \begin{tabular}{l} 
Maximum spatial frequency used in MTF analyses vs. spatial \\
frequency. It is given in Lp/mm for focal systems, in Lp/mad \\
for afocal systems. See also MFRF which defines the maximum \\
frequency for MTF vs. field analyses.
\end{tabular} \\
\hline MFRF max_freq-field & \begin{tabular}{l} 
Maximum spatial frequency used in MTF analyses vs. field. \\
It is given in Lp/mm for focal systems, in Lp/mrad for afocal \\
systems. See also MFR which defines the maximum frequency \\
for MTF vs. frequency analyses.
\end{tabular} \\
\hline MFRD max_freq_defocus & \begin{tabular}{l} 
Maximum spatial frequency used in MTF analyses vs. defocus. \\
It is given in Lp/mm for focal systems, in Lp/mrad for afocal \\
systems.
\end{tabular} \\
\hline \begin{tabular}{l} 
IFR \\
frequency_increment
\end{tabular} & \begin{tabular}{l} 
Increment in frequency (in Lp/mm for focal systems, in \\
Lp/mrad for afocal systems). The default id MFR/20.
\end{tabular} \\
\hline \begin{tabular}{l} 
AFR \\
autofocus_frequency \\
or \\
MFRA \\
autofocus_frequency
\end{tabular} & \begin{tabular}{l} 
Spatial frequency used in autofocus option. It is given in \\
Lp/mm for focal systems, in Lp/mrad for afocal systems
\end{tabular} \\
\hline
\end{tabular}

The calculation of the modulation transfer function follows the treatment of Malacara 33]
\[
\begin{equation*}
\hat{H}\left(f_{x}, f_{y}\right)=\iint_{-\infty}^{+\infty} \hat{P}(x, y) \hat{P}^{*}\left(x-\lambda R f_{x}, y-\lambda R f_{y}\right) d x d y \tag{14.30}
\end{equation*}
\]
where \(R\) is the reference radius and \(\left(f_{x}, f_{y}\right)\) are the spatial frequencies in either x - or y -direction. Complex quantities are indicated by carets \({ }^{\wedge}\) on the corresponding symbols. \(\hat{P}(x, y)\) is the pupil function defined by
\[
\begin{equation*}
\hat{P}(x, y)=A(x, y) e^{i k \cdot W(x, y)} \tag{14.31}
\end{equation*}
\]
where \(W(x, y)\) is the wavefront deformation, \(A(x, y)\) is the amplitude of the wave and \((x, y)\) are the coordinates in the exit pupil. Thus, the pupil function gives the variation in amplitude and phase across the exit pupil of the system. The phase is deduced from the wavefront aberration and the


Figure 14.18: Biocular field of view example.
amplitude is derived from the intensity of each ray \({ }^{2}\) across the exit pupil of the system. We also note the relation of amplitude and intensity response
\[
\begin{equation*}
I(x, y)=[A(x, y)]^{2} \tag{14.32}
\end{equation*}
\]

In almost all textbooks on optics, a uniformly illuminated pupil is assumed and since for this condition \(A(x, y)\) and \(I(x, y)\) are constant (unity) at every point within the aperture, it can be omitted. However, when the transmission property of the pupil is disturbed (e.g. by obstructions of the pupil or by apodization), the amplitude factor will accurately model these effects.
We can now write the integral explicitly
\[
\begin{equation*}
\hat{H}\left(f_{x}, f_{y}\right)=\iint_{-\infty}^{+\infty} \bar{A} \cdot e^{i k \cdot W(x, y)} e^{-i k \cdot W\left(x-\lambda R f_{x}, y-\lambda R f_{y}\right)} d x d y \tag{14.33}
\end{equation*}
\]
with
\[
\begin{gather*}
\bar{A}=A(x, y) \cdot A\left(x-\lambda R f_{x}, y-\lambda R f_{x}\right)  \tag{14.34}\\
k=2 \pi / \lambda \tag{14.35}
\end{gather*}
\]

The integral of equation 14.33, when normalized with respect to its value at \(f_{x}=f_{y}=0\), is called the optical transfer function (OTF). It represents the convolution of the pupil and the laterally sheared image of it. Thus, the frequency response \(\hat{H}\left(f_{x}, f_{y}\right)\) for incoherent illumination, apart from a constant factor, is the auto-correlation function of the pupil function. The optical transfer function is a complex quantity, its real part is called the modulation transfer function (MTF), the imaginary part

\footnotetext{
\({ }^{2}\) In this context we mean the apparent intensity of rays passing the system at different pupil coordinates \((x, y)\). Intensity variation across the pupil occurs if the system exhibits varying transmission as a function of pupil coordinate (for example in systems with high numerical aperture) or if the source itself does not emit uniformly over spatial coordinates (e.g. apodization in laser applications).
}


Figure 14.19: Biocular convergence/divergence example.
is the phase transfer function (PTF).

Square Wave MTF : (reserved for future releases)
The square wave response is calculated by resolving the square wave into its Fourier components and taking the sine wave response to each component:
\[
\begin{equation*}
S(v)=\frac{4}{\pi}\left[M(v)-\frac{M(3 v)}{3}+\frac{M(5 v)}{5}-\frac{M(7 v)}{7}+\ldots\right] \tag{14.36}
\end{equation*}
\]
with:
\[
\begin{array}{ll}
S(v) & =\text { square wave MTF } \\
M(v) & =\text { sine wave MTF } \\
v & =\text { spatial frequency }
\end{array}
\]

\subsection*{14.2.2 Point Spread Function (PSF)}

The diffraction point spread function (PSF) describes the intensity of the diffraction image formed by the optical system of a single point source in the object space. The point spread function is computed from the wavefront in the exit pupil of an optical system by a double Fourier integral as given in Eq. 14.39. Aperture obstructions and non-uniform illumination of the aperture (apodization) are correspondingly taken into account. In case of polychromatic analysis, the monochromatic PSF's are integrated over the wavelengths according to the assigned wavelength weights.
The amplitude distribution \(A(x, y)\) in the exit pupil and the corresponding wavefront aberration \(W(x, y)\) define the complex pupil function \(P(x, y)\). The normalized coordinates in the exit pupil are \((x, y)\).


Figure 14.20: Diffraction PSF in perspective view.
\[
P(x, y)=\left\{\begin{array}{l}
A(x, y) e^{2 \pi j \cdot W(x, y) / \lambda}  \tag{14.37}\\
0
\end{array}\right.
\]

The pupil function \(P\) is zero outside the pupil. The intensity distribution \(I(x, y)\) in the exit pupil is given by
\[
\begin{equation*}
I(x, y)=[A(x, y)]^{2} \tag{14.38}
\end{equation*}
\]

The diffracted irradiance \(|h(u, v)|^{2}\) of a point-source object in the image plane with coordinates \((u, v)\) is well approximated by
\[
\begin{equation*}
|h(u, v)|^{2}=\frac{\left[\iint_{-\infty}^{+\infty} P(x, y) e^{-2 \pi j(x \cdot u+y \cdot v)} d x d y\right]^{2}}{\left[\iint_{-\infty}^{+\infty} P(x, y) d x d y\right]^{2}} \tag{14.39}
\end{equation*}
\]

\subsection*{14.2.2.1 Patch Size}

A Fast Fourier Transform (FFT) is used to compute the integral in Eq. 14.39. Due to the unit transformation properties of the Fourier Transform, there is a relation between the sampling in the exit pupil of the optical system (defined by the ray grid, see NRD command) and the sampling period in the image plane. Thus, the computed area in the image plane is a function of three parameters, the sampling period in the exit pupil, the reference wavelength and the numerical aperture of the optical system. The default sampling in the exit pupil is a grid of \(32 \times 32\) rays \((\mathbb{N} R D=32)\). The maximum patch size in the image plane which can be calculated is then determined by
\[
\begin{equation*}
x_{\text {image }}=\frac{\lambda N_{p}}{2 \cdot \sin \left(u^{\prime}\right)} \tag{14.40}
\end{equation*}
\]
with :
```

$\lambda \quad=$ wavelength in μm
$u^{\prime}=$ numerical aperture in image space
$N_{p}=$ number of sampling points across pupil (see NRD command)

```

If necessary, the maximum allowed patch size can be increased by increasing NRD (number of rays across diameter). Image patches smaller than the default value (i.e. calculated by Eq. 14.40) can be freely specified.
Another technique for the computation of the PSF is the direct integration of the complex pupil function (Huygens). This method allows direct specification of the image patch, however, it is computing intensive. It is therefore only available for the cross sectional PSF in two orthogonal sections (see PSF XY command).
\begin{tabular}{|c|c|}
\hline ```
PSF fk [zk]
    [VIE|GRY| CON|XY|ZOO|
norm|log] [img_size]
``` & \begin{tabular}{l}
Calculate and plot diffraction point spread function (PSF). The parameter are: \\
PSF VIE: perspective plot of the PSF \\
PSF GRY: gray level plot of PSF \\
PSF TRU: pseudo true-colour plot of PSF. The colour components, contributing to the polychromatic PSF are coded into a rgb-model to give an impression of chromatic aberrations in the PSF. \\
PSF FAL: "false" colour PSF. The intensity of the PSF is coded into a rgb-model. Blue colour represents low intensities, red colour represents high intensities. \\
PSF CON: contour plot of PSF \\
PSF XY: cross sectional plots (in X- and Ydirection) \\
PSF ZOO: zoom (resample) the PSF to a desired image area. \\
norm: can be used in conjunction with PSF VIE and normalizes the PSF to unity, independent of the actual value of the Strehl-ratio. \\
log : plots the PSF on a logarithmic scale. \\
img_size: Size of the image patch. See sect. 14.2.2.1 for restrictions on patch size.
\end{tabular} \\
\hline ```
PSF FF patch [FIL
file_name] [?]
``` & Full field PSF. The gray-scale PSF is computed at nine discrete field points within the maximum field. See also section 14.2.5 for a detailed description. \\
\hline PSF DF [img_size | fi..j] & Diagonal field PSF. The PSF is computed at all specified field points and displayed in a single gray-coded bitmap. See also section 14.2.4 and Fig. 14.21. \\
\hline PSF fk [zk] [img_size] FIL file_name & Write PSF intensity data to file file_name. The file written is a ASCII-file with \(4 *\) NRD columns and rows. \\
\hline
\end{tabular}

\subsection*{14.2.2.2 Exporting PSF-Data}

Intensity distributions resulting from point spread function (PSF) calculations may also be written to a file. The file format is plain ASCII as described in sect. 32.12.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
PSF fk [zk] [img_size] FIL \\
file_name
\end{tabular} & \begin{tabular}{l} 
Write PSF intensity data to file file_name. The \\
file format is either ASCII or Excel, defined by
\end{tabular} \\
the file extension \((*\). txt or \(*\). dat for ASCII, \\
\(* . x l s\) for Excel). The number of rows and \\
columns is \(4 * N R D\), i.e. NRD 32 will write a 128 \\
\(x 128\) matrix. See sect. 32.12 for a description of \\
the file format.
\end{tabular}

\subsection*{14.2.3 PSF Diameter in \(X\) and \(Y\), Ellipticity}

The diameter of a PSF can be calculated along two slices, in \(x\) - and \(y\)-direction. The intensity level at which the diameter is calculated can be freely defined. By default this level is at the \(1 / \epsilon^{2}\) intensity.
\begin{tabular}{|l|l|}
\hline & \\
PSD fi zi [threshold] & \begin{tabular}{l} 
Calculates diameter of PSF for a given field fi and \\
zoom position zi. By default, the diameter is mea- \\
sured in the Y-direction and is determinated at a cer- \\
tain intensity level, defined by the threshold, a \\
value between 0 and 1. threshold is optional \\
with a default value \(=1 / e^{2}=0.135\). \\
Example: \\
psd f1 z3 0.135 Calculate the diameter of the \\
PSD in Y-direction at an intensity threshold of 0.135
\end{tabular} \\
\hline PSDX fi zi [threshold] \\
\begin{tabular}{l} 
Or \\
PSDY fi zi [threshold]
\end{tabular} & \begin{tabular}{l} 
Calculates diameter of PSF in X-direction or in Y- \\
direction for a given field fi and zoom position zi. \\
The diameter is determinated at a certain intensity \\
level, defined by the threshold, a value between \\
0 and \(1 . \quad\) threshold is optional with a default
\end{tabular} \\
\hline value \(=1 / e^{2}=0.135\).
\end{tabular}

\subsection*{14.2.4 Diagonal Field PSF}

It is sometimes desirable to simultaneously show the dependency of the PSF over the whole field of view instead for a single object point only, as (for example) provided by thePSF GRY command. To accomplish this, the PSF is computed at all field points specified in the field configuration (page 44) and displayed in a single bitmap image. Usually, for rotationally symmetric systems, fields are selected from the axis (center of field) to the maximum field, the diagonal of the \(x\) - and \(y\)-fields. Hence the name diagonal-field PSF. However, this option is also well suited for analysis of non-rotationally symmetric systems if the field points are appropriately specified in x - and y -directions.


Figure 14.21: Diagonal field PSF as gray-coded bitmaps, using the PSF DF command.

\subsection*{14.2.5 Grid Field PSF}

This option calculates the diffraction PSF at discrete field points arranged in a grid and displays the resulting PSF's as gray-scale images in a single bitmap image. Note, however, that the PSF's are always calculated including all wavelengths and corresponding weights whereas only the display is gray-scale.
This calculation takes the maximum (full) field circle as defined in the field configuration (page 44) and fits a square grid of field points into this circle. The field can be divided into grids defined by \(3 \times 3\) and \(5 \times 5\) field points. Currently the grid numbers can only be defined from the option dialog (use PSF FF ? command to invoke the dialog).
\begin{tabular}{|c|c|}
\hline ```
PSF FF [patch] [FIL file_name]
    [?]
or
PSF GRD [patch] [FIL
file_name] [?]
``` & \begin{tabular}{l}
Calculates PSF at discrete field points arranged in a grid enclosed in the full-field circle. The patch size (patch) is the area at the image plane. If omitted or 0 , patch is calculated automatically on the basis of NRD, wavelength and numerical aperture of the system. \\
The resulting grid image may be saved to a bitmap file where the file extension defines the file format. For example, *. bmp \(=\) Windows bitmap, *. pcx \(=\) ZSoft PC Paintbrush, * . png = Portable Network Graphics. \\
Example: \\
psf grd 0.05 fil c:\psf.bmp
\end{tabular} \\
\hline
\end{tabular}

\section*{Example Commands:}
```

psf ff
psf ff ?
psf ff 0.05
psf ff 0.05 fil
'c:\temp\psf.bmp'

```

Calculates PSF's on a \(3 \times 3\) field grid with automatic scaling of image area (patch).
Invokes a dialog box for editing parameters
Calculates PSF's on a \(3 \times 3\) field grid with fixed scaling (0.05 mm) of image area (patch)
Calculates PSF's on a \(3 \times 3\) field grid with fixed scaling (0.05 mm) of image area and writes the grid image to file \(c: \ t e m p \backslash p s f . b m p\). Note that the apostrophes are only required in case of blanks in file name or folder name.

Two examples of a full-field (grid) PSF are given in Fig. 14.22

Figure 14.22: Full field (grid) diffraction PSF. Left: \(3 x 3\) field grid with X/Y field coordinates, right: 5x5 field grid.

Rendering of the PSF-images at each grid point may be reversed in case of systems with intermediate images. This option is currently only available via the option dialog box (i.e use command PSF GRD ?).

\subsection*{14.2.6 X/Y Cross Sections of PSF}

Plots cross sections of the PSF in both X-section (sagittal) and Y-section (tangential) for each field specified. The PSF is referred to the coordinates of the chief ray at the reference wavelength. For afocal systems (see AFO YES), units are measured in milli-radians (mrad).

\subsection*{14.2.7 Extended Objects (Fourier Method)}

This section deals with image analysis of spatially coherent and spatially incoherent objects of finite extension. It is based on Fourier theory and accounts for the limited frequency response, aberrations and diffraction effects of real optical systems on image formation. The user should be familiar with Fourier Optics (see for example the excellent book by J.Goodman, Ref. [17]) before meaningful conclusions can be drawn from this analysis.

Figure 14.23: X/Y cross section of PSF

When we speak of extended objects, or alternatively and equivalently of extended images, the spatial extension of the object area must be small so that the optical transfer function (OTF) of the optical systems does not change noticeably. Thus, for a selected field point the object of interest must be confined to the region for which the OTF remains stable.

The extended images calculated by this option may also be exported to files. Currently the INT-format (see section 32.11) and a "raw" format are available. The data in the "raw" file span the numerical range between 0 and 1 . Export to INT or "raw" files, however, is only possible from the option dialog of an extended image window.

Since the algorithm used for calculating the extended image is based on Fast Fourier Transforms (FFT), the physical size of the object array respectively the maximum allowed size of the extended object \(x_{\text {object }}\) cannot be freely chosen. Due to the unit transformation of the Fourier Transform, the sampling in the exit pupil (see NRD command) and the sampling in the object/image plane are closely related. Thus, the maximum extension \(x\) of the object/image area is defined by the number of sampling points in the pupil (\(N_{p}=\mathrm{NRD}\)), the wavelength used and the numerical aperture \((\sin (u))\).
\[
\begin{align*}
& x_{\text {max.object }}=\frac{\lambda N_{p}}{2 \cdot \sin (u)} \\
& x_{\text {max.image }}=\frac{\lambda N_{p}}{2 \cdot \sin \left(u^{\prime}\right)} \tag{14.41}
\end{align*}
\]

Therefore, a denser aperture sampling (largerNRD) must be chosen to increase the maximum allowed object/image patch.
The object extensions must not be confused with the maximum array extensions, which are defined by Eqs. 14.41. Fig. 14.24 shows the definition of object extensions, which must always be smaller than the array dimensions, independently whether the structure is given in the object space or in the image space.

Figure 14.24: Extended object, definition of object extensions and array extensions.

\section*{Theory:}

To analyse the imaging properties of extended objects (extended images) several assumptions are made. All imaging elements of an optical systems are combined in a single "black box" whose optical interfaces consist of the planes containing the entrance and exit pupils (see Fig. 14.25). It is furthermore assumed that the passage of light between the entrance and exit pupils is completely described by geometrical optics (i.e. using rays).
All diffraction effects are associated with either of these pupils and diffraction which might occur inside the optical system (the black box) is ignored. This point of view is the major difference to the physical optics beam propagation approach (see chapter 16, page 317), which does account for these effects, however, at the expense of increased computing overhead.
In describing the underlying theory of extended source imaging we shall follow the excellent description of Fourier optics by Goodman [17]. In this section only a condensed summary is given. The reader interested in a more complete treatment may wish to consult Goodman's book.

Figure 14.25: Generalized black-box model of an optical system.

The image amplitude \(U_{i}(u, v)\) is represented by the superposition integral
\[
\begin{equation*}
U_{i}(u, v)=\iint_{-\infty}^{\infty} h(u, v) U_{0}(\xi, \eta) d \xi d \eta \tag{14.42}
\end{equation*}
\]
where \(h(u, v)\) is the (complex) amplitude in the image plane in response to a point-source object at coordinates \((\xi, \eta)\) and \(U_{0}(\xi, \eta)\) is the amplitude distribution of the object. For an ideal (diffraction limited) system, \(h\) is simply the Fraunhofer diffraction pattern of the exit pupil, centered at coordinates \(u=m \cdot \xi, v=m \cdot \eta\) where \(m\) is the magnification. See also section 14.2.2, in particular Eq. 14.39, for computation of \(h\).
In the general case, for an aberrated system, we can regard the image as being a convolution of the image predicted by geometrical optics with an impulse response that is the Fraunhofer diffraction pattern of an aperture with amplitude transmittance \(P\), where \(P\) is defined as
\[
\begin{equation*}
P(x, y)=A(x, y) e^{j k W(x, y)} \tag{14.43}
\end{equation*}
\]
\(W(x, y)\) is the wavefront aberration as predicted by the optical path difference (OPD) with respect to a reference sphere and \(A(x, y)\) is the relative amplitude in the exit pupil. Eq. 14.43 is equivalent to the optical transfer function (OTF) for the coherent case.
Using Fourier optics, we define the frequency spectra of the components
\[
\begin{align*}
G_{0}\left(f_{x}, f_{y}\right) & =\iint_{-\infty}^{\infty} U_{0}(u, v) e^{-2 \pi j\left(f_{x} u+f_{y} v\right)} d u d v \tag{14.44}\\
G_{i}\left(f_{x}, f_{y}\right) & =\iint_{-\infty}^{\infty} U_{i}(u, v) e^{-2 \pi j\left(f_{x} u+f_{y} v\right)} d u d v \tag{14.45}\\
H\left(f_{x}, f_{y}\right) & =\iint_{-\infty}^{\infty} h(u, v) e^{-2 \pi j\left(f_{x} u+f_{y} v\right)} d u d v \tag{14.46}
\end{align*}
\]

Applying the convolution theorem, it follows directly that
\[
\begin{equation*}
G_{i}\left(f_{x}, f_{y}\right)=H\left(f_{x}, f_{y}\right) G_{0}\left(f_{x}, f_{y}\right) \tag{14.47}
\end{equation*}
\]
where we have expressed the effects of imaging in the frequency domain.

\section*{The coherent case:}

For coherent imaging, the optical transfer function \(H\left(f_{x}, f_{y}\right)\) can be directly related with the amplitude transmittance \(P\)
\[
\begin{equation*}
H\left(f_{x}, f_{y}\right)=P\left(\lambda z_{i} f_{x}, \lambda z_{i} f_{y}\right) \tag{14.48}
\end{equation*}
\]
where \(z_{i}\) is the distance from the exit pupil to the image plane.

\section*{The incoherent case:}
\[
\begin{equation*}
H\left(f_{x}, f_{y}\right)=\frac{\mathcal{F}|h(u, v)|^{2}}{\iint|h(u, v)|^{2} d u d v} \tag{14.49}
\end{equation*}
\]
which is equivalent to Eq. 14.46, except that the phase information of the complex amplitude of the point-source image is rejected. \(H\) now specifies the complex weighting factor applied by the system to the frequency component at \(\left(f_{x}, f_{y}\right)\). Note that the modulus \(|H|\) is known as the modulation transfer function (MTF). See also section 14.2.1, where the autocorrelation method is used to calculate \(|H|\).

\section*{Operator Notation:}

Both coherent and incoherent imaging can also be expressed in operator notation, where \(\mathcal{F}\) denotes Fourier Transform and \(\mathcal{F}^{-1}\) denotes the inverse Fourier Transform.
Coherent case:
\[
\begin{equation*}
U_{i}(u, v)=\mathcal{F}^{-1}\left[\mathcal{F}\left[U_{0}(\xi, \eta)\right] P(x, y)\right] \tag{14.50}
\end{equation*}
\]

Incoherent case, without explicit notation of the normalization integral in Eq.14.49:
\[
\begin{equation*}
U_{i}(u, v)=\mathcal{F}^{-1}\left[\mathcal{F}\left[U_{0}(\xi, \eta)\right] \mathcal{F}^{-1}\left[|h(u, v)|^{2}\right]\right] \tag{14.51}
\end{equation*}
\]

\subsection*{14.2.8 Knife Edge Function (KEF)}

The knife edge function, also called "edge spread function" or "slant edge function", calculates the response of a "sharp edge" in the image plane.
\begin{tabular}{|l|l|}
\hline KEFS \(£ k\) & \begin{tabular}{l}
Compute the width of the knife edge function (KEF) in the sagittal di- \\
rection at field \(£ k\). Typically, the width is defined by the \(10 \%\) and \(90 \%\) \\
intensity points of the KEF. See the KEFL and KEFH commands to set \\
the intensity levels of the KEF.
\end{tabular} \\
\hline KEFT \(£ k\) & \begin{tabular}{l}
Compute the width of the knife edge function (KEF) in the tangential \\
direction at field \(£ k\).
\end{tabular} \\
\hline KEFL I_low I_high & \begin{tabular}{l}
Set the low and high intensity levels for calculating the width of the knife \\
edge function. The levels must be entered in percent (\%). Default values \\
are I_low = 10, I_high = 90.
\end{tabular} \\
\hline KEFH I_high & \begin{tabular}{l}
Set the high intensity level for calculating the width of the knife edge \\
function. The level must be entered in percent (\%). Default value is \\
I_high = 90.
\end{tabular} \\
\hline PLO KEF £k [?] & \begin{tabular}{l}
Plot knife edge function (KEF) in sagittal and tangential directions at \\
field fk. The optional question mark invokes a dialog box for editing \\
plotting and calculation parameters. Specify a field number \(£ k\), other- \\
wise the field from a previous calculation will be used (default \(f k=1\)).
\end{tabular} \\
\hline
\end{tabular}

\subsection*{14.2.9 Encircled / Ensquared Energy (Diffraction based)}

The encircled energy is the fraction of total energy in the point image enclosed within a circle or square of a given size. This type of analysis is particularly useful on a detector array with square pixels to determine which fraction of total energy is contained within the size of one pixel.
Encircled/ensquared energy calculations are based on integration of the diffraction point spread function (PSF) referred to the centroid of the diffraction PSF.
The accuracy of the calculation depends on the ray grid (seeNRD, number of rays across diameter). The larger NRD (i.e. the denser the rays in the pupil are) the more accurate results can be obtained.
\begin{tabular}{|c|c|}
\hline ECE fk diam & Compute encircled energy within a diameter (diam) at field fk. Calculation is referred to the center of gravity of the PSF function. See also the EQE command below. \\
\hline EQE fk diam & Compute ensquared energy within a diameter (diam) at field fk. Calculation is referred to the center of gravity of the PSF function. \\
\hline \[
\begin{aligned}
& \hline \text { PLO ECE } \mid E Q E \text { fk } \\
& \text { diam [NUM] [?] }
\end{aligned}
\] & Plot encircled or ensquared energy within diameter (diam) at field fk. Calculation is referred to the center of gravity of the PSF function. The optional question mark invokes a dialog box for editing plotting and calculation parameters. Specify a field number \(£ k\), otherwise the field from a previous PSF or ECE calculation will be used (default \(£ k=1\)). The parameter NUM outputs encircled/ensquared energy data numerically in the text window. Two curves will be plotted for encircled energy and ensquared energy separately. The ensquared energy curve is always higher than the encircled energy curve. \\
\hline
\end{tabular}

\section*{Notes:}

The encircled/ensquared energy is computed from the diffraction point spread function (PSF). First, the center of gravity of the PSF function is searched and from that point integration over the diameter is started. In case of non-symmetric PSF-distributions, however, the center of gravity will not be in the center of the computational FFT-grid and the integration range may be smaller than computed in the FFT-grid. The corresponding encircled energy plot will then report a smaller integration range than requested.

\subsection*{14.2.10 Strehl Ratio}

The Strehl ratio (also called Strehl definition) is the ratio of the peak value of the PSF to the peak of the PSF for an equivalent ideal (unaberrated) system. The Strehl ratio is a number between 0 and 1 , where a Strehl ratio 1 corresponds to the ideal system.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
STREHL [zi..j fi..j \\
wi..j]
\end{tabular} & \begin{tabular}{l}
Numerical output of Strehl ratio for zoom positions \\
zi..j fields fi..j and wavelengths wi..j
\end{tabular} \\
\hline PLO STREHL FLD & Plot Strehl ratio vs. field \\
\hline \begin{tabular}{l}
PLO STREHL LAM [y-min \\
\(y-m a x]\)
\end{tabular} & \begin{tabular}{l}
Plot Strehl ratio vs. wavelength. The Y-plot range can \\
be adjusted by the optional parameters y-min, y-max \\
(range \(0-1)\).
\end{tabular} \\
\hline
\end{tabular}

The Strehl ratio is computed from the complex pupil function \(P(x, y)\) by
\[
\begin{equation*}
\text { STREHL }=\frac{\left[\iint P(x, y) d x d y\right]^{2}}{\left[\iint A(x, y) d x d y\right]^{2}} \tag{14.52}
\end{equation*}
\]
where the integration takes place over the exit pupil with coordinates \((x, y) . A(x, y)\) is the amplitude distribution in the exit pupil as defined in Eq. 14.37.

It is interesting to note that for systems with small aberrations the Strehl ratio is directly related to the variance of the wavefront \((\triangle W)^{2}\)
\[
\begin{equation*}
S T R E H L \sim 1-\left(\frac{2 \pi}{\lambda}\right)^{2}(\triangle W)^{2} \tag{14.53}
\end{equation*}
\]

\subsection*{14.2.11 Wavefront Aberration (Optical Path Difference)}

The wavefront aberration (or optical path difference) is the departure of the actual wavefront from the reference sphere. The reference sphere has its center of curvature at the geometrically perfect point image. There is some freedom in choosing the radius of the reference sphere. By default, OpTaliX locates the reference sphere in the exit pupil of the optical system. For the purpose of calculating the wavefront, the center of the reference sphere is always at the location of the chief ray in the image plane. Note, that in other diffraction calculations (e.g. MTF) the minimum variance of the wavefront for all wavelengths is chosen.

Wavefront calculations always include phase changes introduced by coatings on optical surfaces, if applied. This effect is normally small, however, may noticeable affect wavefront on systems with steep incidence angles (e.g. wide-field systems or high numerical aperture systems). See also section 20.6.
\begin{tabular}{|c|c|}
\hline WAV [TLT] [fi..j | wi..j
| zi..j] & Evaluate RMS wavefront aberration at fields fi..j, wavelengths wi..j or zoom positions zi..j. Output is given numerically. By default wavefront tilt is not subtracted. The TLT option, however, allows subtraction of wavefront tilt. \\
\hline WAVZ [fi..j| wi..j
zi..j] & Evaluates RMS wavefront aberration as in the WAV command given above, however, allows subtraction of Zernike wavefront components like defocus, astigmatism, etc. Any order of Zernike terms is permitted. Use the ZWACT command (page 147 to define the Zernike terms to be subtracted prior to evaluating RMS wavefront aberration. Numerical output only. \\
\hline PLO WAV [FLD | LAM]
[TLT] [zk] & Plot wavefront aberration vs. field (FLD) or wavelength (LAM). The default is FLD. A plot scale (in microns) is queried in a dialog box. Choosing plot scale 0 will automatically adjust the scale to the maximum wavefront aberration at each field/wavelength/zoom position. By default wavefront tilt is not subtracted. The TLT option, however, allows subtraction of wavefront tilt. \\
\hline OPD [fi..j | wi..j |
zi..j] rel_apex rel_apeY & Optical path difference (in mm) along a single ray, referred to the chief ray. \\
\hline OPDW [fi..j | wi..j |
zi..j] rel_apeX rel_apeY & Optical path difference along a single ray, expressed in wave units at the reference wavelength. \\
\hline
\end{tabular}

Figure 14.26: Wavefront aberration, shown for one discrete field point.

\subsection*{14.2.12 Conrady D-d Chromatic Aberration}
```

DMD [fk|fi..j wk|wi..j]

```
x_ape y_ape

Conrady D-d chromatic aberration expressed as wavelength difference at given wavelengths. Uses spectral weights as defined in the system configuration (page 48). A detailed description of Conrady's D-d chromatic aberration is given in section 14.2.12, page 283).

In achromats or apochromats, correcting the axial chromatic aberration for paraxial rays (for example see SSR command) does not mean that the longitudinal (axial) aberration vs. wavelength is also corrected for marginal rays. The variation of spherical aberration with wavelength is called chromatic
spherical aberration, or spherochromatism.
The Conrady method [9] of controlling spherochromatism is defined as
\[
\begin{equation*}
D M D=\sum_{i=0}^{k}(D-d) \cdot\left(n_{F}-n_{C}\right) \tag{14.54}
\end{equation*}
\]
where \(D\) is the optical path of a ray through the aperture center and \(d\) is the optical path for a marginal ray. Often the best choice is to correct the chromatic aberration at an aperture height y - ape \(=0.7\).

\subsection*{14.2.13 Single-Path Interferogram}

Simulates an interferogram as it is expected from the wavefront deformation in a typical interferometer setup. Note that this analysis does not simulate a "true" two-path interferometric setup where two wavefronts physically interfere. It merely relates the optical path difference (wavefront) to the reference wavelength and displays the amount of constructive/destructive interference. Simulation of interferometric setups with two paths (arms) is discussed in the next section (dual-path interferogram).
The analysis accounts for vignetting and special apertures (central obstructions, spider, etc.). A tilt of the (interferometer) reference plane may be introduced to control the orientation of the fringes.

Figure 14.27: Interferogram, computed from wavefront aberration at one discrete field point.

\section*{Command syntax:}
\begin{tabular}{|l|l|}
\hline IFG field_number & \begin{tabular}{l}
Compute the interferogram from the wavefront deformation at \\
the reference wavelength.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{14.2.14 Dual-Path Interferogram}

This option calculates the wavefront of two separate configurations and superimposes it according to the law of constructive/destructive interference. The output signal is therefore similar to that seen in a typical interferometer.
\begin{tabular}{|l|l|l|}
\hline INT2P sk [?] & \begin{tabular}{l}
Two-path interferogram. Traces two paths in an interferometric \\
setup and superimposes the resulting wavefronts. Based on construc- \\
tive/destructive interference of the two wavefronts, the interferometer \\
output is simulated and displayed. The two paths must be defined in a \\
zoom/multi-configuration setup containing at least two positions. sk \\
is the target surface at which the superposition of the two wavefront is \\
analyzed. The optional question mark opens a dialog box for editing \\
more parameters.
\end{tabular} \\
\hline
\end{tabular}

Simulation of two separate paths in an interferometer requires a zoom/multi-configuration setup with at least two positions. An example (Mach-Zehnder interferometer) is shown in Fig. 14.28. See also the examples library in the interferometer section.
The aperture of the target surface defines the area over which the interferogram is constructed. The aperture extension (e.g. CIR, or REY, or ELY) of the target surface should be at least the size of the expected beams to cover the full interferogram.

Figure 14.28: Example of a Mach-Zehnder interferometer with a test piece in arm B. Non-sequential surfaces and zoom configurations create the interferometer. The surface error of the test piece is described by a Zernike deformation.

\subsection*{14.3 Gaussian Beams}

Gaussian beams, such as the laser beam, are highly directional and have a spatially non-uniform (radially symmetric) intensity distribution. Its Fourier transform is also a Gaussian and it remains Gaussian at every point along its path of propagation through the optical system. The Gaussian has no obvious boundaries, so the commonly agreed definition of the size of Gaussian is the radius at which the intensity has decreased to \(1 / e^{2}\) of its value on the axis.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
j | zi..j |?] \\
Gaussian beam analysis at wavelength numbers i..j, zoom positions i..j. The reference wavelength is used if no wavelength range (wi . .j) is given. \\
The input beam has a gaussian intensity profile and starts at the object surface, i.e. the waist of the beam is assumed at the object surface. Analysis requires proper setting of waist size (see WRX, WRY below). \\
The optional question mark invokes a dialog box for editing of WRX, WRY, ZWX, ZWY, RCX, RCY and M2.
\end{tabular} \\
\hline WRX x_rad & \begin{tabular}{l}
[sk |wi..j|zi..j] \\
Waist radius (in mm) in X-direction at object surface, respectively relative to surface sk at zoom position \(\mathrm{zi} . . j \mid \mathrm{zk}\) and wavelength(s) wi..j|wk. Only one parameter may be given in a command, either x_rad or \(s k|z k| w k\). The optional surface parameters si..j|sk, zi..j|zk and wi..j|wk (without x_rad) are only applicable when WRX is used as a function. \\
Examples: \\
wrx 0.005 ! waist X-radius at object plane is 0.005 mm \\
wrx s6 ! returns waist X-radius at surface 6 in buffer for use in UDG or optimization. \\
wrx s6 z3 w2 ! same as above, but returns waist X-radius at surface 6 for zoom position 3 and wavelength 2 in buffer for use in UDG or optimization. Note, that the zk parameter is obligatory for zoomed systems.
\end{tabular} \\
\hline Y Y & \begin{tabular}{l}
[sk |wi..j|zi..j] \\
Waist radius (in mm) in Y-direction at object surface, respectively relative to surface sk at zoom position zk and wavelength(s) wi. .j|wk. Only one parameter may be given in a command, either y_rad or \(\mathrm{sk}|\mathrm{zk}| \mathrm{wk}\). The optional surface parameters si..j|sk, zi..j|zk and wi..j|wk (without y_rad) are only applicable when WRY is used as a function. Examples: \\
wry 0.005 ! waist Y-radius at object plane is 0.005 mm \\
wry s6 ! returns waist Y-radius at surface 6 in buffer for use in UDG or optimization. \\
wry s6 z3 ! same as above, but returns waist Y-radius at surface 6 for zoom position 3 in buffer for use in UDG or optimization. Note, that the \(z k\) parameter is obligatory for zoomed systems.
\end{tabular} \\
\hline X wave & \begin{tabular}{l}
d_x [sk |wi..j|zi..j] \\
Radius of curvature of wavefront in x-direction at object plane, respectively relative to surface sk at zoom position \(\mathrm{zi} . \mathrm{I}_{\mathrm{j}} \mid \mathrm{zk}\) and wavelength(s) wi..j|wk. Only one parameter may be given in a command, either wave_rad or \(s k|z k| w k\). The optional surface parameters si..j|sk, zi..j|zk and wi..j|wk (without wave_rad) are only applicable when RCX is used as a function.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline M2 & \(M^{2}\) factor, describing the departure of real beams from the Gaussian ideal. See also Eq. 14.60. \(M^{2}\) is the amount by which the beam waist product exceeds the diffraction limit of an ideal Gaussian beam of the same wavelength. \(M^{2}=1\) for the ideal beam. \\
\hline & \begin{tabular}{l}
.j zi..j \\
Returns the Gaussian spot size in the \(\mathrm{X} / \mathrm{Z}\) plane at surface sk. It takes the Gaussian source parameters (such as WRX, WRY, RCX, RCY, etc.), hence they must be properly set before this function may be used. This is a function, not a command, to be used in UGR or optimization.
\end{tabular} \\
\hline & \begin{tabular}{l}
.j|zi..j \\
Returns the Gaussian spot size in the \(\mathrm{Y} / \mathrm{Z}\) plane at surface sk. It takes the Gaussian source parameters (such as WRX, WRY, RCX, RCY, etc.), hence they must be properly set before this function may be used. This is a function, not a command, to be used in UGR or optimization.
\end{tabular} \\
\hline & \begin{tabular}{l}
.j|zi..j \\
Returns the divergence of a Gaussian beam in the X/Z plane at surface sk. It takes the Gaussian source parameters (such as WRX, WRY, RCX, RCY, etc.), hence they must be properly set before this function may be used. This is a function, not a command, to be used in UGR or optimization.
\end{tabular} \\
\hline & \begin{tabular}{l}
.j|zi..j \\
Returns the divergence of a Gaussian beam in the \(\mathrm{Y} / \mathrm{Z}\) plane at surface sk. It takes the Gaussian source parameters (such as WRX, WRY, RCX, RCY, etc.), hence they must be properly set before this function may be used. This is a function, not a command, to be used in UGR or optimization.
\end{tabular} \\
\hline & \begin{tabular}{l}
.j|zi..j \\
Returns the Rayleigh range of a Gaussian beam in X-direction at surface sk. It takes the Gaussian source parameters (such as WRX, WRY, RCX, RCY, etc.), hence they must be properly set before this command may be used. This is a function, not a command and may only be used in UGR or optimization.
\end{tabular} \\
\hline & \begin{tabular}{l}
.j|zi..j \\
Returns the Rayleigh range of a Gaussian beam in Y-direction at surface sk. It takes the Gaussian source parameters (such as WRX, WRY, RCX, RCY, etc.), hence they must be properly set before this command may be used. This is a function, not a command and may only be used in UGR or optimization.
\end{tabular} \\
\hline
\end{tabular}

\section*{Mathematics:}

Because of the self-Fourier Transform characteristics, complex integrals to describe the propagation of Gaussian beams are not required, since only the radius of the Gaussian ("spot size") and the radius of curvature of the wavefront change.
The variation of spot size \(w\) and wavefront radius of curvature \(R\) with distance \(z\) can be described explicitly as
\[
\begin{equation*}
w^{2}(z)=w_{0}^{2}\left[1+\left(\frac{\lambda z}{\pi w_{0}^{2}}\right)^{2}\right] \tag{14.55}
\end{equation*}
\]
and
\[
\begin{equation*}
R(z)=z\left[1+\left(\frac{\pi w_{0}^{2}}{\lambda z}\right)^{2}\right] \tag{14.56}
\end{equation*}
\]

The spot size has its minimum value at \(z=0\), which is equal to the beam waist \(u_{0}\). The wavefront radius of curvature becomes infinity at the beam waist as illustrated in Fig. 14.29. The far-field divergence angle \(\theta\) is given by
\[
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{\lambda}{\pi w_{0}}\right) \approx \frac{\lambda}{\pi w_{0}} \tag{14.57}
\end{equation*}
\]

Figure 14.29: Propagation of a Gaussian beam.

The entire beam behaviour is completely specified by any two of the four parameters \(w, u_{\mathrm{p}}, R\) and \(\lambda\). The Rayleigh range is the distance from the waist to the axial point of minimum wavefront radius of curvature
\[
\begin{equation*}
z_{r}=\frac{\pi w_{0}^{2}}{\lambda} \tag{14.58}
\end{equation*}
\]
\(R\) has its minimum value at \(z=z_{r}\). In the free space between lenses, Eqs. 14.55 and 14.56 completely describe the beam. When the beam passes through an optical interface (lens, mirror), the wavefront curvature is changed, resulting in new values for size and position of the beam waist. At the optical interface, the beam diameter does not change.
A so-called \(M^{2}\) factor has been introduced by Siegman[50] to describe the departure of a real beam from a Gaussian ideal beam. From Eq. 14.57 we see that the product of beam waist and far-field divergence angle is constant for a given wavelength
\[
\begin{equation*}
w_{0} \theta=\frac{\lambda}{\pi} \tag{14.59}
\end{equation*}
\]

For a real beam the corresponding product can be written as
\[
\begin{equation*}
M^{2} w_{0} \theta=M^{2} \frac{\lambda}{\pi} \tag{14.60}
\end{equation*}
\]

Thus, the propagation of the spot size of real beams described by an \(M^{2}\) factor is described by the same equation as for an ideal Gaussian.

It has been shown by Kogelnik and Li [27] and Herloski, Marshall and Antos [20], that the propagation and transformation of anastigmatic Gaussian beams can be modelled by an orthogonal characteristic ABCD matrix in the paraxial domain and, furthermore, can be represented by two paraxial rays. Following the model of Arnaud [2], we choose a waist ray (tangent to the input beam at the waist) and a divergence ray (tangent to the input beam at infinity), as shown in Fig. 14.30. Recalling the equations of Kogelnik and Li, we obtain
\[
\begin{align*}
w^{\prime} & =\sqrt{y_{d}^{2}+y_{w}^{2}} \tag{14.61}\\
z^{\prime} & =\frac{y_{d} v_{d}+y_{w} v_{w}}{v_{d}^{2}+v_{w}^{2}} \tag{14.62}\\
w_{0} & =\frac{y_{w} v_{d}-v_{w} y_{d}}{\sqrt{v_{d}^{2}+v_{w}^{2}}} \tag{14.63}
\end{align*}
\]

Figure 14.30: Equivalent paraxial rays for modelling of Gaussian beam propagation.

\subsection*{14.4 Fiber Coupling Efficiency}

Calculation of coupling efficiency (CEF) includes apodization, clipping of the input beam, reflection losses by coated or uncoated surfaces and bulk absorption.
\begin{tabular}{|l|l|l|}
\hline CEF [? | fi | wi] & \begin{tabular}{l}
Calculate linear coupling efficiency (CEF). The question \\
mark (optional) invokes a dialog box for editing proper- \\
ties of source fiber and receiving fiber.
\end{tabular} \\
\hline CEFDB [? | fi | wi] & \begin{tabular}{l}
Calculate coupling efficiency in decibel instead of re- \\
turning the linear value. See also the CEF command \\
above.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline MPR GAU | STE | FIL & \begin{tabular}{l}
Mode profile. Select \\
GAU for Gaussian mode profile, \\
STE for step-index, \\
FIL for user defined profile loaded from file (in preparation).
\end{tabular} \\
\hline FLO FIX|CMP & \begin{tabular}{l}
Fiber location in either a fixed (FIX) or compensated (CMP) position. \\
FIX : The fiber is in a fixed position in the local coordinate system of the image surface (see also the second form of the FLO command below). The location of the fiber is independent of the beam location. \\
CMP : The fiber position follows the chief ray. This is the default mode. The fiber is optimally shifted/tilted to give an optimized coupling efficiency.
\end{tabular} \\
\hline FLO x_pos y_pos & Specify the coordinates of the (receiving) fiber position with respect to the local coordinate system of the image surface. \\
\hline FSR rad_x rad_y & Fiber source radius in X- and Y-direction (in mm). Elliptical source profiles are specified by different values for the x - and y -extension. If only one value is given, the mode profile is assumed circular. \\
\hline FSD div_x div-Y & Far-field fiber source divergence. Elliptical far-fields are specified by different values for the x - and y -extension. If only one value is given, the far-field is assumed circular. \\
\hline FSA alpha_tilt & Fiber source \(\alpha\)-tilt in degree. Specify the rotation angle of the source fiber in the YZ plane. The rotation angle is defined in the local coordinate system. \\
\hline FSB beta_tilt & Fiber source \(\beta\)-tilt in degree. Specify the rotation angle of the source fiber in the XZ plane. The rotation angle is defined in the local coordinate system. \\
\hline FRR mode_radius & Receiving fiber mode-field radius (in mm). \\
\hline FRD div & Far-field divergence of receiving fiber (in rad). \\
\hline FRA alpha_tilt & Receiving fiber \(\alpha\)-tilt in degree. Specify the rotation angle of the receiving fiber in the YZ plane. The rotation angle is defined in the local coordinate system. See also Fig. 14.31 for a definition of signs. \\
\hline FRB beta_tilt & Receiving fiber \(\beta\)-tilt in degree. Specify the rotation angle of the receiving fiber in the XZ plane. The rotation angle is defined in the local coordinate system. See also Fig. 14.31 for a definition of signs. \\
\hline FRX x-offset & Receiving fiber x -offset (in mm) with respect to the chief ray. \\
\hline FRY Y-offset & Receiving fiber y -offset (in mm) with respect to the chief ray. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline WDX wedge_angle_x & Wedge angle (cleavage angle) of the front face of the fiber in the X-direction, i.e. in the local XZ plane. The angle is measured in degree. See also Fig. 14.31 for a definition of signs. \\
\hline WDY wedge_angle_Y & Wedge angle (cleavage angle) of the front face of the fiber in the Y-direction, i.e. in the local YZ plane. The angle is measured in degree. See also Fig. 14.31 for a definition of signs. \\
\hline FSN1 source_core_index & Source fiber, index of refraction \(n_{1}\) of core material \\
\hline FSN2 source_cladding_index & Source fiber, index of refraction \(n_{2}\) of cladding material \\
\hline FSCR source_core_rad & Source fiber, core radius in mm. \\
\hline FRN1 receiver_core_index & Receiving fiber, index of refraction \(n_{1}\) of core material \\
\hline FRN2 receiver_clad_index & Receiving fiber, index of refraction \(n_{2}\) of cladding material \\
\hline FRCR receiver_core_rad & Receiving fiber, core radius in mm. \\
\hline FIBS prod-spec & Specify source fiber by product (e.g. by manufacturers type number). A single command inserts all relevant optical data from a fiber catalogue. This option is currently only available from the menu. \\
\hline FIBR prod-spec & Specify receiving fiber by product (e.g. by manufacturers type number). A single command inserts all relevant optical data from a fiber catalogue. This option is currently only available from the menu. \\
\hline TGR fft_grid & Transformation grid. Because the coupling option uses a Fast Fourier Transform (FFT), a \(2^{n}\) transform grid must be specified. The default value of \(\mathrm{TGR}=128\), but it may be adjusted to \(64,128,256,512\) or 1024 . Smaller values of TGR are not recommended, as the accuracy of the computation will be reduced (sampling density is to coarse). Note, that a change of TGR also affects NRD (number of rays across pupil diameter). The relation is TGR \(=4\) * NRD. \\
\hline FSMM max_modes_source & Fiber source maximum modes. Limits the number of modes calculated in the source fiber. max_modes_source must be less than less than the highest number of possible modes \(N\) in that fiber (see Eq. 14.76). Enter FSMM -1 to always search for all modes possible \((N)\). \\
\hline FRMM max_modes_receiver & Fiber receiver maximum modes. Limits the number of modes calculated in the receiver fiber. max_modes_receiver must be less than the highest number of possible modes \(N\) in that fiber (see Eq. 14.76). Enter FRMM -1 to always search for all modes possible (\(N\)). \\
\hline MMF & Display field of a multi-mode fiber at selected modes. Opens a dialog box for editing fiber parameters. See a detailed description in sect. 14.4.3. \\
\hline
\end{tabular}

\section*{Notes:}
- Coupling efficiency is normally computed for systems with finite object and image distances (fiber-fiber or diode-fiber applications). For systems, where the object is at infinity, the pupil will be assumed uniformly illuminated. All computations are then referred to the total energy incident upon the entrance pupil. Only for this special case, the Gaussian beam profile (e.g. from a collimated laser) must be properly set by the apodization factors PUI, PUX and PUY respectively. For finite object and image distances, apodization should be switched off (PUI=PUX=PUY=1), as the Fourier Transformation property based on the fiber mode profile already yields the correct far-field amplitude profile in the entrance pupil.
- The only approximation made in the computation method as described below is that diffraction effects that occur between entrance and exit pupil are neglected. In many cases this approximation is sufficiently accurate, but in special cases, for example when the beam is very small or when the free space in the optics is large, a diffraction beam propagation method (BPR) must be applied. The Fresnel number is a good indicator, whether CEF or BPR is appropriate. The Fresnel number \(N\) is a property of the beam semi diameter \(w\), wavelength \(\lambda\) and propagation distance \(L\). It is given by \(N=\frac{w^{2}}{\lambda L}\). For small Fresnel numbers \((N<1)\), beam propagation should be used, otherwise CEF can be used with sufficient accuracy.

Figure 14.31: Definition of fiber tilts (FRA, FRB) and cleavage angles (WDX, WDY), here shown in the \(\mathrm{Y} / \mathrm{Z}\) plane only. The sign of the angles is in accordance to surface tilts. It follows mathematical convention, i.e. it is positive for counter-clockwise rotation and negative for clockwise rotation.

The calculation of coupling efficiency (also known as insertion loss) involves components and optical systems, which collect light from a source (a laser, a fiber, etc.) and couple it into a receiving fiber. The basic problem is to account for the effects of aberrations, fiber misalignments and fiber-mode mismatch.
The coupling efficiency \(T\) is defined as the normalized overlap integral of the image field distribution \(U\left(x^{\prime}, y^{\prime}\right)\) and the mode pattern of the receiving fiber \(\psi\left(x^{\prime}, y^{\prime}\right)\)
\[
\begin{equation*}
T=\left|\frac{\iint U\left(x^{\prime}, y^{\prime}\right) \cdot \psi^{*}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}}{\sqrt{\iint U\left(x^{\prime}, y^{\prime}\right) \cdot U^{*}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \iint \psi\left(x^{\prime}, y^{\prime}\right) \cdot \psi^{*}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}}}\right|^{2} \tag{14.64}
\end{equation*}
\]
where \(*\) denotes the complex conjugate. For computational purposes, the method described by Wagner and Tomlinson [57] is applied in OpTaliX for which the overlap integral is transformed to the exit pupil of the coupling optics. The power-coupling efficiency \(T\) is then expressed as a single integral with an integrand that is the product of the complex far-field distributions of the source-fiber mode profile \(\Psi_{S}(\zeta, \eta)\), the far-field distribution of the receiving-fiber mode profile \(\Psi_{R}(\zeta, \eta)\) and the coherent transfer function of the optical system \(L(\zeta, \eta)\)
\[
\begin{equation*}
T=\left|\int \Psi_{S}(\zeta, \eta) \cdot L(\zeta, \eta) \cdot \Psi_{R}(\zeta, \eta) d a\right|^{2} \tag{14.65}
\end{equation*}
\]
where \((\zeta, \eta)\) are the normalized coordinates in the exit pupil. \(\Psi_{S}\) and \(\Psi_{R}\) are the scaled Fourier transforms of the source and receiving fiber mode profiles \(\psi_{s}\) and \(\psi_{r}\) respectively. The coherent transfer function is expressed as \(L=\exp [-i k W(\zeta, \eta)]\) where \(W\) is the wavefront aberration and \(k=2 \pi / \lambda\). Thus, all aberrations (optical system wavefront error, fiber misalignments and mode profile mismatch) are described in the exit pupil of the optical system, allowing coupling effects to be handled in a manner consistent with accepted conventions in classical optics.

Figure 14.32: Transformation of the source profile (fiber or laser) to the entrance pupil of the optical system (not to scale). In the example shown, the numerical aperture (NA) of the coupling system matches the far-field divergence \(\theta\) of the source (which is defined at the \(1 / e^{2}\) point). Hence, only a fraction of the emitted energy is transferred by the coupling optics, because the foot of the Gaussian field is truncated by the aperture stop of the optical system.

Using the quantities and relations given above, the far-field diffraction angle \(\theta\), which is usually defined at the \(1 / e^{2}\) intensity, must not be confused with the numerical aperture (NA) of the fiber and of the coupling optics. For multi-mode fibers the maximum angle of the beam radiated from (or accepted by) a fiber is determined by the refractive index difference between core and cladding and is defined by
\[
\begin{equation*}
N A=\sqrt{n_{1}^{2}-n_{2}^{2}}=n_{1} \sqrt{2 \Delta} \tag{14.66}
\end{equation*}
\]
where
\[
\begin{equation*}
\Delta=\frac{n_{1}^{2}-n_{2}^{2}}{2 n_{1}^{2}} \approx \frac{n_{1}-n_{2}}{n_{1}} \tag{14.67}
\end{equation*}
\]
and \(n_{1}\) is the index of refraction of the core, \(n_{2}\) is the index of refraction of the cladding. NA is conventionally used as a measure of that index difference.
For a single-mode fiber, not only the core-cladding index difference but also the core size (precisely the mode-field diameter) and the wavelength of the light define the angular beam spread. With this definition, about \(25 \%\) of the emitted power propagates at angles larger than \(\theta\) (see also Fig. 14.32). In order to avoid substantial truncation of the beam, the lens NA must be extended beyond the emitted \(1 / e^{2}\) far-field divergence angle \(\theta\). The divergence angle, at which the far-field intensity has fallen to the \(1 \%\) point is about 1.5 times larger than the \(1 / e^{2}\) angle and the lens NA must be oversized by this factor for efficient coupling.
Assuming identical source and fiber modes (i.e. the Gaussian beams perfectly match), the theoretical coupling efficiency can be expressed as a function of the numerical aperture of the optics (NA) and the far-field divergence \(\theta\) of the fiber
\[
\begin{equation*}
T=\left(1-\exp \left[-2\left(\frac{N A}{\theta}\right)^{2}\right]\right)^{2} \tag{14.68}
\end{equation*}
\]

For the above mentioned case, where \(N A / \theta=1.5\), the coupling efficiency is \(0.978(-0.097 \mathrm{~dB})\).

\subsection*{14.4.1 Single-Mode Fibers}

Single-mode fiber applications are different to classical optical imaging in that the source fiber, coupling optics and receiving fiber comprise a coherent system. In single-mode fibers, only one mode propagates because the core size (typically \(5-10 \mu m\)) approaches the operational wavelength \(\lambda\). The form of the mode pattern in single-mode fibers is well described by a Gaussian function of the form
\[
\begin{equation*}
\psi\left(x^{\prime}, y^{\prime}\right)=\exp \left[-\left(\frac{r^{\prime}}{r_{0}}\right)^{2}\right] \tag{14.69}
\end{equation*}
\]

The Gaussian mode is completely specified by the radius \(r_{0}\) at which the amplitude drops to its \(1 / e^{2}\) value. Recalling Eq. 14.57, the mode profile at the fiber end also governs the \(1 / e^{2}\) far-field divergence angle
\[
\theta=\tan ^{-1}\left(\frac{\lambda}{\pi w_{0}}\right) \approx \frac{\lambda}{\pi w_{0}}
\]
if \(w_{0}=r_{0}\) is the waist radius of the mode profile at the \(1 / e^{2}\) intensity.

\subsection*{14.4.2 Multi-Mode Fibers}

As their name implies, multi-mode fibers propagate more than one mode. The number of modes depends on the core radius \(a\) and numerical aperture (NA) and is given by \(V^{2} / 2\), with
\[
\begin{equation*}
V=\frac{2 \pi}{\lambda_{0}} a \sqrt{n_{1}^{2}-n_{2}^{2}}=\frac{2 \pi}{\lambda_{0}} a n_{1} \sqrt{2 \Delta} \tag{14.70}
\end{equation*}
\]
\(V\) is known as the normalized frequency or waveguide parameter. As the value of \(V\) increases, the number of modes supported by the fiber increases. A step-index fiber becomes single-mode for a given wavelength when \(V<2.405\).

Three parameters are required to specify a step-index or graded-index multi-mode fiber: the refractive index of the core material \(n_{1}\), the refractive index of the cladding material \(n_{2}\) and the radius of the cylindrical core \(a\).
The mode pattern of the fundamental mode in a weakly guiding fiber is given by
\[
\psi\left(r^{\prime}\right)= \begin{cases}\frac{A}{J_{l}(U)} J_{l}\left(\frac{U r}{a}\right)\left[\frac{\operatorname{cosl} \phi}{\operatorname{sinl} \phi}\right], & r<a \tag{14.71}\\ \frac{A}{K_{l}(W)} K_{l}\left(\frac{W r}{a}\right)\left[\frac{\cos l \phi}{\sin l \phi}\right], & r>a\end{cases}
\]
where
\[
\begin{align*}
U & =a\left(k_{0}^{2} n_{1}^{2}-\beta^{2}\right)^{1 / 2} \tag{14.72}\\
W & =a\left(\beta^{2}-k_{0}^{2} n_{2}^{2}\right)^{1 / 2} \tag{14.73}
\end{align*}
\]
\(k_{0}=2 \pi / \lambda\) and \(\beta\) is known as the propagation constant and \(r=\sqrt{x^{2}+y^{2}}\). For guided modes we must have \(k_{0}^{2} n_{2}^{2}<\beta^{2}<k_{0}^{2} n_{1}^{2}\), or with the normalized propagation constant
\[
\begin{equation*}
b=\frac{\beta^{2} / k_{0}^{2}-n_{2}^{2}}{n_{1}^{2}-n_{2}^{2}}=\frac{W^{2}}{V^{2}} \tag{14.74}
\end{equation*}
\]
we must have \(0<b<1\). We can then write the eigenvalue equations for the mode structure
\[
\begin{array}{ll}
V(1-b)^{\frac{1}{2}} \frac{J_{l-1}\left(V(1-b)^{\frac{1}{2}}\right)}{J_{l}\left(V(1-b)^{\frac{1}{2}}\right)}=-V b^{\frac{1}{2}} \frac{K_{l-1}\left(V(b)^{\frac{1}{2}}\right)}{K_{l}\left(V(b)^{\frac{1}{2}}\right)}, & l \geq 1 \tag{14.75}\\
V(1-b)^{\frac{1}{2}} \frac{J_{1}\left(V(1-b)^{\frac{1}{2}}\right)}{J_{0}\left(V(1-b)^{\frac{1}{2}}\right)}=-V b^{\frac{1}{2}} \frac{K_{1}\left(V(b)^{\frac{1}{2}}\right)}{K_{0}\left(V(b)^{\frac{1}{2}}\right)}, & l=0
\end{array}
\]
where \(J, K\) are the J - and K-Bessel functions. For a given value of \(l\), there will be a finite number of solutions of the eigenvalue equations (Eq. 14.75) and the \(m^{t h}\) solution (\(\mathrm{m}=1,2,3, \ldots\)) is referred to as the \(L P_{l m}\) mode.
A derivation of this mode structure can be found in Gloge [15] and Ghatak [13]. The maximum number of modes \(N\) is approximated by
\[
\begin{equation*}
N \approx \frac{V^{2}}{2} \tag{14.76}
\end{equation*}
\]
for \(V \gg 1\).
OpTaliX calculates the mode structure for all possible modes in a multi-mode fiber and performs a coupling efficiency calculation for each mode separately. The individual results are combined for a total coupling efficiency.
Note that computing time will increase significantly with increasing number of modes calculated on both source and receiver fiber, because CEF must be computed for each mode combination separately. For example, allowing only 10 modes in both source-fiber and receiver-fiber results in 100 separate calculations of coupling efficiency. It is therefore recommended to limit the maximum number of calculated modes by the FSMM and FRMM commands.

\subsection*{14.4.3 Display Fiber Modes}

The individual modes of a multi-mode fiber can be displayed using the MMF command, which opens a dialog box for editing fiber parameters (see Fig. 14.33).

Figure 14.33: Calculation and display of fiber modes.

The maximum number of modes that can be calculated and displayed is 200. Fiber parameters such as core index, cladding index and core radius can be explicitly specified in the appropriate fields or obtained from predefined fibers from the pull-down menu. Note that on selecting new fiber parameters, the program automatically searches for all possible modes (\(; 200\)), which may take a while depending on the parameters selected and on computer speed. Clicking on the "Compute Mode Field" button displays the selected mode profile. The intensity of the mode field can be saved as bitmap file (BMP, PNG or PCX) or INT-file (Code V compatible).

\subsection*{14.4.4 Fiber Coupling Example 1}

As our first example, we choose a SELFOC \({ }^{T M}\) SLW10 gradient index rod-lens from NSG and for source and receiving fiber a single-mode fiber SMF28 from Corning is selected. This configuration, as shown in Fig. 14.34, can be found in the examples library (selfoc-coupler.otx). The pitch of the gradient index lens has been adjusted to 0.5 , which gives unit magnification and therefore optimum coupling conditions for the selected fibers.

Figure 14.34: Coupling of two Corning SMF28 fibers with NSG-SELFOC \({ }^{T M}\) lens SLW10.

From the main menu, selecting Diffraction Analysis-- >Fiber Coupling, invokes a dialog box (Fig. 14.35 on the following page), which allows editing of all relevant coupling parameters. In
this example, they are already preselected from the fiber catalogue. Mode-field radius and \(1 / e^{2}\) divergence are automatically updated, if a fiber is selected from the catalogue. The source fiber is assumed at the selected field position (as defined by the XOB and YOB commands) and the receiving fiber is assumed at the position of the chief ray coordinates in the image plane.
Important: The correct amplitude distribution in the pupil of the coupling optics is automatically calculated by the transformation process from the source fiber end to the entrance pupil. It is therefore not necessary to adjust the amplitude profile by the apodization parameter PUI, PUX and PUY. In order to obtain correct results in fiber-to-fiber coupling, PUI, PUX and PUY shall be 1. Check the corresponding settings.
Only in the special case of a parallel laser beam entering the coupling optics (object at infinity) should the apodization be properly adjusted, since transformation of the source will be skipped for this condition.

Figure 14.35: Dialog box showing coupling options for the setup shown in Fig. 14.34.
```

Fiber Coupling Efficiency:

```

```

		SOURCE	RECEIVER	Unit
Fiber type	$:$	SMF-28	SMF-28	
1/e^2 radius	$:$	0.00520	0.00520	mm
Far-field divergence	$:$	0.09488	0.09488	rad
Tilt around X-axis	$:$	0.00000	0.00000	deg
Tilt around Y-axis	$:$	0.00000	0.00000	deg
X-displacement	$:$		0.00000	mm
Y-displacement	$:$		0.00000	mm

Transmission : not considered

```

Power coupling (ideal): \(\quad 0.99271\) (\(-0.032 \mathrm{~dB})\)
Power coupling (0.99953 (\(-0.002 \mathrm{~dB})\)

This example shows very little basic insertion loss \((-0.032 \mathrm{~dB})\), since the NA of the coupling optics is about 2.1 times larger than the fiber divergence (0.09488). The ideal power coupling \((-0.002 \mathrm{~dB})\) is the theoretical maximum efficiency if the optics introduced no aberrations and does not truncate the beam. It is a representation how good source fiber and receiving fiber match.

\subsection*{14.4.5 Fiber Coupling Example 2}

The second example will be a demultiplexer, which we load from the examples library (demux.otx). Since the design employs a diffraction grating, it is basically a spectrometer, which separates the wavelengths (channels) into different fibers.

Figure 14.36: A simple demultiplexer, shown at only one wavelength.

The system is defined at three wavelengths, which describes the spectral range of interest. We will also switch to "spectrometer" mode (this relates all aberrations to the current wavelength, rather than to the base wavelength), which is currently only possible from the configuration dialog (from the main menu, select Edit -- >Configuration and then the tab "General").
We will now define a user defined graphics UGR (see section 12.10, page 204) to plot coupling efficiency (CEF) versus wavelength. User defined graphics is found under the tools menu. In the dialog to appear, predefined settings may be restored. We will do so and restore (load) from the macro subdirectory cef_vs_wl.ugr. All settings should be right for our example and we immediately run the plot.

Figure 14.37: Coupling efficiency versus wavelength.

\section*{15}

\section*{Illumination Analysis}

The illumination option is used to compute the illuminance/radiance distribution at any surface of the system, including the image surface. As opposed to point-like objects (defined by 'fields", see sect. 7.3.1, page 44), illumination sources are extended in the spatial domain. OpTaliX currently supports two types of illumination sources,
- flat emitting sources. There are predefined flat sources, such as circular, elliptical or rectangular flat shapes, Gaussian, double pinhole, or flat sources defined by bitmap images.
- ray sources, that is, sources defined by a collection of rays.

Point sources (fields) are defined in the optical system configuration (see sect. 7.3.1, page 44) and are always located on the object surface. Thus, object coordinates ("fields") are always referred to the vertex of the object surface. The location of the object surface itself is defined, for example, by the object distance (S0), x-decenter of the object surface (XDE s0), etc.
Sources used in illumination calculations always exhibit a finite spatial extension and their locations may be referred either to the global coordinate system or the object coordinate system. See page 29 for definition of coordinate systems.

\subsection*{15.1 Commands for Defining Illumination Sources}

Command line entries for illumination source parameters allow two forms: a long form and a short form. Note that the short form is required in defining zoom/multi-configuration systems.
Also, do not confuse the qualifier "sk" used for sources and surfaces. In this section, and for illumination purposes only, "sk" is exclusively used for sources. For all other commands, not related to illumination or source properties, "sk" always refers to surfaces!
\begin{tabular}{|l|l|}
\hline MAXSRC N_max & \begin{tabular}{l}
Allocates memory for N_max sources and defines the up- \\
per limit of allowable sources. MAXSRC is only required if \\
more than 200 illumination sources (the default value) are \\
required. \\
This command must not be confused with the subsequent \\
command SRC, which defines the number of actually used \\
sources used in an optical system.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline SRC n_sources & \begin{tabular}{l}
Without any other qualifier SRC n_sources specifies the number of sources used in the optical model. \\
Example: \\
src 3 ! specifies 3 sources.
\end{tabular} \\
\hline \begin{tabular}{l}
SRC sk TYPE [FIL file_name] \\
Short form: Sxxx sk
\end{tabular} & \begin{tabular}{l}
Defines source type. The command exists in a long and a short form. sk is the source number. The short form is required in zoom definitions and LDM queries. In the long form, TYPE can be any one of \\
CIR top hat circular \\
ELL top hat elliptical \\
REC top hat rectangular \\
GAU Gaussian \\
BMP Bitmap file (*.BMP, *.PCX, *.PNG) \\
INT INT file \\
GRA Grating \\
PIN Double pinhole \\
CHE Checker board \\
RAY Rays defined in file_name \\
In the short form, xxx is a place holder for the source type. \\
It is defined as follows: \\
SCIR top hat circular \\
SELL top hat elliptical \\
SREC top hat rectangular \\
SGAU Gaussian \\
SBMP Bitmap file (*.BMP, *.PCX, *.PNG) \\
SINT INT file \\
SGRA Grating \\
SPIN Double pinhole \\
SCHE Checker board \\
Examples: \\
src s1 ELL ! top hat elliptical source, \\
srec s2! short form: top hat rectangular source no.2, \\
src s2 RAY FIL c:\rayset.dat ! ray source.
\end{tabular} \\
\hline \begin{tabular}{l}
SRC USE sk Y|N \\
Short form: SUSE sk Y|N
\end{tabular} & \begin{tabular}{l}
Use source sk. Once defined, sources can be included or excluded in illumination ray trace. The short form is required in zoom definitions and LDM queries. \\
Examples: \\
src s1 use Y! Source 1 is used (included) in illumination analysis, \\
src s2 use n ! source 2 is ignored (excluded) in illumination analysis.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline \begin{tabular}{l}
SRC REF sk O|G \\
Short form: SGREF sk O|G
\end{tabular} & \begin{tabular}{l}
Source sk is referenced to object coordinate system (O) or global coordinate system (G). \\
Examples: \\
src s1 ref o ! Source 1 is referred to object coordinate system, sgref s2 g! source 2 is referred to global coordinate system.
\end{tabular} \\
\hline \begin{tabular}{l}
SRC PWR sk power \\
Short form: SPWR sk power
\end{tabular} & \begin{tabular}{l}
Source total emitted power. \\
Examples: \\
src pwr s1 1.0! Total emitted power for source 1 is 1.0 Watts. \\
spwr s2 3 ! Total emitted power for source 2 is 3 Watts.
\end{tabular} \\
\hline \begin{tabular}{l}
SRC sk XEXT x_ext \\
Short form: SXEX sk x_ext
\end{tabular} & Defines source X-extension (in mm). sk is the source number. If omitted, sk defaults to source 1. See also Fig. 15.6. \\
\hline \begin{tabular}{l}
SRC sk YEXT Y_ext \\
Short form: SYEX sk x_ext
\end{tabular} & Defines source Y-extension (in mm). sk is the source number. If omitted, sk defaults to source 1. See also Fig. 15.6. \\
\hline \begin{tabular}{l}
SRC XDE sk x_dec \\
Short form: SXDE sk x_ext
\end{tabular} & Defines source X-decenter (in mm). Decenter is measured from the vertex of the source coordinate system (object or global). sk is the source number. If omitted, sk defaults to source 1. See also sect. 15.2 for definition of source coordinate system. \\
\hline \begin{tabular}{l}
SRC YDE sk y_dec \\
Short form: SYDE sk y_dec
\end{tabular} & Defines source Y-decenter (in mm). Decenter is measured from the vertex of the source coordinate system (object or global). sk is the source number. If omitted, sk defaults to source 1. See also sect. 15.2 for definition of source coordinate system. \\
\hline \begin{tabular}{l}
SRC ZDE sk z_dec \\
Short form: SZDE sk z_dec
\end{tabular} & Defines source Z-decenter (in mm). Decenter is measured from the vertex of the source coordinate system (object or global). sk is the source number. If omitted, sk defaults to source 1. See also sect. 15.2 for definition of source coordinate system. \\
\hline \begin{tabular}{l}
SRC ADE sk x_tlt \\
Short form: SADE sk x_tlt
\end{tabular} & Tilt of source normal about X-axis (in degrees). sk is the source number. If omitted, sk defaults to source 1 . See also sect. 15.2 for definition of source coordinate system. \\
\hline \begin{tabular}{l}
SRC BDE sk y_tlt \\
Short form: SBDE sk y_tlt
\end{tabular} & Tilt of source normal about Y-axis (in degrees). sk is the source number. If omitted, sk defaults to source 1 . See also sect. 15.2 for definition of source coordinate system. \\
\hline \begin{tabular}{l}
SRC CDE sk z_tlt \\
Short form: SCDE sk z_tlt
\end{tabular} & Tilt of source normal about Z-axis (in degrees). sk is the source number. If omitted, sk defaults to source 1 . See also sect. 15.2 for definition of source coordinate system. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline \begin{tabular}{l}
SRC DIVX sk div_x \\
Short form: SDIVX sk div_x
\end{tabular} & X-divergence of source emission (in degrees), full with. sk is the source number. If omitted, sk defaults to source 1 . \\
\hline \begin{tabular}{l}
SRC DIVY sk div-Y \\
Short form: SDIVY sk div_y
\end{tabular} & Y-divergence of source emission (in degrees), full with. sk is the source number. If omitted, sk defaults to source 1 . \\
\hline SRC AOFFS sk
ang_offset_alpha
Short form:
ang_offset_alpha SOFA sk & Angular offset \(\alpha\) of source emission from the source normal (in degrees) in the Y/Z plane. See also Fig. 15.2. sk is the source number. If omitted, sk defaults to source 1 . \\
\hline \begin{tabular}{l}
SRC BOFFS sk ang_offset_beta \\
Short form: SOFB sk ang_offset_beta
\end{tabular} & Angular offset \(\beta\) of source emission from the source normal (in degrees) in the X/Z plane. See also Fig. 15.2. sk is the source number. If omitted, sk defaults to source 1. \\
\hline \begin{tabular}{l}
SRC COS sk \\
cos_power_factor \\
Short form: \\
SCOS sk cos_power_factor
\end{tabular} & \begin{tabular}{l}
Cosine power factor. Defines source emittance as a function of the emittance angle. \\
sk is the source number. If omitted, sk defaults to source 1. \\
The intensity of rays emitted from an extended source can be controlled by the cosine power factor (SCOS) in dependence of the angle at which the ray is launched from the source normal. The emitted ray intensity is described by the following function:
\[
\begin{equation*}
I_{\text {ray }}=\cos (\alpha)^{S C O S} \tag{15.1}
\end{equation*}
\] \\
where \(\alpha\) is the angle at which the ray is emitted and \(\operatorname{SCOS}\) is the cosine power factor. See also section 15.3.1 for a more detailed description. \\
Examples: \\
\(\operatorname{SCOS} 0.0\) : All rays are emitted at the same intensity, irrespective of the emittance angle at which the ray is launched. \\
SCOS 1.0 : Ray intensity follows the Lambertian Law, \(I=\cos (\alpha)^{1.0}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SRC ARAY sk analysis_rays \\
Short form: \\
SARAY sk analysis_rays
\end{tabular} & Source analysis rays. Number of rays traced in illumination analysis for source sk. If sk is omitted, source 1 is assumed. \\
\hline \begin{tabular}{l}
SRC PRAY sk plot_rays \\
Short form: \\
SPRAY sk plot_rays
\end{tabular} & Source plot rays. Number of rays displayed in layout plots for source sk. \\
\hline \begin{tabular}{l}
SRC WAV sk source_wavelength_number \\
Short form: \\
SWAV sk wavel number
\end{tabular} & Source wavelength number. \(0=\) all wavelength. \\
\hline LIS SRC [sk] & List illumination sources. sk is the source number. If sk is absent, all sources defined are listed. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline ILL SAV Y|N & \begin{tabular}{l}
Save illumination data along with prescription data, Y=yes, \\
\(\mathrm{N}=\) no.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{15.2 Illumination Sources Coordinate Definition}

The position and orientation of flat and real sources may be freely chosen in 3D space. As described in 15.3 sources may be referred to the object coordinate system or the global reference coordinate system (see also the SGREF command). If the illumination source is referred to the object surface, its position and orientation also depend on the object surface location/orientation. Fig. 15.1 shows the dependencies of source position and orientation with respect to the object surface.

Figure 15.1: Definition of source coordinate system in relation to object coordinate system.

\subsection*{15.3 Defining Illumination Sources in the GUI}

Source parameters can also be defined in dialogs from the graphical user interface (GUI). From the command line, invoke the illumination dialog by
\begin{tabular}{|l|l|}
\hline ILL [?] & \begin{tabular}{l}
Runs illumination analysis. The optional parameter "?" invokes a di- \\
alog box for editing illumination parameter prior to illumination anal- \\
ysis.
\end{tabular} \\
\hline
\end{tabular}

Figure 15.2: Angular offsets (SOFA, SOFB in degree) of source emission relative to source normal.
or from the main menu Geom.Analysis -> Illumination. Because illumination sources are mostly extended objects, in contrast to the point-like objects normally used in optical analysis (also called 'field objects'), illumination (extended) sources may also defined in the configuration dialog. It is invoked by
\begin{tabular}{|l|l|}
\hline EDI CNF & \begin{tabular}{l}
Edit configuration parameters. Select the Illum.Source tab to define \\
illumination source parameters.
\end{tabular} \\
\hline
\end{tabular}

The following graphic (Fig. 15.3) shows the dialog for defining various illumination sources.

\subsection*{15.3.1 Controlling Source Emittance Characteristics}

The emittance characteristics of a source, i.e. its apparent intensity as a function of the viewing angle from the source normal, can be defined for flat sources (circle, rectangle, etc.) by theSCOS parameter. The emitted intensity as a function of the emittance angle \(\alpha\) is described by
\[
\begin{equation*}
I(\alpha)=I_{0} \cdot \cos (\alpha)^{S C O S} \tag{15.2}
\end{equation*}
\]

Figure 15.4 indicates the effect of the SCOS parameter on the angular emittance function.
Note that the SCOS parameter is ineffective for sources that are defined by a collection of rays ("ray sources").

\subsection*{15.3.2 Controlling Source Rays in the Lens Layout Plot}

An important means to control the correct setting of source parameters is the visualization of rays emitted by the sources. By default, plotting of rays emanating from (extended) sources is disabled in the layout plot. Because analysis of illumination sources usually involves a massive amount of rays, this would significantly slow down rendering of sources (and the rays) in the lens layout plot. Source rays, however, can be enabled in lens layout plots by enabling the check box "Show illumination source rays" in the option dialog box (right click in the lens layout window), as shown in Fig. 15.5

Figure 15.3: Dialog for defining illumination sources. Invoked by commands ILL ? or by EDI CNF.

\subsection*{15.3.3 Flat emitting Sources}

The illumination option allows specification of flat sources, such as circular, elliptical or rectangular flat shapes, Gaussian, double pinhole, etc. Flat sources are defined on a plane surface only, as indicated in Figure 15.6. Flat sources emit at a constant intensity at every point of the source area confined by (SXEX, SYEX).

Note that standard field specifications, as defined for point sources in the "fields" tab of the optical system configuration (EDI CNF), are ignored in illumination analysis.

Wavelength weights (WTW) are used to model the spectral transmission of the system, not the source. Initially, all sources are emitting spectrally uniformly at all specified wavelengths. Wavelength weights will then act as a spectral filter applied to the source.
A flat source (object) is defined by its full extension in X- and Y-direction (SXEX, SYEX). The source is located at (SXDE, SYDE, SZDE) with respect to the reference system which is either the global coordinate system or the object coordinate system. The flat surface may also be tilted by the angles (SADE, SBDE, SCDE) to indicate an emission direction different from the coordinate Z-axis.

The light emission is confined in a cone defined by the divergence parameters (SDIVX, SDIVY).

\subsection*{15.3.4 Flat Source with Gaussian Profile}

Flat sources with a Gaussian profile are characterized by a non-uniform intensity across the source area. The profile is scaled to the source extensions SXEX, SYEX, such that the \(50 \%\) of the peak intensity is obtained exactly at \(1 / 3\) of the source extension, the \(1 / \mathrm{e} 2\) intensity is obtained at 0.567 of the source extension, and the source intensity at the rim of the source extension is 0.1954\%. Fig. 15.7 illustrates these relationships.

Figure 15.4: Effect of SCOS parameter on the angular emittance of a source, shown in a polar diagram.

\subsection*{15.3.5 Sources defined by Rays}

A volume source models any real-world source such as an incandescent lamp, LED, or laser diode. Instead of defining a precise geometrical model, the radiant source is modelled in OpTaliX by a three-dimensional space-angular source characterization in terms of a collection of rays, in the following called ray source.
Individual rays in a "ray source file" are defined by spatial ray coordinates (\(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\)), direction cosine \((\alpha, \beta, \gamma)\), intensity and wavelength, stored in a user supplied file. Rays provided in a "ray source file" must obey to the file format as given in sect. 32.13.
Ray sets (i.e. a collection of rays) defining a source may also be generated from third party software provided by other vendors, such as
- ASAP: These are ray files in a binary format originally defined and mainly used in the optical analysis package ASAP. The typical extension of these files is '*. dis',
- IES TM-25 is an industry standard of a uniform data format for ray files. The extension is '*. TM25RAY',
- ASCII: Ray sets are defined in a text file using the standard ASCII character coding. The file format is explained in section 32.13, page 519.

Rays emanating from a source are assumed to be located either at the object coordinate system or the global coordinate system. Sect. 5.2 (page 29) describes these coordinate systems.

\subsection*{15.3.6 Source Rays aimed to System Entrance Pupil}

In some cases it might be difficult to trace a sufficient number of rays emitted from an illumination source through the optical system. In the wide-angle system, as illustrated in Fig. 15.9, the majority of the emitted rays are wasted because they don't pass through the narrow entrance aperture. One would normally increase the number of source rays in order to obtain a decent number of rays at the target (image) surface.
In order to avoid this inefficient situation, a second option is offered by which rays from the extended source are directly aimed to the entrance pupil, instead of blindly launched from the source within the specified emittance cone. In the illumination ray aiming option, the source emittance characteristics is then completely ignored. Fig. 15.10 indicates the definition of illumination rays for this option.
Note that this option requires dedicated selection on how the source itself and the entrance pupil are sampled. For example (compare with Fig. 15.10),

Figure 15.5: Enabling plot of source rays in lens layout plot. The setting is saved with the lens prescription.

Object sampling = 50: Divides the source area in \(50 \times 50\) cells from which source rays are randomly generated.
Pupil sampling \(=8\) : From each object cell, \(8 \times 8\) rays are aimed to the entrance pupil. In total, \(50 \times 50 \times 8 \times 8=160000\) rays are then used for each particular source and wavelength.

\subsection*{15.3.7 Ray Source Viewer}
"Ray sources" are sources defined by a collection of rays. The ray data is stored in plain ASCII files. Even though the data may be viewed in conventional ASCII editors, typically the sheer amount of data prevents a thorough understanding and interpretation of the source itself. The "ray source viewer" option provides a means for visualizing this data.
In addition to only viewing ray data, ray sets may also be transformed (shifted, rotated) and subsequently saved as a new ray file.
The ray source viewer is invoked from the command line by
\begin{tabular}{|l|l|}
\hline VIE SRC FIL source_file & \begin{tabular}{l}
View ray source defined in source_file. The file \\
\\
name of the ray source may have extensions \(*\). txt \\
\\
\(*\). dat, or \(*\).ray for plain ASCII formats, respec- \\
tively \(*\). dis for the ASAP binary format. Other ray \\
formats will be added later.
\end{tabular} \\
\hline
\end{tabular}
or from the main menu: Display \(->\) Ray Source Viewer. A dialog box is invoked which allows viewing orientation (azimuth, elevation), zoom, and visualization of arrows indicating the ray direction.

Figure 15.6: Definition of flat (surface-like) sources.

Figure 15.12 shows the source represented by ray coordinates and ray directions proportional to the ray intensity.

\subsection*{15.3.8 Transforming Ray Data}

Source rays may be arbitrarily transformed in 3D-space. This is accomplished from within the ray source viewer dialog (see previous section).
Note that applying a transformation is cumulative. In order to 'undo' a transformation you must apply shift/rotate parameters with reverse sign. If more that one transformation (e.g. shift + rotation) is simultaneously applied and if you want to undo (reverse) this operation, you should keep in mind that coordinate transformations are not commutative (i.e. depend on order of operation). From this point of view it is advisable to apply only one parameter at a time. The result of ray transformation is then immediately visible in the ray source viewer.
Once transformed, ray data may also be stored in a separate file for later use. Select a file name and export the transformed ray data by pressing the Export button in the dialog shown above (Fig. 15.13). Two different output formats are provided, ASCII or binary. Note that the binary file format for \(O p\) TaliX ray sources is compatible to the ASAP binary format.

\subsection*{15.4 Illumination Analysis Options}
\begin{tabular}{|l|l|}
\hline ILL [?] & \begin{tabular}{l}
Runs illumination analysis. The question mark invokes \\
a dialog box for setting of parameters prior to analysis.
\end{tabular} \\
\hline ILL SAV Y|N & \begin{tabular}{l}
Store illumination data with prescription data, Y=yes, \\
\(\mathrm{N}=\) no.
\end{tabular} \\
\hline \multicolumn{2}{|l}{} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|l|}{ continued from previous page } \\
\hline \begin{tabular}{l}
ILL EXP FIL Out_file \\
[RAW \(\mid\) INT \(\mid\) XLS]
\end{tabular} & \begin{tabular}{l}
Save irradiance distribution at target surface to file. Re- \\
quires preceding illumination analysis (use ILL com- \\
mand above). The full path specification including file \\
extension must be given. The specific file format is rec- \\
ognized by one of the file extensions, RAW (raw file, \\
ASCII-format), TXT (raw file, ASCII-format), INT (in- \\
terferogram file) or XLS (Excel file). The default file \\
format option is RAW.
\end{tabular} \\
\hline ILL TAR sk & \begin{tabular}{l}
Target surface for illumination. This is the surface at which \\
the irradiance distribution is computed. \\
Examples: \\
ill tar s5 ! Illumination target surface is 5, \\
ill tar si ! Illumination target surface is image sur- \\
face.
\end{tabular} \\
\hline ILL IMX x_ext & \begin{tabular}{l}
X-image extension (full width) of analysis region at target \\
surface.
\end{tabular} \\
\hline ILL IMY Y_ext & \begin{tabular}{l}
Y-image extension (full width) of analysis region at target \\
surface.
\end{tabular} \\
\hline ILL NXI X_Img_Cells & Divides the image (target) extension IMX into NXI cells. \\
\hline ILL NYI Y_Img_Cells & \begin{tabular}{l}
Divides the image (target) extension IMY into NYI cells.
\end{tabular} \\
\hline ILL FIL out_file \\
[RAW | INT|XLS] & \begin{tabular}{l}
Save irradiance distribution at target surface to file. The \\
full path specification must be given. The specific file \\
format is defined by one of the (optional) parameters, \\
RAW (raw file), INT (interferogram file) or XLS (Excel \\
file). The default file format option is RAW.
\end{tabular} \\
\hline RPWR & \begin{tabular}{l}
Database item: Return total received power, including \\
all activated sources, using illumination ray tracing. Ex- \\
ample: eva [rpwr]
\end{tabular} \\
\hline EPWR & \begin{tabular}{l}
Database item: Return emitted power from all activated \\
sources. Example: eva [epwr]
\end{tabular} \\
\hline NILR & \begin{tabular}{l}
Database item: Return number of successfully received \\
illumination rays at target surface, including all active \\
sources. Example: eva [nilr]
\end{tabular} \\
\hline
\end{tabular}

Figure 15.7: Definition of a Gaussian source. The profile is scaled to the source extensions SXEX, SYEX.

Figure 15.8: Coordinate system for defining rays in a "ray-source" model.

Figure 15.9: Aiming source rays to entrance pupil.

Figure 15.10: Selecting alternative illumination option: Aiming source rays to the entrance pupil directly. The number of rays traced per source is (objectsampling \()^{2} \cdot(\text { pupilsampling })^{2}\). NumberOfColours

Figure 15.11: Dialog for visualizing ray source data.

Figure 15.12: Visualization of ray data. Left: Shows ray coordinates only (arrow length \(=0\)), right: Arrow length \(\geq 0\). The length of the arrows indicates relative intensity of the rays.

Figure 15.13: Transformation (shift, rotate) of ray data.

\section*{16}

\section*{Physical Optics Propagation}

\section*{(Diffraction Based Beam Propagation)}

Optical modelling consists largely of geometrical ray tracing in which the light is represented by a set of rays which are normal to the wavefront. Diffraction effects in "conventional" systems, such as a photographic objective, are small and localized to the edge of the beam. Rays are used to determine the pupil function and do a far-field diffraction analysis. This is a fast and well established method to calculate diffraction PSF and MTF, as described in sections 14.2.1 and 14.2.2.
This method, however, breaks down if noticeable diffraction occurs inside optical systems. A common example is a simple spatial filter (pinhole) located at the focal point of a laser system. Ray optics is unable to predict removal of the phase aberrations by the pinhole. Also, it cannot account for the beam spreading of Gaussian beams. In this context, note that the Gaussian beam analysis (BEA) as described in section 14.3 only models paraxial quantities of ideal Gaussian bemas and does not include wave aberrations.
For such cases, physical optics methods must be used. It models a coherent optical beam by a complex-valued function (amplitude and phase), describing the transverse beam distribution. In the computer, the beam is represented by a complex 2 -dimensional array of discretely sampled points. The entire array (beam) is then propagated through the optical system. This approach is also commonly called diffraction based beam propagation.
Physical optics propagation is based on several algorithms, which are described in the following sections. For a detailed study of the underlying physical principles, see Goodman [17].

\subsection*{16.1 Propagation of the Angular Spectrum}

If the complex field (amplitude and phase) is Fourier-transformed across any plane, the various spatial Fourier components can be considered as plane waves travelling in different directions. The field across any other plane can be calculated from the phase shifts these plane waves have undergone during propagation.
Let us assume a wave field \(U\left(x, y, z_{1}\right)\) incident on a plane and we wish to obtain the resulting field \(U\left(x, y, z_{2}\right)\) across a second, parallel plane at distance \(z\) to the right of the first plane. At the \(z=0\) plane the two-dimensional Fourier transform \((\mathcal{F})\) of the field \(U\) is given by
\[
\begin{equation*}
A\left(f_{x}, f_{y}, 0\right)=\iint_{-\infty}^{\infty} U\left(x, y, z_{1}\right) e^{-2 \pi j\left(f_{x} x+f_{y} y\right)} d x d y \tag{16.1}
\end{equation*}
\]
and correspondingly \(U\) can be obtained from the inverse Fourier transform \(\left(\mathcal{F}^{-1}\right)\) of its spectrum,
\[
\begin{equation*}
U\left(x, y, z_{1}\right)=\iint_{-\infty}^{\infty} A\left(f_{x}, f_{y}, z_{1}\right) e^{2 \pi j\left(f_{x} x+f_{y} y\right)} d f_{x} d f_{y} \tag{16.2}
\end{equation*}
\]

Physically the integrand of Eq. 16.2 can be interpreted as a plane wave propagating with wave vector \(\vec{k}\) with magnitude \(2 \pi / \lambda\). It has direction cosines \((\alpha, \beta, \gamma)\) as shown in Fig. The complex phasor amplitude of the plane wave across a constant z -plane is given by
\[
\begin{equation*}
P(x, y, z)=e^{j \vec{k} \vec{r}}=e^{\frac{2 \pi j}{\lambda}(\alpha x+\beta x)} \tag{16.3}
\end{equation*}
\]

The complex exponential function \(e^{2 \pi j\left(f_{x} x+f_{y} y\right)}\) may be regarded as representing a plane wave propagating with direction cosines
\[
\begin{align*}
\alpha & =\lambda f_{x} \tag{16.4}\\
\beta & =\lambda f_{y} \tag{16.5}\\
\gamma & =\sqrt{1-\left(\lambda f_{x}\right)^{2}-\left(\lambda f_{y}\right)^{2}} \tag{16.6}
\end{align*}
\]

The complex amplitude of the plane wave component is evaluated in the Fourier domain of \(U\) at the spatial frequencies \(f_{x}=\alpha / \lambda, f_{y}=\beta / \lambda\). Hence, the function
\[
\begin{equation*}
A\left(f_{x}, f_{y}, z_{1}\right)=\iint_{-\infty}^{\infty} U\left(x, y, z_{1}\right) e^{-2 \pi j\left(f_{x} x+f_{y} y\right)} d x d y \tag{16.7}
\end{equation*}
\]
is called the angular spectrum of the field \(U\left(x, y, z_{1}\right)\). The angular spectrum of \(U\) across a plane parallel to the \(z_{1}\) plane but at a distance \(z\) from it is written in the form
\[
\begin{equation*}
A\left(f_{x}, f_{y}, z_{2}\right)=A\left(f_{x}, f_{y}, z_{1}\right) \exp \left[\frac{2 \pi j}{\lambda} \Delta z \sqrt{1-\left(\lambda f_{x}\right)^{2}-\left(\lambda f_{y}\right)^{2}}\right] \tag{16.8}
\end{equation*}
\]

Thus, propagation of a complex field from one plane to another can be written in terms of operators for Fourier transform \(\mathcal{F}\left\{U\left(z_{1}\right)\right\}\) and free space propagation \(\mathcal{T}\left\{z_{2}-z_{1}\right\}\)
\[
\begin{equation*}
U\left(z_{2}\right)=\mathcal{F}^{-1}\left[\mathcal{T}\left\{z_{2}-z_{1}\right\} \mathcal{F}\left\{U\left(z_{1}\right)\right\}\right] \tag{16.9}
\end{equation*}
\]

This is a straightforward procedure in which the input field is Fourier transformed (i.e. decomposed into its frequency components), the plane wave propagator applied (i.e. adding the relative phases of the components of the angular spectrum) and then the resulting distribution inverse Fourier transformed. Since the angular spectrum method can only propagate a field between parallel planes, we will subsequently refer to it as the plane-to-plane (PTP) operator.
The direction cosines of the plane waves must satisfy the condition
\[
\begin{equation*}
\alpha^{2}+\beta^{2}<1 \tag{16.10}
\end{equation*}
\]
otherwise evanescent waves are obtained, which are not covered by the angular spectrum model.

\subsection*{16.2 Propagation using the Fresnel Approximation}

In the Fresnel approximation the field \(U\left(x, y, z_{2}\right)\) is calculated from the initial field \(U\left(\xi, \eta, z_{1}\right)\) where the propagation distance is \(\Delta z=z_{2}-z_{1}\). The field is given by
\[
\begin{equation*}
U\left(x, y, z_{2}\right)=\frac{e^{j k z_{2}}}{j \lambda \Delta z} e^{\frac{j k}{2 \Delta z}\left(x^{2}+y^{2}\right)} \int_{-\infty}^{\infty} \int_{-}\left\{U\left(\xi, \eta, z_{1}\right) e^{\frac{j k}{2 \Delta z}\left(\xi^{2}+\eta^{2}\right)}\right\} e^{-j \frac{2 \pi}{\lambda \Delta z}(\xi x+\eta y)} d \xi d \eta \tag{16.11}
\end{equation*}
\]

This is the Fourier transform of the complex field at the initial plane multiplied by a quadratic phase exponential. It can also be written in operand notation
\[
\begin{equation*}
U\left(z_{2}\right)=\left[\frac{e^{j k z_{2}}}{j \lambda \Delta z}\right] \mathcal{Q}\{x, y, \Delta z\} \mathcal{F}\left[\mathcal{Q}\{\xi, \eta, \Delta z\} U\left(\xi, \eta, z_{1}\right)\right] \tag{16.12}
\end{equation*}
\]
where \(\mathcal{Q}\{\xi, \eta, \Delta z\}=e^{\frac{j k r^{2}}{2 \Delta z}}\) is the quadratic phase exponential with \(r^{2}=\xi^{2}+\eta^{2}\). The term \(\mathcal{Q}\}\) outside the integral may be omitted if the resultant field is referred to a sphere of radius \(z\) instead a plane. At this point it is worthwhile to remember that the field is actually defined on a parabola (quadratic approximation), however, within the scope of the Fresnel approximation we have already assumed \((\xi, \eta) \ll z\). Referring the phase to a sphere is the preferred choice, since the phase variations are much smaller rather than referring the field to a plane. Eq. 16.12 can now be redefined as the waist-to-sphere (WTS) operator
\[
\begin{equation*}
U\left(z_{2}\right)=\left[\frac{e^{j k z_{2}}}{j \lambda \Delta z}\right] \mathcal{F}^{s}\left[\mathcal{Q}\{\xi, \eta, \Delta z\} U\left(\xi, \eta, z_{1}\right)\right] \tag{16.13}
\end{equation*}
\]
and
\[
\begin{equation*}
s=\frac{\Delta z}{|\Delta z|} \tag{16.14}
\end{equation*}
\]

The sphere-to-waist (STW) propagation is obtained by reversing the operations,
\[
\begin{equation*}
U\left(z_{2}\right)=\left[\frac{e^{j k z_{2}}}{j \lambda \Delta z}\right] \mathcal{Q}\{x, y, \Delta z\} \mathcal{F}^{s}\left[U\left(\xi, \eta, z_{1}\right)\right] \tag{16.15}
\end{equation*}
\]

Note that the term \(e^{j k z_{2}}\) in equations 16.13 and 16.15 can normally be neglected, since it is a constant phase propagation term.
Using a Fast Fourier Transform (FFT) algorithm and representing the field in a two-dimensional complex-valued array, the sampling period at the \(z_{2}\) plane or sphere is not constant but scales linearly by
\[
\begin{equation*}
\Delta x=\frac{\lambda|\Delta z|}{N \Delta \xi} \tag{16.16}
\end{equation*}
\]
where \(N\) is the number of sampling points in the array.

\subsection*{16.3 Propagation through Optical Interfaces}

The angular spectrum and Fresnel propagators are used for propagating through homogeneous space. At optical interfaces the complex transmittance function of optical elements (lenses, diffractive surfaces, aspheres, etc) are required to calculate the complex field after the element. Since these functions are not analytically known (except in the strict paraxial approximation), a combination of classical ray tracing and wave optics is used. This requires conversion of the field after free space propagation into rays, doing refraction/reflection at the optical interface and converting the resultant rays back into the complex field description.

\subsection*{16.3.1 Converting Field into Rays}

The field is assumed at a sphere or plane, which is the result from a previous propagation operator (angular spectrum or Fresnel). The complex wave amplitude at the coordinates \((x, y)\) in a twodimensional array of data points is given by
\[
\begin{equation*}
U\left(x_{m}, y_{n}\right)=a\left(x_{m}, y_{n}\right) e^{j \Phi\left(x_{m}, y_{n}\right)} \tag{16.17}
\end{equation*}
\]
where \(a\) is the amplitude and \(\Phi\) is the phase in \(2 \pi / \lambda\) units. The coordinates \(\left(x_{m}, y_{m}\right)\) are assumed to form an equidistant mesh. Since the wave-optical propagation delivers the phase modulo \(2 \pi\), a phase unwrapping algorithm must be used. This is, in the absence of noise, a straightforward operation. Following an arbitrary continuous path through the gridded data, the following decision rule is applied:
\[
\Phi_{k+1}= \begin{cases}\Phi_{k}+\Delta_{k}-2 \pi & \text { if } \Delta_{k}>\pi \tag{16.18}\\ \Phi_{k}+\delta_{k}+2 \pi & \text { if } \Delta_{k}<\pi \\ \Phi_{k}+\delta_{k} & \text { else }\end{cases}
\]
where \(k\) is the path index and \(\Delta_{k}\) is is the adjacent-pixel phase difference. From the unwrapped phase the ray direction vector \(\vec{v}\) is obtained by
\[
\begin{equation*}
\vec{v}=\frac{\lambda}{2 \pi}\left[\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}, \sqrt{\left(\frac{\lambda}{2 \pi}\right)^{2}-\left(\frac{\partial \Phi}{\partial x}\right)^{2}-\left(\frac{\partial \Phi}{\partial y}\right)^{2}}\right] \tag{16.19}
\end{equation*}
\]

\subsection*{16.3.2 Transfer at Optical Interfaces}

Starting from the input reference sphere, the ray is traced through the optical interface to the output reference sphere using geometric optics techniques. See also Fig. 16.1. Generally, input sphere and output sphere will be in the immediate vicinity of the optical interface.
The phase \(\Phi\) is derived from the path length \(L\) of the ray between input reference and output reference and is added to the complex input field.
\[
\begin{equation*}
L=\frac{2 \pi}{\lambda} \sum n_{i} \cdot L_{i} \tag{16.20}
\end{equation*}
\]
where \(n_{i}\) is the index of refraction along the sub-path \(L_{i}\). The total optical path may include a single optical interface or even a series of interfaces (surfaces).

Figure 16.1: Relationship between diffraction-based beam propagation and geometrical ray tracing shown at the example of a Gaussian beam.

\subsection*{16.3.3 Converting Rays into Field}

The phase \(\Delta \Phi\) introduced in the geometric ray trace section of the path is derived from the optical path length between input sphere and output sphere and is added to the phase component of the complex field. Real and imaginary parts of the output field are then obtained by
\[
\begin{align*}
R & =a\left(x_{m}, y_{n}\right) \cos (\Phi+\Delta \Phi) \tag{16.21}\\
I & =a\left(x_{m}, y_{n}\right) \sin (\Phi+\Delta \Phi) \tag{16.22}
\end{align*}
\]

If the output mesh is substantially distorted, resampling of the data points into a rectangular grid must be performed.

\subsection*{16.4 Propagation Control}

Surrogate Gaussian beams are used to determine the algorithms to be used. These beams are considered to represent approximately the actual beam and since they have an easily calculated width at all points in space, they allow a convenient method of determining the size of the two-dimensional array holding the field data. Any complex input field may be approximately fit to a Gaussian beam of radius \(\omega\) and phase radius \(R\). From these values, the Gaussian waist size \(\omega_{0}\) and the distance to the waist \(z_{w}\) are calculated. The radius \(R_{1}\) of the input sphere is then obtained by
\[
\begin{equation*}
R_{1}(z)=z\left[1+\left(\frac{\pi \omega^{2}}{\lambda z}\right)\right] \tag{16.23}
\end{equation*}
\]
where \(z\) is the distance from the waist. The radius \(R_{2}\) is calculated by the lens law
\[
\begin{equation*}
\frac{1}{R_{1}}-\frac{1}{R_{2}}=\frac{1}{f} \tag{16.24}
\end{equation*}
\]
where \(f\) is the focal length of the optical interface. Since the beam spreads due to diffraction it may overfill the array. Fortunately, near-field propagators (angular spectrum) and far-field propagators
(Fresnel) may be combined to control the size of the array so that aliasing due to the finite sampling is sufficiently suppressed. The sampling period of the near-field (angular spectrum) propagator is constant, while the sampling period of the far-field (fresnel) propagator scales linearly with propagation distance \(\Delta z\) according to Eq. 16.16. An appropriate transition point from a constant sampling period to a linearly scaling sampling period is chosen by the Rayleigh range \(\nearrow_{\curvearrowright}=\omega_{o}^{2} \pi / \lambda\). This choice minimizes the phase error if a plane reference inside the Rayleigh distance and a spherical reference outside the Rayleigh distance is selected. Fig. 16.2 indicates the array sizes inside and outside the Rayleigh range.
The control of the propagation algorithm should allow movement from any point in space to any other. To do so the previously defined primitive operators, plane-to-plane (PTP), waist-to-sphere (WTS) and sphere-to-waist (STW) are appropriately combined. We define four new operators, which cover all possible cases (see also Fig. 16.2)
\[
\begin{array}{lll}
\mathbf{I I}(z 1, z 2) & =\mathbf{P T P}\left(z_{2}-z_{1}\right) & \text { inside } z_{R} \text { to inside } z_{R} \\
\mathbf{I O}(z 1, z 2) & =\mathbf{W T S}\left(z_{2}-z_{\omega}\right) \mathbf{P T P}\left(z_{\omega}-z_{1}\right) & \text { inside } z_{R} \text { to outside } z_{R} \tag{16.25}\\
\mathbf{O I}(z 1, z 2) & =\operatorname{PTP}\left(z_{2}-z_{\omega}\right) \mathbf{S T W}\left(z_{\omega}-z_{1}\right) & \text { outside } z_{R} \text { to inside } z_{R} \\
\mathbf{O O}(z 1, z 2) & =\mathbf{W T S}\left(z_{2}-z_{\omega}\right) \mathbf{S T W}\left(z_{\omega}-z_{1}\right) & \text { outside } z_{R} \text { to outside } z_{R}
\end{array}
\]

The primitive operators are defined in equations \(16.9,16.13\) and 16.15 respectively.

Figure 16.2: Variation of array size inside and outside the Rayleigh range. The four different possibilities in propagating inside/outside the Rayleigh range are indicated by the acronyms II, IO, OI, OO.

For practical usage of the algorithms described above, three major issues should be considered:
- The sampling interval,
- the oversizing of the array relative to the beam size,
- and the use of reference surfaces.

The sample spacing \(\Delta x\) and \(\Delta y\) determines the highest spatial frequency, which can be represented. The region of space which is covered by the whole array is \(M \Delta x\) and \(N \Delta y\), where \(M, N\) are the number of sample points in \(x\) - and \(y\)-direction. The sample spacing and the array size should be chosen as to overfill the beam by a factor 3-5. The choice of this factor depends largely on the profile of the input beam. For Gaussian profiles a factor 3 may be appropriate while for top hat functions factors of 5-10 are recommended. If the width of the array is too small, aliasing will occur. Aliasing is due to the discrete sampling and the finite extent of the computer arrays. Because of propagation a collimated beam expands and the field may grow beyond the array bounds. The portions of the beam which fall outside the array then "fold back" and will cause aliasing.

\subsection*{16.5 Command Overview}
\begin{tabular}{|l|l|}
\hline EDI BPR & \begin{tabular}{l}
Invokes a dialog box for editing beam propagation parameter. Currently, param- \\
eters can only be defined in the dialog, there are no equivalent commands yet. \\
See a detailed description of the relevant parameters in the following section 16.6 \\
(Propagation Parameters).
\end{tabular} \\
\hline BPR & Executes beam propagation and displays resulting field. \\
\hline
\end{tabular}

\subsection*{16.6 Propagation Parameters}

Figure 16.3: Parameter dialogs of the free-space propagation example.

The first tab of the dialog (see Fig. 16.3), labelled 'Beam Definition', defines the parameter of the beam and other auxiliary propagation parameter.

\section*{Beam Definition Tab:}

Sampling: Defines the number of sampling points across the data grid. This number is somewhat arbitrary, however, it should be noted that accuracy of simulation increases with higher numbers. Low numbers (\(\leq 128\)) should only be selected if there is little high spatial frequency content in the source profile (such as Gaussian) and if little spreading of the beam is expected. 'Top-hat' profiles contain relatively high spatial frequency components (due to the sharp edge) and therefore sampling numbers \(\geq 256\) should be selected. Also note that computing time goes with the square of the sampling number, that is computing time is 4 times higher on 256 sampling points as compared to a 128 sampling.

Grid oversize factor: Defines the physical size of the array in relation to the beam dimensions. The array must always be larger as to overfill the beam by the grid oversize factor and ensures that all frequency components of the beam profile are contained in the array. This factor also depends on the beam profile. Typical values are 3-5 for Gaussian beams, 8-10 for 'top-hat' profiles.

Object type: Select from several predefined profiles. (Import from a file not yet functional).

Object width: Specifies the maximum physical extension of the source beam in X-direction and Y-direction respectively. The physical extension of the array used in beam propagation is then 'grid oversize factor' * max(object_width_X, object_width_Y).

Input field surface: The surface number where the source beam (object) is placed and where from the propagation starts.

Grating period: This field is only accessible for amplitude grating sources and defines the grating period (one cycle) in X-direction.

Output field surface: The surface number at which the the propagation is terminated and the field components are displayed.

Fiber Coupling Integral: Takes the resultant field and convolves it with the profile of a receiving fiber in order to compute coupling efficiency.

\section*{Propagators Tab:}

\section*{Propagator: There are 5 types of propagators:}

PTP: Plane-to-Plane. Uses the angular spectrum method (sect. 16.1) to propagate a field from a plane surface over a distance \(z\) to another plane surface.

WTS: Waist-to-Sphere. Propagates a field defined on a plane surface (near the beam waist) over a distance \(z\) to a spherical (reference) surface, using the Fresnel approximation (sect. 16.2). The distance \(z\) must be 2 times larger than the Rayleigh range.

STW: Sphere-to-Waist. Propagates a field defined on a spherical surface (far from the beam waist) over a distance \(z\) to a plane (reference) surface, using the Fresnel approximation (sect. 16.2). The distance \(z\) must be 2 times larger than the Rayleigh range.

Ray: Does a conventional ray trace (ignores diffraction) over the distance z. This propagator is used in GRIN media (where FFT propagation fails) or where diffraction effects are expected to be neglected. This speeds up calculation.

Blank: A blank field means, no propagation is performed.

Fix: If checked, fixes (freezes) propagator selection and overrides automatic propagator selection. See also notes below.

\section*{Notes:}

The program traces a pilot ray through the optical system. This is a paraxial Gaussian beam and allows very rapid finding of the location of waists with respect to surfaces, calculation of Rayleigh range and calculation of the reference spheres/planes at the optical surfaces. On this basis, the best propagator is selected and displayed in the dialog box (see Fig. 16.3, right). This selection can be overruled by the user by checking the appropriate check boxes in the columns 'Fix 1' and 'Fix 2' respectively.
Propagation between surfaces is typically performed in two steps, using two propagators successively. To illustrate the point, consider Fig. 16.4
Since there is no Sphere-to-Sphere propagator (yet), the field is first propagated from the reference sphere at surface 2 to the waist location over the distance \(z\), using a STW (sphere-to-waist) propagator. From this location the field is propagated to the reference sphere at surface 3 over the distance \(\not \approx\) (in negative direction).
This is why two propagators are offered for each surface in the BPR dialog (Fig. 16.3). The Rayleigh range \(z_{R}\) is a convenient measure for selecting the appropriate propagator.
\[
\begin{equation*}
z_{R}=\omega_{o}^{2} \pi / \lambda \tag{16.26}
\end{equation*}
\]
where \(\omega_{o}\) is the beam radius (semi-diameter). The Rayleigh range indicates that axial range around the waist where the field (the wavefront) may still be considered with good accuracy as plano. Outside the Rayleigh range, beam spreading and wavefront curvature are noticeable. We also refer to the operators description in Eq. 16.25 and Fig. 16.2 to describe the four possible cases of propagation.
The simplest case is the 'inside-inside' (II) case. That is, propagation distance \(z\) is less than the

Figure 16.4: Propagation from surface 2 to 3.

Rayleigh range \(\left(-z_{R}\right.\) to \(\left.+z_{R}\right)\). The radius of the wavefront is infinity or nearly infinity. Thus, a beam travelling inside this range may be well modelled by the angular spectrum method, which propagates between plano (infinity radius of curvature) surfaces. Therefore, this propagator is called PTP (plane-to-plane).
If the propagation distance is larger than the Rayleigh range \(z_{R}\), the \(\mathbf{I O}\) case ('inside-outside'), respectively the OI case ('outside-inside') apply. The radius of the wavefront at the start surface (OI case) respectively at the receiving surface (IO case) is no longer infinity. The Fresnel approximation is now used as propagator, which propagates a field from a sphere to a waist (STW) respectively from a waist to a sphere (WTS).

\subsection*{16.7 Examples}

The examples to follow give a step-by-step introduction to propagating coherent (monochromatic) beams through optical systems. All the OpTaliX files referred to in the subsequent sections are found in the examples directory \optalix\examples \(\backslash p o p \backslash\)

\subsection*{16.7.1 Free-Space Propagation}

Fig. 16.5 shows the optical setup for propagating a plane wave over a certain distance in free space. The predefined \(O p T a l i X\) file is found under \optalix \(\backslash\) examples \(\backslash p o p \backslash f r e e s p a c e . o t x\). The input field is a 'top-hat' amplitude profile defined by a circular screen (aperture) of 1 mm diameter on surface 1 . We will calculate the field at the subsequent surfaces \(2-5\), which are placed at various distances to the screen (surface 1).
\(\qquad\)
Figure 16.5: Optical setup for simple free-space propagation

The BPR dialog (click on the BPR icon underneath the main menu or enter EDI BPR in the command line) shows suitable predefined parameter for this example: The beam starts at surface 1 with a diameter of 1 mm and a circular 'top-hat' amplitude profile. Since the we start with a plane wave the
waist is also at surface 1 . The size of the grid array is \(256 \times 256\) and it overfills the beam by a factor 5.

The output surface, i.e. the surface on which the output field is displayed may be freely selected between 1 and 5. The resulting fields are shown in Fig. xxx.

Figure 16.6: Fields at various propagation distances.

\subsection*{16.7.2 Talbot Imaging}

The Talbot imaging phenomenon is present for any periodic structure. At a specific distance, defined by the wavelength and the period of the periodic structure (typically an amplitude grating), a perfect image is obtained. A multiplicity of such images appear behind the grating, without the help of lenses. The z -locations at which the perfect image (also called a self-image) can be observed must satisfy the condition
\[
\begin{equation*}
z=\frac{2 n L^{2}}{\lambda} \tag{16.27}
\end{equation*}
\]
where \(L\) is the period of the periodic structure and \(n\) is an integer.

Figure 16.7: Talbot imaging

Note that the side lobes are due to the finite extent of the grating structure.

\subsection*{16.7.3 Coupling Efficiency Example}

This example uses a symmetrical optical configuration to couple the output of a single mode fiber into another single mode fiber. The design file is found under
\optalix\examples \(\backslash p o p \backslash c o u p l i n g-e f f i c i e n c y . o t x . ~ W e ~ h a v e ~ s e e n ~ i n ~ s e c t i o n ~ 14.4 ~\) (page 290) that fiber coupling efficiency (CEF) algorithms based on geometrical ray tracing predict coupling efficiency reasonably well if diffraction effects inside the optical system can be neglected.
We will now consider a case where diffraction effect play a significant role. The axial separation between the aspheric coupling lenses is 200 mm . Due to the small diameter the beam will spread out (diverge) as it propagates in the free space. Due to diffraction, the beam diameter at the receiving lens will be larger than predicted by purely geometric ray tracing and the wavefront will no longer be plano. That gives rise to a different location of the focus position as compared to the geometric spot.

Figure 16.8: Fiber coupling \(1: 1\) relay optics.

The source and receiving fibers are standard Corning SMF-28 types with \(5.2 \mu \mathrm{~m}\) mode field radius. Since the fibers are single mode, their emitted respectively exited field is close to a Gaussian and we may run a Gaussian beam analysis (see BEA option in sect. 14.3) in order to obtain a first quick overview about the expected the beam parameters:

We see that the focus, i.e. the location of the waist, is practically identical to the position of surface 6. The geometric analysis (use spot or fan aberration plots), however, indicates a clear defocus.

This example is also a good exercise for selecting the correct propagators based on the Rayleigh range. For example, propagation from surface 2 to 3 over 100 mm distance is completely within the Rayleigh range (\(z_{R}=175.199 \mathrm{~mm}\)), so the PTP operator will be initially proposed by the program. The waist, however, is not exactly at surface 3 but 0.439 mm in front of surface 3 . Since propagation is always performed from and to the waist, the program proposes propagation in two steps, first PTP over 99.561 mm and secondly PTP over 0.439 mm . Since surface 3 is so close to the waist, we override the program's choice by disabling the second propagator. Check the 'Fix' check box and select a blank field in the menu. That will also reduce computation time. In a future release, the program will automatically recognize such conditions.
In order to calculate coupled energy, the receiving fiber must be specified. Click on the 'Fiber Parameter' button in the 'Output Field' section of the dialog. A new dialog will be opened. In fact, this is the

Figure 16.9: Dialogs for physical optics based calculation of coupling efficiency
dialog used in the CEF option (geometrical ray trace based) where only the receiving fiber parameters may be edited. The source fiber (source field) parameters are greyed out because the source field is already specified in the BPR dialog.
The output in the text window is:
```

BEAM PROPAGATION :
Source Parameter:
Object width : X = 0.01040 Y = 0.01040
Object patch : X = 0.10400 Y = 0.10400
Sampling : }12
Source type : CORNING SMF-28
Linear coupling efficiency : 0.9935
Coupling loss : -0.0283 dB

```

As already expected from the Gaussian beam analysis (BEA) shown on page 328, coupling is nearly perfect. In contrast to this result, the geometric optics based CEF option calculates a relatively high loss, which corresponds to the defocus of the geometric spot.
```

Linear coupling efficiency : 0.619749
Coupling loss : -2.0778 dB

```

\subsection*{16.8 Restrictions}

Diffraction beam propagation assumes coherent (monochromatic) radiation. Partial coherence or non-monochromatic light cannot be modelled by this option.
In the current implementation, only axial conditions can be modelled. Decentered and/or tilted configurations or skew beams should be avoided. This capability is subject to later releases.

\section*{17}

\section*{Transmission Analysis}

Computes the transmittance of a single ray or a bundle of rays through the optical system. The transmission is computed as a fraction of the incident intensity which is normalized to 1 (i.e. \(100 \%\)). The transmission calculation accounts for vignetting due to clipping apertures or obscurations, ray losses (clipping due to ray trace errors), reflection losses at coated or uncoated surfaces, material bulk absorption, gaussian pupil apodization, surface intensity filters and the polarization state of the source radiation.

Calculation of the transmittance can be controlled in \(O p T a l i X\) by four options (see also Fig.17.1).
1. Absorption of radiation within optical materials is controlled by the TRA command. Use TRA yes or TRA no to activate/deactivate bulk material transmittance in calculations.
2. Reflection losses at optical interfaces (coated or uncoated) are controlled by the POL command, which activates/deactivates polarization ray tracing. See POL yes \(\mid\) no command to include/exclude effects from coated or uncoated surfaces.
3. Intensity filters (surface apodization) modify the intensity transmission along a ray path. These filters may be loaded from INT-files and associated to optical surfaces.
4. The system pupil may be apodized using the commands PUI, PUX, PUY. This feature is mainly used to model non-uniform source radiation such as lasers.

Figure 17.1: Effects on transmission.

Thus, in order to calculate transmission through an optical system including the effects of bulk material absorption and surface reflection losses, the following options must be activated:

TRA yes
POL yes
Likewise, the combination TRA yes, POL no, includes the effects of material absorption but ignores all surface reflection losses, whether they are coated or not.

If polarization ray trace is enabled (POL yes), output of transmission analysis depends on the polarization state of the source radiation. Use the POLSTATE command to select between polarized or unpolarized input radiation (see also section 18, page 339). By default, the source radiation is assumed unpolarized.
Bulk absorption losses of each material in the optical system are obtained from the glass types. Absorption losses are dependent on the integrated path-length, the material and the wavelength. If bulk absorbtion data is not available for a given glass (e.g. for fictitious glasses), the transmission along the ray path in this material will be assumed \(100 \%\).

\subsection*{17.1 Effect of Coatings/Cement on Transmission}

By default, each air-glass surface is assumed to be uncoated, i.e. the Fresnel reflections at each air/glass interface are computed, if polarization ray trace is activated (POL yes). Mirrors without coating specification are assumed as "perfect" \((100 \%)\) reflectors.
Attach real multilayer coatings to surfaces (see alsoATT command on page 383) in order to get most accurate results. Multilayer coatings may be loaded, analyzed and optimized in the coatings menu and then assigned (attached) to any surface. The surface can be converted to an uncoated surface using the DEL MUL command.
A default coating can be applied on each surface for transmission analysis. It is assumed to be single layer \(M g F_{2}\) with a quarter wave thickness normal to the surface at the reference wavelength. The default coating is defined and attached to a surface by the
```

ATT si..j|k DEF

```
command (see also ATT command on page 383), or by entering DEFCOAT in the coating column of the surface editor. An example is shown in Fig. 17.2

Figure 17.2: Defining a "default" coating (single MgF2 layer) on surfaces.

Cemented surfaces (glass-glass interfaces) are assumed uncoated; the transmission losses are derived from Fresnel reflection losses caused by the index difference of the two adjacent materials. In order to exactly model the effect of cement, split the cemented surface into two surfaces which enclose the cement material.

\subsection*{17.2 Transmission along Chief Ray}

By default, transmission is based on the chief ray tracing only. Thus, only one ray (the chief ray) is used to calculate transmission. Using this option, all aperture related effects are ignored. In particular for systems with large numerical apertures, large field angles or large ray incidence angles at surfaces, transmission analysis which integrates over the aperture should be preferred (see section17.3).

\section*{Command syntax:}
\begin{tabular}{|l|l|}
\hline TRA yes \(\mid\) no \\
& \begin{tabular}{l}
Includes bulk absorption in transmission analysis. "Yes", includes \\
bulk absorption effects in all subsequent calculations (e.g. PSF, MTF). \\
"No" ignores transmission effects and the aperture is assumed uni- \\
formly illuminated (except when apodization of the system has been \\
explicitly specified, see commands PUI,PUX,PUY.
\end{tabular} \\
\hline TRA STEPS n_steps & \begin{tabular}{l}
Number of wavelength intervals (steps) within the wavelength range \\
as defined in the system configuration. Used in TRA LAM plots (see \\
below).
\end{tabular} \\
\hline TRA LAM [FIL & \begin{tabular}{l}
Plot (chief ray) transmission vs. wavelength (LAM). Transmission data \\
may be exported to a file (in ASCII or Excel format) if a file name \\
following the FIL qualifier is specified. Note that the extension of
\end{tabular} \\
the file specification determines the file format (.txt or . dat for \\
ASCII format, .xls for Excel format).
\end{tabular}

\section*{Example:}

We assume a simple achromatic doublet and attach the standard 3-layer coating "ar 1" (W-type antireflection coating) from the coating library to surfaces 1 and 2 . We leave surfaces 3 and 4 uncoated.

This is accomplished by the commands, assuming the doublet is already in use:
```

att s1..2 file ar_1 ! Attach coating "ar_1" to surfaces 1-2
tra sur ! compute transmission vs. surfaces

```

The incident intensity is always 1 . The output gives the relative intensity along the chief ray. As shown below, transmission values are listed at each wavelength. The ratio of output to input intensity is given for each source of loss, where reflection losses are designated REF and absorption losses (occurring in the bulk material) are designated ABS.

This example shows the effects of surface reflection losses and bulk absorption losses. Since no coating is specified at surfaces 3 and 4, Fresnel reflection losses are calculated for these surfaces. Fresnel reflection \(R\) on uncoated surfaces for normal incidence is given by
\[
\begin{equation*}
R=\left(\frac{n-1}{n+1}\right)^{2} \tag{17.1}
\end{equation*}
\]

Note also the steep falloff of transmission at shorter wavelengths (\(400-450 \mathrm{~nm}\)), which is caused by bulk absorption in the second lens and the lower antireflection efficiency of this coating in the blue spectrum.

\subsection*{17.3 Transmission integrated over Aperture}

A bundle of rays is traced through the optical system which fills the entire pupil. The output of this analysis is the mean transmission value of all rays. Note that this calculation is computing intensive and the result may be outputted delayed, depending on computer speed. The transmission calculation accounts for vignetting due to clipping apertures or obscurations, ray losses (clipping due to ray trace errors), losses at coated and uncoated surfaces and material bulk absorption.
Command syntax:
\begin{tabular}{|l|l|}
\hline TRA LAM AVG & Plot transmission vs. wavelength (LAM), integrated over full aperture. \\
\hline TRA FLD AVG & Plot transmission vs. field, integrated over full aperture. \\
\hline TRA SUR AVG & \begin{tabular}{l}
Plot and list transmission integrated over full aperture and decom- \\
posed to surface contributions at all fields and wavelengths.
\end{tabular} \\
\hline TRA NUM AVG & \begin{tabular}{l}
Print transmission integrated over aperture for all fields and wave- \\
lengths defined in the optical system.
\end{tabular} \\
\hline
\end{tabular}

A sample output for the 'TRA NUM AVG' command is shown below:

For each field, wavelength and zoom position, output reports transmittance, projected solid angle, effective numerical aperture and relative irradiance.

Transmittance includes losses at air-glass interfaces (coated or uncoated surfaces) and material absorption losses. Set POL yes to enable air-glass losses and TRA yes to enable absorption losses.

Proj. solid Angle Defines the solid angle of the bundle of rays as seen from the image point. This is purely a geometric factor and corresponds to the square of the apparent numerical aperture \(\left(\sin \left(u^{\ell}\right)\right.\) at a given field. Vignetting (i.e. truncation of the beam) decreases this value.

Effective NA Related to the projected solid angle and describes the effective numerical aperture at a given field.

Relative Illum. The product of transmittance and projected solid angle. A graphical representation of this value is obtained by the RIRR command (relative irradiance, see following section). The relative irradiance is dimensionless and is always referred to the first field.

\subsection*{17.4 Relative Irradiance}
\begin{tabular}{|l|l|}
\hline RIRR [NUM] & \begin{tabular}{l}
Plots relative irradiance at the image surface. Includes field depen- \\
dent cosine effects and vignetting. Set POL yes to include air-glass \\
losses and TRA yes to include material absorption losses. The op- \\
tional parameter NUM outputs numerical data.
\end{tabular} \\
\hline
\end{tabular}

Plots the relative irradiance (also called relative illumination) in image space by determining the apparent size of the exit pupil in direction cosine space, including all effects like distortion, vignetting, pupil aberration, wavelength weighting and system transmission. The size of the exit pupil is calculated by tracing a bundle of rays through the optical system which fills the entire entrance pupil.NRD (number of rays across diameter) controls accuracy of the result as well as speed of calculation. The higher NRD, the more accurate the result will be, however, computation time increases quadratically with NRD.

The relative irradiance is the apparent off-axis pupil area divided by the pupil area of the first field defined in the system. Note that the apparent pupil area in OpTaliX is expressed by the solid angle (in \(\sin (u)\) units) as seen from the image point. This approach is valid for any general optical system and not limited to rotationally symmetric systems. A detailed treatment of calculating relative illumination is found in [42].
Use POL yes and TRA yes to include transmission losses on air-glass interfaces (including coatings) and losses due to bulk absorption.

\section*{Note:}

If the system is badly aberrated, the solid angle calculations obtained from ray trace may no longer provide accurate results for relative irradiance. In this case, accurate results are obtained by reversing the system with the image surface modelled as the object surface. Then the product of the transmittance and the projected solid angle in object space gives the relative irradiance with high accuracy, regardless of aberrations.

\subsection*{17.5 Colour Contribution Index}

The colour code describes the influence of photographic lenses on the colour rendition of colour films. It is applicable only to the visible wavelength range, i.e. between approximately 370 nm and 680 nm and is only defined on-axis. Although the colour code is only defined at the optical axis, OpTaliX calculates a colour code for all given fields, indicating possible colour shifts as a function of the field. This feature is particularly interesting in wide angle applications. This calculation also takes into account the effects of multilayer coatings, if attached to surfaces (see also section20 and how to attach coatings to optical surfaces).
The colour contribution index is calculated according to the following scheme (ISO 6728) :
Compute the spectral (wavelength-dependent) transmission \(T(\lambda)\) in 10 nm intervals in the range 370
-680 nm . The spectral transmission is then multiplied with the spectral sensitivity (weight) \(W(\lambda)\) of a standard photographic film, as given in the following equation and in table 17.1:
\[
\begin{equation*}
T_{e f f}=\sum T(\lambda) \cdot W(\lambda) \tag{17.2}
\end{equation*}
\]

The total photographic responses, \(R_{B}, R_{G}, R_{R}\), are expressed as \(L o g_{10}\) values, i.e.
\[
\begin{equation*}
R_{B}=\log _{10}\left(T_{\text {eff_blue }}\right) \tag{17.3}
\end{equation*}
\]

Likewise, \(R_{G}\) and \(R_{R}\) are determined. Finally, the smallest element of this three number designation is equaled to zero by subtracting it from all three \(\log\) values.

\section*{Command syntax:}
\begin{tabular}{|ll|lll|}
\hline CCI [AVG] [fi..j zi..j] & \begin{tabular}{l}
Calculates the colour contribution index (CCI) according \\
ISO \(6728(1983)\) for each field and zoom position, based \\
on chief rays. The optional parameter AVG integrates \\
over the aperture. Since many rays may be involved (de- \\
pending on NRD) in evaluating an average transmission, \\
the computing time may increase considerably. If neces- \\
sary, reduce NRD to reduce computing time.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ Weighting Factors for Standard Cameras } \\
\hline\(\lambda(n m)\) & \(W_{\text {blue }}(\lambda)\) & \(\lambda(n m)\) & \(W_{\text {green }}(\lambda)\) & \(\lambda(n m)\) & \(W_{\text {red }}(\lambda)\) \\
\hline 370.00 & 1.00 & 470.00 & 1.00 & 550.00 & 1.00 \\
\hline 380.00 & 1.00 & 480.00 & 1.00 & 560.00 & 1.00 \\
\hline 390.00 & 3.00 & 490.00 & 1.00 & 570.00 & 1.00 \\
\hline 400.00 & 7.00 & 500.00 & 2.00 & 580.00 & 2.00 \\
\hline 410.00 & 10.00 & 510.00 & 4.00 & 590.00 & 3.00 \\
\hline 420.00 & 12.00 & 520.00 & 5.00 & 600.00 & 4.00 \\
\hline 430.00 & 12.00 & 530.00 & 8.00 & 610.00 & 6.00 \\
\hline 440.00 & 13.00 & 540.00 & 15.00 & 620.00 & 8.00 \\
\hline 450.00 & 13.00 & 550.00 & 25.00 & 630.00 & 12.00 \\
\hline 460.00 & 12.00 & 560.00 & 13.00 & 640.00 & 19.00 \\
\hline 470.00 & 8.00 & 570.00 & 13.00 & 650.00 & 22.00 \\
\hline 480.00 & 4.00 & 580.00 & 9.00 & 660.00 & 16.00 \\
\hline 490.00 & 2.00 & 590.00 & 2.00 & 670.00 & 4.00 \\
\hline 500.00 & 1.00 & 600.00 & 1.00 & 680.00 & 1.00 \\
\hline 510.00 & 1.00 & & & & \\
\hline
\end{tabular}

Table 17.1: Weighting factors for colour contribution index calculation of standard cameras

\section*{18}

\section*{Polarization Analysis}

Polarization analysis in OpTaliX uses an extension to the classical ray trace, such that vector properties are associated to rays. Interaction at surfaces in the optical system alter these vector properties, like the polarization state.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
POL yes \(\mid\) no \\
POL y|n
\end{tabular} & \begin{tabular}{l}
Activates/deactivates polarization ray trace \\
yes : enables polarization ray trace for all subsequent analysis \\
no: disables polarization ray trace
\end{tabular} \\
\hline POL LAM & Polarization analysis vs. wavelength. \\
\hline POL APE & Calculates the degree of polarization for all rays across the pupil. \\
\hline POL ELL & Plots polarization ellipses for all rays across the pupil. \\
\hline POR & \begin{tabular}{l}
Polarization raytrace with user-defined rays (e.g. those rays which \\
have been previously defined by the SET RAY or SET FAN com- \\
mands.)
\end{tabular} \\
\hline PA1 x1 y1 phase1 & \begin{tabular}{l}
Polarization amplitude and phase components of electric vector 1. \\
The phase is given in radians.
\end{tabular} \\
\hline PA2 x2 y2 phase2 & \begin{tabular}{l}
Polarization amplitude and phase components of electric vector 2. \\
The phase is given in radians. This vector is required to define un- \\
polarized or partially polarized light. For strictly monochromatic (co- \\
herent) radiation, PA2 will not be used in polarization calculations.
\end{tabular} \\
\hline POLSTATE 0|1 & \begin{tabular}{l}
Polarization state of input radiation: \\
\(0=\) unpolarized, uses both vectors PA1 and PA2, \\
1=completely polarized, uses vector PA1 only.
\end{tabular} \\
\hline \begin{tabular}{l}
POLRAY [fi..j \\
wi..j si..j \\
zi..j]
\end{tabular} & \begin{tabular}{l}
Polarization ray trace. See detailed description in sect. 18.1
\end{tabular} \\
\hline
\end{tabular}

\subsection*{18.1 Tracing a Polarization Ray}

Polarization ray tracing is similar to tracing a single ray as given by theRSI and SIN commands (see page 238 for reference).
The commands POLRAY respectively PRSI trace a single ray through the optical system and output the polarization state (\(\mathrm{X} / \mathrm{Y}\)-amplitudes, phase, degree of polarization) associated with this ray. The input polarization is defined by the PA1 and PA2 commands (see also sect. 18.2).
The command syntax is:
```

prsi [ si..j | gk | wi..j | zi..j | fi..j ] ape_relX ape_relY

```
where ape_relX and ape_relY are the relative coordinates of the ray in the entrance pupil. Example:
```

pa1 0 1 0 ! Linear input polarization, oriented along Y-axis
polstate 1 ! Assume coherent (completely polarized) radiation
prsi f1 si 0 0 ! Trace polarization ray at field f1, image surface si, for chief ray
(relative pupil apertures 0/0)

```

A typical output in the text window is:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Field & \(=\) & 1 & OBX = & 0.00000 & OBY = & 0.00000 \\
\hline Colour & \(r=\) & 1 & WL = & 546.000 nm & & \\
\hline \# P & Pol. & Degree & X1 & Y1 & Phase1 & \\
\hline 1 & & . 00000 & 0.000000 & 1.000000 & 0.0 & \\
\hline 2 & & . 00000 & 0.684547 & 0.728969 & 86.4 & \\
\hline 3 & & . 00000 & 0.684547 & 0.728969 & 86.4 & \\
\hline
\end{tabular}

\subsection*{18.2 Defining Input Polarization}

In order to perform polarization calculations, the polarization properties of the input beam must be fully specified. Any polarization state of input radiation may be expressed by two independent linearly polarized waves with their electric vectors vibrating in two mutually perpendicular directions at right angles to the direction of propagation. Fig. 18.1 shows the polarization vectors associated to a ray.

Figure 18.1: Definition of polarization vectors, a) mutually perpendicular electric vectors, b) polarization vectors attached to a ray.

It is preferable to align the electric vectors \(a_{1}, a_{2}\) along the (\(\mathrm{x}, \mathrm{y}\)) coordinate axes of an arbitrarily chosen coordinate system, typically the one which is used to describe the optical system. The polarization vectors are then \(a_{1}=(0,1)\) and \(a_{2}=(1,0)\). For coherent, i.e. strictly monochromatic radiation (POLSTATE 1), the polarization state is always \(100 \%\) and one vector (\(a_{1}\)) is sufficient. \(a_{2}\) will be ignored for this case.
The state of polarization is best represented by the coherency matrix \(\mathbf{J}\) of the light wave as found for example in Born and Wolf [4]. The coherency matrix is defined as
\[
\mathbf{J}=\left[\begin{array}{ll}
<a_{1}^{2}> & <a_{1} a_{2} e^{i\left(\Phi_{1}-\Phi_{2}\right)}> \tag{18.1}\\
<a_{1} a_{2} e^{-i\left(\Phi_{1}-\Phi_{2}\right)}> & <a_{2}^{2}>
\end{array}\right]=\left[\begin{array}{ll}
J_{x x} & J_{x y} \\
J_{y x} & J_{y y}
\end{array}\right]
\]
where \(\Phi\) is the phase difference between the components of each vector. The diagonal elements of \(\mathbf{J}\) are real and are seen to represent the intensities of the components in the x - and y -directions. The non-diagonal elements are in general complex, but they are conjugates of each other. The form of the coherence matrix \(\mathbf{J}\) can be expressed in a simple manner for some cases of particular interest:

\subsection*{18.2.1 Completely unpolarized (natural) light:}

Light which is most frequently encountered in nature has the property that the intensity of its components in any direction perpendicular to the direction of propagation is the same. The coherence matrix of natural light of intensity \(I_{0}\) is
\[
\frac{1}{2} I_{0}\left[\begin{array}{ll}
1 & 0 \tag{18.2}\\
0 & 1
\end{array}\right]
\]

\subsection*{18.2.2 Completely polarized light:}

If we suppose that the light is strictly monochromatic, the amplitudes \(a_{1}\) and \(a_{2}\) and the phase factors \(\Phi_{1}\) and \(\Phi_{2}\) do not depend on the time. In particular, the matrices
\[
I\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad I\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\]
each represent linearly polarized light of intensity I , with the electric vector in the x -direction (\(\propto=0\)) and the \(y\)-direction \(\left(a_{1}=0\right)\) respectively. For circularly polarized light the coherency matrix is
\[
\frac{1}{2} I\left[\begin{array}{rr}
1 & \pm i \\
\mp i & 1
\end{array}\right]
\]
where I is the intensity of the light. The upper and lower sign is taken according whether the polarization is right- or left-handed.

\subsection*{18.2.3 Some equivalent representations:}

We note some useful representations of natural light. The coherency matrix of natural light may always be expressed in the form
\[
\frac{1}{2} I\left[\begin{array}{ll}
1 & 0 \tag{18.3}\\
0 & 1
\end{array}\right]=\frac{1}{2} I\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\frac{1}{2} I\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\]
and this implies that a wave of natural light, of intensity I , is equivalent to two independent linearly polarized waves, each of intensity \(\frac{1}{2} I\), with their electric vectors vibrating in two mutually perpendicular directions at right angles to the direction of propagation.
Another useful representation of natural light is
\[
\frac{1}{2} I\left[\begin{array}{ll}
1 & 0 \tag{18.4}\\
0 & 1
\end{array}\right]=\frac{1}{4} I\left[\begin{array}{cc}
1 & +i \\
-i & 1
\end{array}\right]+\frac{1}{4} I\left[\begin{array}{cc}
1 & -i \\
+i & 1
\end{array}\right]
\]
and implies that a wave of natural light of intensity I is equivalent to two independent circularly polarized waves, one right-handed, the other left-handed, each of intensity \(\frac{1}{2} I\).
Thus, for the determination of the polarization behaviour of an optical system, two linearly polarized waves (represented by rays) according eq. 18.3 are traced independently through the optical system. The vibrating planes of this incident waves (represented by rays) can be defined by proper setting of the amplitudes \(a_{1}, a_{2}\) and the phase difference \(\delta\) between the components \(a_{1}, a_{2}\) of each wave.

\subsection*{18.3 The Degree of Polarization:}

The ratio of the intensity of the polarized portion of the total light intensity is called the degree of polarization \(\mathbf{P}\) of the wave. Calculation of \(\mathbf{P}\) requires two mutually perpendicular electric vectors as shown in Fig. 18.1. Two forms of expressing (calculating) \(\mathbf{P}\) are shown below.

\subsection*{18.3.1 Polarzation expressed by Coherence Matrix}

On the basis of the coherence matrix the degree of polarization is given by
\[
\begin{equation*}
\mathbf{P}=\frac{I_{p o l}}{I_{t o t}}=\sqrt{1-\frac{4|\mathbf{J}|}{\left(J_{x x}+J_{y y}\right)^{2}}} \tag{18.5}
\end{equation*}
\]
where \(|\mathbf{J}|\) is the determinant of the coherence matrix as given in eq. 18.1:
\[
\begin{equation*}
|\mathbf{J}|=J_{x x} J_{y y}-J_{x y} J_{y x} \geq 0 \tag{18.6}
\end{equation*}
\]

\subsection*{18.3.2 Polarization expressed by Stokes Vectors}

The degree of polarization may also be expressed using Stokes vectors
\[
\begin{equation*}
P=\frac{\sqrt{s_{1}^{2}+s_{2}^{2}+s_{3}^{2}}}{s_{0}} \tag{18.7}
\end{equation*}
\]
where the Stokes vector is defined by:
\[
\begin{align*}
& s_{0}=\left\langle a_{1}^{2}\right\rangle+\left\langle a_{2}^{2}\right\rangle \\
& s_{1}=\left\langle a_{1}^{2}\right\rangle-\left\langle a_{2}^{2}\right\rangle \\
& s_{2}=2\left\langle a_{1} a_{2} \cos \delta\right\rangle \tag{18.8}\\
& s_{3}=2\left\langle a_{1} a_{2} \sin \delta\right\rangle
\end{align*}
\]

\subsection*{18.4 Total Internal Reflection}

The Fresnel formulae do not apply for total internal reflection. This is the case when light is propagated from an optically denser medium into one which is optically less dense and when the law of refraction
\[
\sin \theta_{t}=\frac{\sin \theta_{i}}{n_{12}} n_{12}=\frac{n_{1}}{n_{2}}
\]
does not give a real value for the angle of refraction \(\theta_{t}\). The intensity of light which is totally reflected for each component (TE- or TM-wave) is equal to the intensity of the incident light. But the two components are seen to undergo phase jumps of different amounts.
The changes of the phases \(\delta_{s}, \delta_{t}\) of the components of the reflected and the incident wave can be expressed as [4]
\[
\begin{align*}
& \tan \frac{\delta_{s}}{2}=-\frac{\sqrt{\sin ^{2} \theta_{i}-n^{2}}}{n^{2} \cos \theta_{i}} \tag{18.9}\\
& \tan \frac{\delta_{t}}{2}=-\frac{\sqrt{\sin ^{2} \theta_{i}-n^{2}}}{\cos \theta_{i}} \tag{18.10}
\end{align*}
\]
where \(n=n_{2} / n_{1}\). Linearly polarized light will in consequence become elliptically polarized on total reflection. The relative phase difference is \(\delta=\delta_{s}-\delta_{t}\).

\section*{19}

\section*{Optimization}

Optimization of an optical system requires the solution of a highly nonlinear problem. It is the process by which the aberrations of a lens are minimized by changing selected lens data (variables). A merit-function is defined by commands relating to different classes of aberrations (e.g. spot diameter, distortion, etc) and constraints to be fulfilled exactly (e.g. focal length, overall length, etc). In order to optimize a system, both merit-function and variables must be defined. All entries in the merit-function must be computable functions of the variables.
Three types of optimization algorithms are available
KT local optimization, minimizes an error function by a damped-least-square (DLS) method subject to solving constraints using Lagrange multipliers and application of the Kuhn-Tucker optimality condition,

LM local optimization, minimizes an error function using a modified Levenberg-Marquardt algorithm,

GO global optimization based on an algorithm proposed by M. Isshiki [67].
A brief overview of the algorithms is given in sections 19.1 to 19.3. For a detailed understanding, the reader is referred to the references cited in the corresponding sections.

In order to set up a local optimization (LM, KT), variables, targets and constraints must be defined. This is performed in several steps:

VAR: Define variables for non-zoomed and zoomed system. See sect. 19.4 for details.
TAR: Define target functions and constraints, as described in sect.19.6.
OPT : Run the optimization (sect. 19.10).

\subsection*{19.1 KT-Optimization}

The KT-optimization minimizes an error function by a damped-least-square (DLS) method subject to exactly solving constraints using Lagrange multipliers. The Kuhn-Tucker optimality criteria are applied at each iteration to secure that the true local minimum is found within the domain of constraints given. The Kuhn-Tucker conditions are an extension to the classical DLS method. For further

\footnotetext{
\({ }^{1}\) also known as Karush-Kuhn-Tucker condition
}
reading see Spencer [51] and Feder [11]. Closely following Spencer's treatment, the problem is stated as minimizing
\[
\begin{equation*}
\sum_{m=1}^{M} w_{m}^{2}\left(\sum_{j=1}^{J} a_{m j} q_{j}-d_{m}\right)^{2} \tag{19.1}
\end{equation*}
\]
while at the same time solving the set of linear equations
\[
\begin{equation*}
\sum_{j=1}^{J} b_{n j} q_{j}=e_{n}, \text { for } i=1, \ldots, N \tag{19.2}
\end{equation*}
\]
with
\[
\begin{array}{ll}
a_{m j}=\partial g_{m} / \partial p_{j} & \text { derivative on functions to be minimized } \\
b_{m j}=\partial h_{n} / \partial p_{j} & \text { derivative on functions to be exactly solved, } \\
q_{j} & =\text { parameter increment } \\
d_{m} & =\text { function aberration (minimize) } \\
e_{m} & =\text { constraint aberration (solve exactly) } \\
w_{m} & =\text { weight factors }
\end{array}
\]

A solution to this problem, written in matrix form, is given by
\[
\begin{equation*}
\left(\mathcal{M}^{T} \mathcal{M}+\mathcal{C} \mathcal{I}\right) q-\mathcal{B}^{T} \lambda=\mathcal{M}^{T} r \tag{19.3}
\end{equation*}
\]
with
\begin{tabular}{ll}
\(\mathcal{M}=\mathcal{W} \mathcal{A}\) & = weighted derivative matrix (minimize) \\
\(\mathcal{B}\) & = derivative matrix (solve exactly) \\
\(\mathcal{I}\) & = identity matrix \\
\(\mathcal{C}\) & dumping factor \\
\(r=\mathcal{W} d\) & \(=\) weighted aberration \\
\(\lambda\) & \(=\) Lagrange multipliers
\end{tabular}

At each iteration, that is after solving the set of DLS equations as given in eq. 19.3 , the \(1^{\text {st }}\) order (necessary) Kuhn-Tucker conditions, which satisfy the optimum solution of a non-linear problem subject to constraints, are then checked:
\[
\begin{array}{lll}
I & \frac{\partial L}{\partial p_{j}}=\frac{\partial g}{\partial p_{j}}-\lambda \frac{\partial h}{\partial p_{j}}=0 & \text { stationary point } \\
I I & h(p) \leq 0 & \text { feasibility } \tag{19.4}\\
I I I & \lambda h(p)=0 & \text { complementary slackness }
\end{array}
\]

\subsection*{19.2 LM-Optimization}

The problem is solved subject to bounds on the variables using a modified Levenberg-Marquardt algorithm and a finite difference Jacobian [10, 30, 35]. The problem is stated as follows:
\[
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} F(x)^{T} F(x)=\frac{1}{2} \sum_{i=1}^{m} f_{i}(x)^{2} \tag{19.5}
\end{equation*}
\]
where \(m \geq n\) and \(f_{i}(x)\) is the i -th component function of \(\mathrm{F}(\mathrm{x})\). From a current point, the algorithm uses the trust region approach and a new point \(x_{n}\) is computed as
\[
\begin{equation*}
x_{n}=x_{c}-\left[J\left(x_{c}\right)^{T} J\left(x_{c}\right)+\mu_{c} I\right]^{-1} J\left(x_{c}\right)^{T} F\left(x_{c}\right) \tag{19.6}
\end{equation*}
\]
\(F\left(x_{c}\right)\) and \(J\left(x_{c}\right)\) are the function values and the Jacobian evaluated at the current point \(x_{c}\), respectively. This procedure is repeated until the stopping criteria are satisfied.

\subsection*{19.3 Global Optimization (GO)}

The LM- and KT-optimizations presented in the previous chapters are based on damped-least-squares (DLS) methods which, a priori, only finds local minima close to the starting point. The DLS algorithm is not able to find out of a local minimum to obtain other solutions because the damping factor forces the design within that minimum.
Masaki Isshiki [67] proposed a method to escape from a local minimum in order to find other solutions. This function is defined as
\[
\begin{equation*}
f_{E}=\sqrt{H} \cdot \exp \left[-\frac{1}{2 W^{2}} \sum_{j} \mu_{j}^{2} \cdot\left(x_{j}-x_{j L}\right)^{2}\right] \tag{19.7}
\end{equation*}
\]
where:
\(f_{E}=\) escape function, an additional error function
\(H=\) height of the escape function
\(W=\) width of the escape function
\(x_{j}=\) the j-th design parameter
\(x_{j L}=\) the value of the j -th parameter at the local minimum
\(\mu_{j}=\) the scale factor for the j -th design parameter

Figure 19.1: Escape function to increase the merit function.

The escape function \(f_{E}\) is treated as an additional error function to the merit function of the local optimization. It shall increase the value of the local merit function in the vicinity of the local minimum so that possibly the design can "escape" from the local minimum.

The parameters \(H\) and \(W\) are crucial in effectively modifying the merit function. \(H\) raises the merit function at the local minimum and \(W\) gives the approximate range in which the escape function is effective. There is a third parameter \(T\), the distance threshold between solutions, that affects the behaviour of the global optimization.
A new solution is found when the distance \(D_{E}\) between solutions in the parameter space is greater than an appropriate threshold \(T\). This distance between solutions is defined by:
\[
\begin{equation*}
D_{E}=\sqrt{\sum_{j=1}^{n} \mu_{j}^{2} \cdot\left(x_{j}^{\prime}-x_{j}\right)^{2}} \tag{19.8}
\end{equation*}
\]
where \(x_{j}^{\prime}\) and \(x_{j}\) are the values of the \(j\)-th parameter of the two solutions. The designer must set an appropriate threshold \(T\) for the distance. A new solution is only accepted (and filed) if the distance \(D_{E}\) is greater than \(T\) to avoid a design which is essentially the same as the previous design. A low value of \(T\) creates solutions which are similar in shape, while larger values of \(T\) will create (fewer) solutions that are more independent of each other.
The problem is that the appropriate initial values for \(H, W\) and \(T\) are not known when starting the global optimization. The following empirical rules may help in setting reasonable start values:
- The initial value of \(H\) shall be approximately the size of the error function that was obtained in the local optimization. The program first calculates the merit function from the local optimization and then sets \(H=\) meritfkn. This is the start value for \(H\) in the global optimization.
- The initial value of \(W\) can be safely set to 1 .
- A distance threshold in the range \(0.1<T<10\) is advised. Low values of \(T\) create more solutions of similar shape, high values of \(T\) create fewer, but more independent solutions
- The merit function and its constraints must be well defined so that the local optimization safely converges, i.e. the local optimizer must not diverge, must not lead to infeasible solutions or violate optical laws. It is advisable that you first locally optimize your optical system. The parameters and constraints of your merit function will then also used in the global optimization.

Entering and defining the global optimization parameters \(H, W\) and \(T\) is described in sect.19.15.2. A worked example of a global optimization is given in sect. 19.16.

\subsection*{19.4 Editing Variables}

In the command line, optimization variables may be added or deleted by the commands:
\begin{tabular}{|l|l|}
\hline EDI VAR & \begin{tabular}{l}
The EDI VAR command (without parameters) invokes a dia- \\
log box for editing optimization variables (zoomed and non- \\
zoomed) and targets/constraints. The dialog box contains the \\
most commonly used types of optimization variables, however, \\
variables not found in this dialog box must be set or deleted \\
from the command line (see commands below).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline \begin{tabular}{l}
VAR si..j|sk vstr1 vstr2 ... \\
VARZ si..j|sk vstr1 vstr2 ...
\end{tabular} & \begin{tabular}{l}
Add one or multiple variable(s) on surface(s) si..j|sk described by vstr1, vstr2, etc. The VAR command is used for single position (non-zoomed) variables, the VARZ form is used for zoomed variables. Multiple variables on a surface may be combined in a single line. \\
Examples: \\
var s4 cuy ! curvature (CUY) on surface 4 is variable \\
var s3..4 cuy thi ! curvature and thickness on surfaces 3-4 are variable.
\end{tabular} \\
\hline DEL VAR si..j|sk vstr1 vstr2 ... & \begin{tabular}{l}
Delete variable described in vstr1, vstr2, etc on surface(s) si..j.Example: \\
del var s3 thi! deletes thickness variable on surface 3 .
\end{tabular} \\
\hline
\end{tabular}

From the main menu, Optimization / Variables,Constraints, edit variables/constraints in a spreadsheetlike dialog box. Optionally use the command EDI VAR or click on the VAR tool button in the main window to open the variables/targets dialog.

\subsection*{19.5 Definition of Variables (VAR)}

Variables are defined and edited by the command "VAR". This command applies for both zoomed and non-zoomed variables. A dialog box will be opened.
In case of a multi-configuration (zoom) system, \(\mathbf{n}\) variables will be created internally for each zoomed variable, if n is the number of positions.
Basically, any lens parameter, which can be changed on the command line, may be used as a variable in the optimization. A concise (but not complete) list of variables is given in the following table.
\begin{tabular}{|l|l|}
\hline CUY & curvature \\
\hline CUX & curvature X (toric deformation) \\
\hline THI & thickness \\
\hline THR & reference thickness \\
\hline DEF & defocus \\
\hline K & conic constant \\
\hline A & aspheric parameter, \(h^{4}\) for even asphere, \(h^{2}\) for odd asphere \\
\hline B & aspheric parameter, \(h^{6}\) for even asphere, \(h^{3}\) for odd asphere \\
\hline C & aspheric parameter, \(h^{8}\) for even asphere, \(h^{4}\) for odd asphere \\
\hline D & aspheric parameter, \(h^{12}\) for even asphere, \(h^{5}\) for odd asphere,\(h^{6}\) for odd asphere \\
\hline E & aspheric parameter, \(h^{14}\) for even asphere, \(h^{7}\) for odd asphere \\
\hline F & aspheric parameter, \(h^{16}\) for even asphere, \(h^{8}\) for odd asphere \\
\hline G & aspheric parameter, \(h^{18}\) for even asphere, \(h^{9}\) for odd asphere \\
\hline H & tilt around X-axis \\
\hline ADE & tilt around Y-axis \\
\hline BDE & tilt around Z-axis \\
\hline CDE & X-decenter \\
\hline XDE & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline YDE & Y-decenter \\
\hline ZDE & Z-decenter \\
\hline GZO & gradient Z-offset \\
\hline DVO & Dispersion offset \\
\hline DNO & Index offset \\
\hline GLA & Combined variable, simultaneously makes DNO and DVO variable \\
\hline H2 & Hologram coefficient 2 (\(h\)-term for symmetric HOE, linear \(x\)-term for asymmetric HOE) \\
\hline H3 & Hologram coefficient 3 (\(h^{2}\)-term for symmetric HOE, linear \(y\)-term for asymmetric HOE) \\
\hline H4 & Hologram coefficient 4 (\(h^{3}\)-term for symmetric HOE, \(x^{2}\)-term for asymmetric HOE) \\
\hline H5 & Hologram coefficient 5 (\(h^{4}\)-term for symmetric HOE, \(x \cdot y\)-term for asymmetric HOE) \\
\hline H6 & Hologram coefficient 6 (\(h^{5}\)-term for symmetric HOE, \(y^{2}\)-term for asymmetric HOE) \\
\hline H7 & Hologram coefficient 7 (\(h^{6}\)-term for symmetric HOE, \(x^{3}\)-term for asymmetric HOE) \\
\hline H8 & Hologram coefficient 8 (\(h^{7}\)-term for symmetric HOE, \(x^{2} \cdot y\)-term for asymmetric HOE) \\
\hline H9 & Hologram coefficient \(9\left(h^{8}\right.\)-term for symmetric HOE, \(x \cdot y^{2}\)-term for asymmetric HOE) \\
\hline H10 to H28 & Hologram coefficients 10 to 28 \\
\hline HX1 & x-coordinate of object point source for 2-point HOE \\
\hline HY1 & y-coordinate of object point source for 2-point HOE \\
\hline HZ1 & z-coordinate of object point source for 2-point HOE \\
\hline HX2 & x-coordinate of reference point source for 2-point HOE \\
\hline HY2 & y-coordinate of reference point source for 2-point HOE \\
\hline HZ2 & z-coordinate of reference point source for 2-point HOE \\
\hline Uxx
Zxx & \begin{tabular}{l}
Coefficients of user-defined surfaces, SPS-ODD surfaces and SPS-XYP surfaces. 'xx' denotes the corresponding coefficient number. Example: VAR s4 U7 \\
Coefficients of Zernike surfaces. 'xx' denotes the corresponding coefficient number. Example: VAR s4 Z7
\end{tabular} \\
\hline
\end{tabular}

\subsection*{19.6 Targets and Constraints (TAR)}

Optimization requires a set of targets and constraints which are minimized or solved. Targets are, for example, a minimum spot diameter (SPD) or minimum lateral chromatic aberration (LAC). A constraint is a parameter, which is held exactly or shall be greater or smaller than a specified value. For example, holding the focal length (EFL) to a precise value is a constraint.
The entity of the targets and constraints builds up the "merit-function". There is no built-in default merit function. To define a merit function almost any OpTaliX command may be used. Entries to the merit function may be quite complex as arithmetic expressions (such as \(2 * \operatorname{sqrt}(2) / 3\)), variables (such as \(\$ \mathrm{x}\)) and lens database items (thickness, radius of curvature, etc.) may also be used for defining targets. The commands can be linked with operands and target values. Allowable operands are:
\(=\) Constrains exactly to target value.
\(>\) The target value of the constraint is defined as a minimum value, or lower boundary.
< The target value of the constraint is defined as a maximum value, or upper boundary.
Target values to be minimized do not require an operand. A short example illustrates typical merit function definitions:
```

EFL = 100.
SPD 0 Minimizes spot diameter with target value 0. Since no field, wavelength or zoom parameters are specified, the spots are minimized for all wavelengths, fields and zoom positions.
SPD f2..3 w4 $0 \quad$ As above, minimizes spot diameter with target value 0 . However, spots are minimized only for fields 2 to 3 and wavelength number 4.
! This is a comment line Comments are indicated by the exclamation mark "!". The rest of the line is then ignored. In blank lines, the exclamation mark must be the first character of the line. This way, it is also possible to enable or disable selected target functions.
WAV f1 0 ! wavefront Minimizes rms-wavefront at field 1. The comment right to the exclamation mark is ignored.
SPD F3 Z2 0 ; wt $=0.7 \quad$ Minimizes spot diameter for field no. 3 and zoom position 2. The target value is 0 , the relative weight is 0.7 .
Minimizes spot diameter for field no. 4 and all wavelengths. Because no weight is specified, the default weight 1.0 is assumed.

```

From the list of target definitions, the merit function is then constituted by the weighted sum of "aberrations", i.e. the difference of actual value of the correction status and its specified target value. The actual value of the merit function can be printed by the ERRF command (see page367). Generally, a more detailed merit function will be required to fulfill specific needs.

The targets/constraints can be defined on the command line directly or in a spreadsheet like dialog.

\subsection*{19.6.1 Defining Targets/Constraints in the Command Line}
\begin{tabular}{|l|l|}
\hline TAR constraint_condition & \begin{tabular}{l}
Adds a constraint/target to the merit function definition. \\
"constraint_condition" is any target/constraint definition \\
(see the command examples below).
\end{tabular} \\
\hline \begin{tabular}{ll}
TAR efl \(=100\) & TAR 'efl \(=100^{\prime}\) \\
TAR spd fl 0
\end{tabular} & \begin{tabular}{l}
Examples of adding a constraint/target to the merit function \\
list. The optimization target, for example "efl \(=100 "\), \\
is given right to the TAR command and may be also en- \\
closed in apostrophes.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline DEL TAR & \begin{tabular}{l}
Delete all target/constraints definitions in the merit func- \\
tion list.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{19.6.2 Dialog based editing of Targets/Constraints}

The targets and constraints can be defined in a spreadsheet like dialog box, which is invoked from the command line by the command TAR or click on the VAR tool button in the main window. This dialog box is identical to the dialog for variables setting (VAR command), since this dialog offers both settings for variables and for targets/constraints.

Figure 19.2: Dialog box for editing optimization targets/constraints. Invoked by the command TAR.

\subsection*{19.6.3 Include Targets from File}

Targets may also be included from external files via the \#include option. For example,
```

\#include mytargets.txt

```
includes target definitions contained in mytargets.txt as if they were written directly in the targets/constraint editor. A file name without path is searched in the directory where the current system resides. Explicitly specify the path if the file to be included shall be searched in a different directory. Any extension is allowed to the file name. \#include statements may appear at any place in the targets list, thus, mixed forms of target/constraints expressions and include file declaration are permitted. For example,
```

efl = 100
\#include mytargets.txt
spd f1..3 0

```

There is no limit on the number of \#include statements, however, nesting of \#include is NOT permitted. That is, a file containing target/constraint definitions may not contain \#include statements itself.

\subsection*{19.6.4 Targets using Lens Database Items}

Targets may also be composed from lens database items (see sect. 27), which gives even greater flexibility. A few examples shall illustrate use of lens database items in defining targets/constraints:
\begin{tabular}{|l|l|}
\hline thi si-1 \(=\) thi s5] & \begin{tabular}{l}
Requires thicknesses si-1 (the distance before the image \\
surface) and thickness 5 to be equal. If thi s5 is a vari- \\
able, thi si-1 will be dynamically adjusted as the opti- \\
mization process evolves.
\end{tabular} \\
\hline thi s7 \(=\) [thi s5..6] & \begin{tabular}{l}
The thickness on surface 7 shall be equal the sum of thick- \\
nesses of surfaces 5 to 6.
\end{tabular} \\
\hline \begin{tabular}{l}
cy s5 f1 w1 0 \(1>\) \\
\(-1 /(2 *[\) fno] \()\)
\end{tabular} & \begin{tabular}{l}
Mix arithmetic instructions with lens database items to \\
build complex targets.
\end{tabular} \\
\hline
\end{tabular}

It is advisable to check correctness of target constructions in the command line. For example, the target of the last example in the table above would be queried in the command line (using theEVAluate command, see sect. 26.9 , page 458) as
```

eva -1/(2*[fno])

```

When no errors are issued in the text window, the target can be added to the optimization constraints. This example also illustrates that there is no functional difference in command syntax and constraints definition.

In this context it is important to note that square brackets [] , which indicate a lens database item, are only allowed on the right side of a constraint (i.e. the target to be evaluated). Basically, a lens database item is a function which returns a value. Thus, a constraint assignment such as [thi s5] \(>3 *[t h i \operatorname{s2}]\) would assign a number to the left part (thi \(s 5\)), which would be a contradiction and therefore is not valid. The correct constraint syntax for this example would be: thi s5 > \(3 *\) [thi s2]

\section*{Notes:}

Targets which invoke paraxial parameter should be used with care, for example EFL, BFL, SAP, ... and all third order aberrations. This applies particularly for zoom systems, where the target values will be computed for all zoom positions, if no other qualifier is present. For example, specifying a target "EFL = 50" in a zoom system with two positions used at two focal lengths (say 50 and 100 mm), and omitting any other qualifier would attempt the optimization to solve focal length for all positions. \({ }^{2}\) In such cases it is mandatory to specify the focal length for each zoom position separately. Thus, two distinct constraints must be specified: "EFL z1 = 50" and "EFL z2 = 100". The same logic applies for groups (surface ranges), e.g. EFL s1.. \(4 \mathrm{z} 3=50\).

\footnotetext{
\({ }^{2}\) Absence of a zoom qualifier " \(z\) " implies all zoom positions).
}

\subsection*{19.6.5 User-defined Constraints}

User-defined variables and user-defined functions may also be specified as part of the constraints list. See sections \(26.11,26.16\) for the corresponding syntax. Note that user-defined variables must not be confused with optimization variables (such as curvatures, separations, etc.). User-defined variables are only used for storing calculation results and using them in other arithmetic expressions or constraints.
User-defined variables and functions allows the definition of complex constraints which are not found in the list of the built-in constraints. Variables and functions are dynamically updated as the optimization proceeds. For example,
```

$x = 5 ! Variable assignment
@xxx == [efl]+[bfl]-$x !Defines a complex function.
@xxx = 100 ! Defines a constraint on the function. Note the single "=" sign.

```

On the examples given above, it is worth to emphasize the difference in using the "==" and " \(=\) " operators in optimization constraints. A function definition must use the " \(==\) " operator, however, it does not create an optimization constraint. A function statement using the " \(=\) " operator constitutes a constraint, i.e. the numeric result of a previously defined function is used as a parameter in the constraint definition.
Constraints on functions accept (\(<,=,>\)) operators.

\subsection*{19.6.6 Default Constraints}

If enabled, default constraints will automatically be added to the list of target (error) functions. Default constraints are useful for maintaining reasonable dimensions of lenses and air spaces during optimization. For example, default constraints ensure that edge thicknesses are always manufacturable (i.e. greater than a certain fraction of the lens diameter) and that lenses do not intersect (i.e. air edge separation is always positive).
Default constraints avoid the necessity to explicitly specify axial thickness constraints and edge thickness constraints in targets (merit) functions. Default constraints can be enabled or disabled via the DEFC command or in a dialog box, accessible from the main menu Optimization -> Parameters and then selecting the 'Default Constraints' tab (see Fig. 19.3, page 355).
Initially, default constraints are disabled. If required, default constraints must be enabled by checking the 'Enable default constraints' check box or by entering DEFC Yes in the command line prior to executing optimization. Note that default constraints currently only apply to the KT-optimization, they are ignored in the LM-optimization.
Default constraints differ from specific user constraints. Whereas a specific constraint must be explicitly defined and only applies to specific surfaces and/or zoom positions, the default constraints apply to all surfaces and all zoom positions. Default constraints cannot be given different values for different surfaces or different zoom positions. All default constraints are always imposed as bounds and never as equality constraints. default constraints are always controlled with the method of Lagrangian multipliers.
Note that default constraints are only applied to variable thicknesses/separations. Non-variable thicknesses are not included to the default constraints list. If a thickness/separation constraint is explicitly defined in the targets (error) function list, that constraint overrides the corresponding default constraint on that surface(s).
Default constraints settings are stored with the prescription data and optimization data for the current optical system in use. This allows individual settings of default constraints for each specific design.

Figure 19.3: Dialog box for editing default constraints.
\begin{tabular}{|l|l|}
\hline DEFC Yes \(\mid\) No & Enable (Yes) or disable (No) default constraints handling. \\
\hline MXT max_ele_center_thi & \begin{tabular}{l}
Constrain maximum center thickness of all variable thickness \\
elements, unless overridden by THI or ET constraints on spe- \\
cific surfaces. MXT is given as a fraction of the maximum \\
clear aperture. The default MXT value is 0.5 * maximum clear \\
aperture.
\end{tabular} \\
\hline MNT min_ele_center_thi & \begin{tabular}{l}
Constrain minimum center thickness of all variable thickness \\
elements, unless overridden by THI or ET constraints on spe- \\
cific surfaces. The default MNT value is 1/10 minimum clear \\
diameter.
\end{tabular} \\
\hline MNE min_ele_edge_thi & \begin{tabular}{l}
Constrain minimum edge thickness of all variable thickness el- \\
ements, unless overridden by THI or ET constraints on specific \\
surfaces. The default MNE value is 1/10 minimum clear diame- \\
ter.
\end{tabular} \\
\hline MNA min_air_center_thi & \begin{tabular}{l}
Constrain minimum center thickness of all variable air spaces \\
with 'negative' shape (thicker at edge than center), unless over- \\
ridden by THI or ET constraints on specific surfaces. The de- \\
fault MNA value is 0.1mm.
\end{tabular} \\
\hline MAE min_air_edge_thi & \begin{tabular}{l}
Constrain minimum edge thickness of all variable air spaces \\
with 'positive' shape (thinner at edge than center), unless over- \\
ridden by THI or ET constraints on specific surfaces. The de- \\
fault MAE value is 0.002mm.
\end{tabular} \\
\hline MXA max_angle_inc & \begin{tabular}{l}
Constrain maximum angle of incidence (in degrees) for all ac- \\
tive fields. The default MXA value is 60deg. In preparation!
\end{tabular} \\
\hline
\end{tabular}

The default constraints relating to element thickness and spacing are shown in Fig. 19.4. Note that default constraints are only active if the appropriate thicknesses are variable. If a thickness or spacing is frozen (not variable), default constraints on this surface are totally disabled, however, general thickness constraint violations can occur.

\subsection*{19.6.7 Weights on Error Functions}

\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline bfl > 160. & The (paraxial) back focal length shall be greater or equal to 160 mm \\
\hline et s3..4 12.0 > 5. & The edge thickness between surfaces 3 and 4 at height 12 mm shall be greater/equal 5 mm . Note, that edge thickness (ET) is also available as a solve parameter. Although this constraint will work in optimization (provided there is no ET-solve at the corresponding surface), it is advisable to use the solve onET in order to reduce computing load. \\
\hline spd f1 0 ; wt = 2 & Minimizes spot diameter at field 1 . The weight is 2 \\
\hline spd f2 0 ; wt = 1 & Minimizes spot diameter at field 2. The weight is 1 \\
\hline \[
\begin{aligned}
& \text { spd f3 w1..3 } 0 \text {; wt }= \\
& 0.5
\end{aligned}
\] & Minimizes spot diameter at field 3 for wavelengths 1 to 3 \\
\hline disy f3 0.1 & Distortion in Y-direction is minimized to \(0.1 \%\). Since there is no weight given, the default weight is 1 \\
\hline y f1 w1 s5 \(01=0\) & Constrains the Y-coordinate of a marginal ray (relative pupil coordinates are \(x_{p}=0, y_{p}=1\)) at field number 1 and wavelength number 1 at surface 5 to zero. Note that all parameters are obligatory in order to specify one single ray only. For example, omission of the field qualifier (f1) would return Y-coordinates for all fields, which can hardly be solved. \\
\hline
\end{tabular}

\subsection*{19.6.8 Weighted Constraints}

Weights can also be assigned to constraints which are solved exactly (=). The function is then included in the error function (minimized) instead of being exactly solved. This option should be used sparingly.
\begin{tabular}{|l|l|}
\hline WTC weight_on_constraint & \begin{tabular}{l}
Include constraint in the error function (i.e. minimize) in- \\
stead of solving it exactly. Use only with equality con- \\
straints (=).
\end{tabular} \\
\hline
\end{tabular}

The smallest value that achieves control should be chosen. A low value will allow wider deviations from the target. A higher value will achieve a closer approach to the target but more strongly dominates the solution.
Using WTC is not the best way to optimize. It should only be used when targets are far from the present configuration or the exact solution demands a significant change in the optical design. In such cases it is recommended to switch temporarily to LM-optimization. After a sufficiently close point to the targets has been reached, constraints can be exactly solved using theKT-optimization. See also the notes on selecting the best optimization algorithm on page 367 .

\section*{Examples on using weighted constraints (WTC):}
efl = 100 ; wtc = 2
efl 100 ; wt = 2
Both forms yield identical results. Note the second form (EFL 100) without the 'equal' qualifier (=). Since it is omitted, the function will be minimized (with relative weight 2) instead of being exactly solved.

Figure 19.4: Default constraints on element thickness and spacings.

\subsection*{19.7 Targets/Constraints Overview}
\begin{tabular}{|c|c|}
\hline EFL [si..j| wi..j
zi..j] & Equivalent focal length \\
\hline BFL [wi | zi] & Back focal length at used conjugate, wavelength number wi, zoom position zi \\
\hline SYL [zi] & System length (from first surface to last surface, excluding image surface) \\
\hline MAG [zi] & magnification \\
\hline SAP [zi] & Location of exit pupil from last surface \\
\hline THI si..j & Axial thickness (separation) at surfaces i to j. Example: thi s3. 5 < 5.0 \\
\hline IMD [zk] & Image distance (THI si-1) at zoom position zk . If zk is omitted, IMD is calculated at the first zoom position. \\
\hline IMC [zk] & Image clearance, the smaller distance (edge or axis) between surface i-1 and the image surface i. Only calculated at zoom position zk . If zk is omitted, the first zoom position is used. \\
\hline RDY si..j & Radius of curvature at surfaces i to j . Example: rdy s5 > 100 \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline OAL [si..j] & Overall length, which is the sum of the axial thicknesses/separations of surfaces i to j . In absence of a surface range specifier, OAL counts from the first surface to the image surface (not to be confused with SYL, which counts from the first surface to the last surface, excluding image surface). Example: oal s2.. \(6=50\) \\
\hline AOI sk fi zi wi rel_apeX rel_apeY & Angle of incidence of a ray at surface si, field \(f i\), zoom position \(z i\), wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. The result is in degree. Note that all parameters are obligatory. Example: aoi s3 f5 w1 01. \\
\hline AOR sk fi zi wi rel_apeX rel_apeY & Angle of refraction (or reflection) of a ray with respect to the local surface normal. All parameters, surface sk, field \(f i\), zoom position zi , wavelength wi are obligatory. The values rel_apex, rel_apeY are the relative coordinates in the entrance pupil. The result is in degree. Example: aor s3 f5 w1 \(01<15\). \\
\hline AOE sk fi zi wi rel_apeX rel_apeY & Angle of exit of a ray with respect to the local surface normal. Note that this command is synonymous the the AOR command given above.All parameters, surface sk, field fi, zoom position zi, wavelength wi are obligatory. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. The result is in degree. Example: aoe s3 f5 w1 \(01<15\). \\
\hline X si fi zi wi rel_apeX rel_apeY & Ray X-coordinate at surface si, field fi, zoom position zi, wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. Note that all parameters are obligatory. Example: x s3 f5 w1 \(01=10\). \\
\hline Y si fi zi wi rel_apeX rel_apeY & Ray Y-coordinate at surface si, field \(f i\), zoom position zi, wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. Note that all parameters are obligatory. Example: y s3 f5 w1 \(01=10\) \\
\hline Z si fi zi / wi rel_apeX rel_apeY & Ray Z-coordinate at surface si, field \(f i\), zoom position zi, wavelength \(w i\). The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. Note that all parameters are obligatory. Example: z s3 f5 w1 \(01=10\) \\
\hline \[
\begin{aligned}
& \text { CX si fi zi wi } \\
& \text { rel_apeX rel_apeY }
\end{aligned}
\] & Ray X-direction cosine at surface si, field \(f i\), zoom position zi, wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. Note that all parameters are obligatory. Example: cx s3 f5 w1 \(01=0.1\) \\
\hline \[
\begin{aligned}
& \text { CY si fi zi wi } \\
& \text { rel_apeX rel_apey }
\end{aligned}
\] & Ray Y-direction cosine at surface si, field \(f i\), zoom position zi, wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. Note that all parameters are obligatory. Example: cy s3 f5 w1 \(01=0.1\) \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \[
\begin{aligned}
& \text { continued from previous page } \\
& \hline \text { CZ si fi zi wi } \\
& \text { rel_apeX rel_apey }
\end{aligned}
\] & Ray Z-direction cosine at surface si, field \(f i\), zoom position zi, wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. Note that all parameters are obligatory. Example: cz s3 f5 w1 \(01=0.1\) \\
\hline CXN si & X-direction cosine of vertex surface normal on surface si. Example: cxn s3 \(=0.1\) \\
\hline CYN si & Y-direction cosine of vertex surface normal on surface si. Example: cyn s3 \(=0.1\) \\
\hline CZN si & Z-direction cosine of vertex surface normal on surface si. Example: czn s3 \(=0.9\) \\
\hline XSC si & Vertex Y-coordinate of surface si. The coordinate returned is referred to the global coordinate system. If GLO sk-yes is defined, the X-coordinate is referred to the vertex coordinate of surface sk. Example: xsc s3 \\
\hline YSC si & Vertex Y-coordinate of surface si. The coordinate returned is referred to the global coordinate system. If GLO sk-yes is defined, the Y-coordinate is referred to the vertex coordinate of surface sk. Example: ysc s3 \\
\hline ZSC si & Vertex Z-coordinate of surface si. The coordinate returned is referred to the global coordinate system. If GLO sk-yes is defined, the Z-coordinate is referred to the vertex coordinate of surface sk. Example: zsc s3 \\
\hline XSG si & Vertex X-coordinate of surface si referred to the global coordinate system of the system. Use commands XSC and GLO, if reference to another (preceding) surface is required. \\
\hline YSG si & Vertex Y-coordinate of surface si referred to the global coordinate system of the system. Use commands YSC and GLO, if reference to another (preceding) surface is required. \\
\hline ZSG si & Vertex Z-coordinate of surface si referred to the global coordinate system of the system. Use commands ZSC and GLO, if reference to another (preceding) surface is required. \\
\hline PATH si..j fi zi wi rel_apeX rel_apeY & Physical path-length along a ray between surfaces si..j, at field \(f i\), zoom position zi , wavelength wi. The values rel_apex, rel_apeY are the relative coordinates in the entrance pupil. \\
\hline OPL si..j fi zi wi rel_apeX rel_apeY & Optical path-length along a ray between surfaces si..j, at field \(f i\), zoom position zi, wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. The optical path length is \(n \cdot\) PATH where \(n\) is the index of refraction at the specified wavelength. \\
\hline ET si..j|sk height_X height_Y & Edge thickness between surfaces si . . j at surface coordinates (height_X, height_Y). \\
\hline \[
\begin{aligned}
& \hline \text { SPD [wi..j fi..j } \\
& \text { zi..j] } \\
& \hline
\end{aligned}
\] & Spot diameter (rms). \\
\hline \[
\begin{aligned}
& \hline \text { SPX [wi..j fi..j } \\
& \text { zi..j] } \\
& \hline
\end{aligned}
\] & Spot diameter (rms), X-section. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline \[
\begin{aligned}
& \text { SPY [wi..j fi..j } \\
& \text { zi..j] }
\end{aligned}
\] & Spot diameter (rms), Y-section. \\
\hline \[
\begin{aligned}
& \text { WAV [wi..j fi..j } \\
& \text { zi..j] }
\end{aligned}
\] & Wavefront aberration (rms). \\
\hline SPA [zi] & Third order spherical aberration \\
\hline COMA [zi] & Third order coma \\
\hline ASTI [zi] & Third order astigmatism \\
\hline PETZ [zi] & Third order Petzval Sum \\
\hline DIST [zi] & Third order distortion \\
\hline LCA [zi] & Third order longitudinal colour \\
\hline TCA [zi] & Third order tranversal colour \\
\hline \[
\begin{aligned}
& \text { LAC wi..j [fi..j } \\
& \text { zi..j] }
\end{aligned}
\] & real ray transversal colour \\
\hline DISX [zi..j fi..j] & Distortion (in \%) in X-direction \\
\hline DISY [zi..j fi..j] & Distortion (in \%) in Y-direction \\
\hline FDISX [zi..j fi..j] & F-Theta distortion (\%) in X-direction \\
\hline FDISY [zi..j fi..j] & F-Theta distortion (\%) in Y-direction \\
\hline ```
MTFA [wi..j zi..j
fi..j]
``` & Mean value of sagittal and tangential MTF, values range between 0 and 1 . The MTF is computed at the spatial frequency defined by the MFR command. Note, that MTF is usually maximized, that is the target value is 1 . \\
\hline ```
MTFT [wi..j zi..j
fi..j]
``` & MTF tangential, values range between 0 and 1 . The MTF is computed at the spatial frequency defined by the MFR command. Note, that MTF is usually maximized, that is the target value is 1 . \\
\hline \[
\begin{aligned}
& \text { MTFS [wi..j zi..j } \\
& \text { fi..j] }
\end{aligned}
\] & MTF sagittal, values range between 0 and 1 . The MTF is computed at the spatial frequency defined by the MFR command. Note, that MTF is usually maximized, that is the target value is 1. \\
\hline \[
\begin{aligned}
& \text { UA [si..j zi..j] } \\
& \text { UMY [si..j zi..j] }
\end{aligned}
\] & Paraxial direction angle of the marginal aperture ray. Note: UA and UMY are synonymous. \\
\hline \[
\begin{aligned}
& \text { HA [si..j zi..j] } \\
& \text { HMY [si..j zi..j] }
\end{aligned}
\] & Paraxial height of the marginal aperture ray. Note: HA and HMY are synonymous. \\
\hline \[
\begin{aligned}
& \text { UB [si..j zi..j] } \\
& \text { UCY [si..j zi..j] }
\end{aligned}
\] & Paraxial direction angle of chief ray. Note: UB and UCY are synonymous. \\
\hline \[
\begin{aligned}
& \text { HB [si..j zi..j] } \\
& \text { HCY [si..j zi..j] }
\end{aligned}
\] & Paraxial height of chief ray. Note: HB and HCY are synonymous. \\
\hline WEI [si..j] & Weight (in \(\mathrm{g} / \mathrm{cm}^{2}\)) \\
\hline MFL & Module focal length \\
\hline VIG [fk] & Vignetting factor relative to field 1 . Values are returned between 0 (\(100 \%\) vignetting) and 1 (no vignetting). If fk is omitted, the maximum field is used. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline \[
\begin{aligned}
& \text { TSF [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on test-plate fit. Note that TSF is the sensitivity on DLF tolerance. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLF or a description of test plate fit on page 405. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLF 2.0 (fringes) for calculating tolerance sensitivity TSF. \\
\hline \[
\begin{aligned}
& \hline \text { TSI [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on surface irregularity. TSI is the sensitivity on IRR tolerance. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command IRR on page 401. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes IRR 0.4 (fringes) for calculating tolerance sensitivity TSI. \\
\hline \[
\begin{aligned}
& \hline \text { TST [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on surface thickness (distance). Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLT on page 401. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLT 0.02 for calculating tolerance sensitivity TST. \\
\hline \[
\begin{aligned}
& \hline \text { TSN [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on index of refraction. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLN, page 401, for defining index tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLN 0.001 for calculating tolerance sensitivity TSN. \\
\hline \[
\begin{aligned}
& \text { TSV [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on dispersion. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLN, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLV \(0.008(0.8 \%)\) for calculating tolerance sensitivity TSV. \\
\hline \[
\begin{aligned}
& \text { TSX [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on X-decenter. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLX, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLX \(0.02(\mathrm{~mm})\) for calculating tolerance sensitivity TSX. \\
\hline \[
\begin{aligned}
& \hline \text { TSY [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on Y-decenter. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLY, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLY \(0.02(\mathrm{~mm})\) for calculating tolerance sensitivity TSY. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline \[
\begin{aligned}
& \text { TSZ [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on Z-decenter. A Z-decenter is equivalent to a thickness tolerance. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLZ, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLZ 0.05 (mm) for calculating tolerance sensitivity TSZ. \\
\hline ```
TSA [fk|fi..j
wk|wi..j] sk|si..j
``` & Tolerance sensitivity on tilt about X-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLA, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLA 5 (arcmin) for calculating tolerance sensitivity TSA. \\
\hline \[
\begin{aligned}
& \text { TSB [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on tilt about Y-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLB, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLB 5 (arcmin) for calculating tolerance sensitivity TSB. \\
\hline ```
TSG [fk|fi..j
wk|wi..j] sk|si..j
``` & Tolerance sensitivity on tilt about Z-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLG, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLG 5 (arcmin) for calculating tolerance sensitivity TSG. \\
\hline \[
\begin{aligned}
& \text { TSH [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on index homogeneity. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command HOM, page 401, for defining homogeneity tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes HOM \(50\left(50 \cdot 10^{-6}\right)\) for calculating tolerance sensitivity TSH. \\
\hline ```
TSR [fk|fi..j
wk|wi..j] sk|si..j
``` & Tolerance sensitivity on radius change. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLR, page 401, for defining homogeneity tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes a radius change \(\operatorname{DLR}\) \(0.0025(\mathrm{~mm})\) for calculating tolerance sensitivity TSR. \\
\hline
\end{tabular}

\subsection*{19.8 Controlling Contrast vs. Resolution}

Optimizing for spot (SPD) or wavefront (WAV) alone is often not a sufficient criterion for achieving the desired result and a finer adjustment of the spot or wavefront shape may be necessary. In particular, emphasizing the central core of a spot will increase spatial resolution at the expense of a lowered contrast. The WTA command, as described below, allows the designer to balance performance between contrast and resolution.
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l} 
Weight on aperture. Controls relative weight given \\
to the center of each ray bundle (high values) vs. \\
the edge. The effect of this parameter is to balance \\
between contrast and resolution. Typical values:
\end{tabular} \\
& weight & Conditions \\
\cline { 3 - 5 } & 0.0 & High contrast, good resolution \\
& 0.5 & Good contrast, high resolution \\
& 1.0 & Low contrast, very high resolution. \\
& See also examples below. \\
\hline
\end{tabular}

The relative weight across the aperture follows the function
\[
\begin{equation*}
W=e^{-(W T A \cdot r)^{2}} \tag{19.9}
\end{equation*}
\]
where \(r\) is the relative aperture radius and \(W\) is the relative weight (a number between 0 and 1 ) applied to the ray. This function is similar to the apodization function as described in section 7.3.6 (page 53). The main difference, however, is that WTA is only applied to spot or wavefront calculation in optimization, whereas pupil apodization is applied to all performance analyses. That is, pupil apodization -if defined- is always in effect, WTA is only used in optimization. Also note that Eq. 19.9 indicates arbitrary WTA values, however, for best performance \(0 \leq W T A \leq 1\) is recommended. Figs. 19.5 and 19.6 show the effect of WTA on spot (or wavefront) shape.

\[
\text { WTA } 0.0
\]


Figure 19.5: Effect of 'weight on aperture' (WTA) on spot shape (left) and transverse aberrations (right), by minimizing spot diameter (e.g. spd f1 0). High values emphasize the central core of the spots at the expense of a larger blur.

\subsection*{19.9 Glass Optimization and Glass Map Boundary Points}

It is sometimes desirable to let glasses "float" during optimization, i.e. the optimizer selects an appropriate glass in a continuous \(n-\nu\) domain. To accomplish this, theDNO and/or DVO variables at


Figure 19.6: Effect of 'weight on aperture' (WTA) setting on MTF. High values improve the highfrequency components of MTF (i.e. high resolution), low values improve the low-frequency components of MTF (i.e. high contrast). Note that the curves above only show the case of improving high-frequency components.
a surface must be activated, which means that index and dispersion may vary during optimization and appropriate \(n\) and \(\nu\) offsets are applied to the base glass. Internally, a glass with DNO/DVO offsets is modelled as a fictitious glass. It is, however, necessary to constrain the range in which index \(n\) and dispersion \(\nu\) may vary, because otherwise \(n\) and \(\nu\) will likely arrive at infeasible points.

This range is defined by a convex polygon in the standard SCHOTT diagram, describing the outer boundaries of the allowable area in which the glasses must lie. Up to 20 polygon points may be specified. The following diagram shows the default glass polygon which encloses the majority of the SCHOTT glasses:

The error value of a fictitious (floating) glass is defined by the (vertical) distance of the fictitious \(n-\nu\) coordinates from each boundary line. The error values must always be negative in order for the fictitious glass to stay within the glass map boundary polygon.

The glass map boundary ('glass polygon') is specified using the following command syntax:


Figure 19.7: Definition of default glass map boundary.
\begin{tabular}{|c|c|}
\hline GLP corner1 corner2 ... n or GLP DEF & \begin{tabular}{l}
Define glass map corner points ("glass polygon"). The glass map boundary points can be specified by the following forms: \\
xxx.yyy \(\quad\) Fictitious glass code. For example 514.643 \\
nnnnnnn A six-digit glass code. For example 514643 \\
predefined glass A 1- to 10-character alphanumeric code from the predefined glass catalogue. \\
Mixed forms are permitted. Note that the polygon must be convex and corners must be specified in clockwise orientation in the \(n-\nu\) diagram. Examples : \\
GLP 481.850820 .501900 .234560 .410481 .850 \\
GLP BK7 N-Lak9 SF6 F2 BK7 \\
GLP BK7 683542 SF6 531.422 BK7 \\
The alternate form GLP DEF restores the default glass map boundary according to table 19.9.
\end{tabular} \\
\hline EDI GLP & Edit glass map boundaries in a dialog. \\
\hline
\end{tabular}

The current setting of the glass map boundaries may be listed by the command LIS GLP. The default glass map boundaries are defined by a 7 -point polygon in the \(n-\nu\) domain (see also Fig. 19.7), to match the domain of current SCHOTT glasses.

\section*{Notes:}

The DNO and DVO variables are understood in a continuous \(n-\nu\) domain, in contrast to the fixed properties of real glasses. Thus, \(n\) and \(\nu\) offsets are fictitious additives to the currently selected glass. The dispersion offset is modelled as a fictitious MIL-glass which lies perfectly on the so-called Abbe-
\begin{tabular}{ccc} 
Point & \(n_{d}\) & \(\nu_{d}\) \\
1 & 87.00 & 1.4800 \\
2 & 41.00 & 1.8900 \\
3 & 20.00 & 1.9300 \\
4 & 25.00 & 1.7700 \\
5 & 37.00 & 1.5700 \\
6 & 57.00 & 1.4900 \\
7 & 87.00 & 1.4800
\end{tabular}

Table 19.9: Default glass map boundaries matched to SCHOTT glasses.
line ("normal" line).
A glass map polygon must be closed, that is, the last corner must be identical with the first corner.
Fictitious glasses obtained after an optimization run can be converted to a regular catalogue glass by the REG command (see also page 198). This option searches for the nearest catalogue glass on the basis of the DNO/DVO offsets and automatically replaces the continuous glass model by a fixed catalogue model. The REG option, however, does not eliminate DNO/DVO variables on that glasses.

\subsection*{19.10 Run the Local Optimization (OPT)}

Once variables, targets and constraints are defined, the optical system can be locally optimized.
\begin{tabular}{|c|c|}
\hline OPT [LM | KT ] [n_steps] & Run the local optimization. The optional parameters LM, and/or KT specify the algorithm to be used. See also the guidelines for selecting the appropriate algorithm. If neither LM, nor KT is specified, the selected method of the previous optimization run is repeated. Initially, KT-optimization will be used. n_step defines the maximum number of optimization steps (iterations). If no parameter is given, the default number of iterations is n_steps \(=10\). \\
\hline UNDO OPT & Undo last optimization, i.e. it restores the state of the optical system before the optimization. This command is particularly useful if the optimization run failed to converge. For example, ill-conditioned or contradictory constraints will often lead to infeasible conditions. Undo is a one-step operation, i.e. only the last optimization can be undone. \\
\hline ERRF & Print detailed error (merit) function including the error contributions of each constraint. This is a diagnostic tool to identify the most disturbing aberrations. It does not run the optimization. \\
\hline
\end{tabular}

Examples:
\[
\begin{array}{ll}
\text { opt } & \begin{array}{l}
\text { ! initially uses KT-optimization, otherwise the method from the previous } \\
\text { ! optimization run is repeated. }
\end{array} \\
\text { opt } \operatorname{lm} 5 & \begin{array}{l}
\text { ! uses LM-optimization, stop after } 5 \text { iterations. }
\end{array} \\
\text { opt } \operatorname{lm} \text { kt } 10 & \text { ! LM- and KT-optimization are executed successively, } 10 \text { iterations each, } \\
\text { opt kt } & \text { ! KT-optimization only. }
\end{array}
\]

\subsection*{19.10.1 Selecting the appropriate local Optimization Method}

As described in sections 19.1, 19.2, OpTaliX provides two different optimization methods (KT- and LM optimization), and the question may arise which method is preferred under certain conditions. This section describes the pros and cons of each method and attempts to give recommendations for various cases.
The Kuhn-Tucker (KT) algorithm solves constraints (i.e. \(=,>,<\) operations) exactly, while other functions are solved in a least-squares sense. It provides precise control of the constraints and it is not
necessary to choose appropriate weights for each constraint and modifying it as the design process evolves. However, the user may (temporarily) overrule exact solving of equality constraints by the WTC command, which converts behaviour of the KT-optimization only for that specific constraint similar to properties of the LM-optimization (i.e. weighting that constraint).
If lens parameters are to be exactly controlled, for example object-image distance OAL, the KToptimization gives exact solutions. Due to the highly non-linear nature of almost all aberrations in optical systems, it takes a few iterations to accurately control the desired parameters.
In the hands of an inexperienced user, however, the KT-optimization may cause difficulties, depending on the problem definition. For example, if a user inadvertently defines incompatible conditions, the resultant equations become indeterminate and optimization will not proceed. In such cases the program issues a warning message and prints the conflicting constraint(s).
Note that KT-optimization is the preferred (default) method in OpTaliX .
Basically, the Levenberg-Marquardt (LM) algorithm is an unconstrained damped least-squares algorithm. Constraints (i.e. \(=,>,<\) operations) are handled like aberrations, except that higher weights are generated internally for these functions. This approach is preferable when the design is at an early stage of development and the optical performance is far from the design goal. In case of improperly defined or even incompatible constraints, it is unlikely that the LM-optimization will destroy the design. Contrary to the KT-optimization, the program will simply find the best compromise between the incompatible conditions. That is, it will rather 'squeeze' the design smoothly into a different form, which in almost all cases is still computable. Boundary conditions ( \(\langle\),\(\rangle ), for example, are not\) solved precisely, instead they are held very close to the desired target. One particular advantage is that constraints can be given large or small weight, depending on their importance. On the other hand it requires that constraint weights and target weights must be properly balanced to achieve the desired result.
Note that the optimization routines can only solve problems which have been specified by the user. In particular, they cannot
- Violate the law of optics,
- solve for more constraints than the number of variables you have provided,
- Solve for a constraint when there is no variable for it,
- add or remove elements or dramatically re-arrange the optical system,
- control aberrations that are uncorrectable (for examples astigmatism in doublets, distortion in eyepieces).

\subsection*{19.10.2 MTF Optimization}

Using the modulation transfer function (MTF) directly as target in optimization often leads to unsatisfactory success, particularly to less experienced designers. One major problem with using MTF optimization is the fact that MTF values may oscillate significantly as a function of construction parameters. To illustrate the problem, consider the change of MTF as a function of defocus, i.e. when the image plane is moved forward and backward along the optical axis. Fig. 19.8 indicates the large MTF variation as the image plane is moved away from the optimum position (axial distance \(=0\) ). The success of the optimization will now depend on the initial starting point. Assume we have chosen staring point (1), which is at an axial distance \(z \approx 0.6\), the side maximum will be found, because a locally optimizing algorithm cannot jump over adjacent minima/maxima.
A better starting point would be (2) where the optimization algorithm can find the 'true' MTF maximum without intermediate valleys. It is more realistic to use MTF optimization for systems which


Figure 19.8: Variation of diffraction MTF for a perfect lens as a function of defocus.
are close to the optimum and which can benefit from a final tuning. It is therefore good practise to run optimization using spot diameter (SPD) or wavefront variance (WAV) prior to optimizing MTF directly.

\subsection*{19.11 Optimizing for Tolerance Sensitivity}

In the (iterative) design and optimization process it is often wanted not only to reduce aberrations, but also reducing sensitivity for parameters, such as decenter, tilt, thickness tolerances, etc. The driving force are manufacturing issues where manufacturing tolerances as large as possible are desired.
OpTaliX helps you to simultaneously optimize for image performance and tolerance sensitivity on selected parameters, already in the design stage. Tolerance sensitivity is a measure for the change of performance \(\Delta \Phi\) (aberration, merit function) given a certain perturbation \(\Delta x\) of a construction parameter. Therefore, \(O p T a l i X\) attempts to minimize the tolerance sensitivity function \(S\)
\[
\begin{equation*}
S=\sqrt{\sum_{i}^{N}\left(\frac{\Delta \Phi}{\Delta x}\right)^{2}} \tag{19.10}
\end{equation*}
\]
where \(i\) is the surface number. The performance change \(\Delta \Phi\) is always calculated on the basis of wavefront aberration (WAV) for each tolerance item. It should be noted that optimizing for both performance \(\Phi\) and tolerance sensitivity \(S\) is a contradictory process. It often seems impossible to reduce tolerance sensitivity without sacrificing performance. Generally, a subtle balance between \(\Phi\) and \(S\) must be selected. Finding this balance is the responsibility and skill of the optical designer. Further information on this subject is also given by Grey [16], and Isshiki et.al, [23].

\subsection*{19.11.1 Tolerance Sensitivity Items}

OpTaliX provides several commands to calculate tolerance sensitivity, TSF, TST, TSI, TSN, TSV, TSX, TSY, TSZ, TSA, TSB, TSG, as defined in section 19.7 (page 357). These tolerance sensitivity commands assume that an appropriate tolerance has been assigned in thetolerance editor (page 404). If tolerances on requested parameters are not available, respectively not defined in the tolerance option (sect. 22.5, page 411), the program assumes the following parameter changes (tolerances) \(\Delta x\)
for calculating tolerance sensitivity:
\begin{tabular}{l|l|l} 
Item & Effect & Default tolerance \\
\hline TSF & Sensitivity on surface fit tolerance (DLF) & \(\Delta x=2\) fringes \\
TSI & Sensitivity on surface irregularity tolerance (IRR) & \(\Delta x=0.4\) fringes \\
TST & Sensitivity on axial thickness tolerance (DLT) & \(\Delta x=0.1 \mathrm{~mm}\) \\
TSN & Sensitivity on refractive index tolerance (DLN) & \(\Delta x=0.001\) \\
TSV & Sensitivity on dispersion tolerance (DLV) & \(\Delta x=0.008\) \\
TSR & Sensitivity on radius of curvature tolerance (DLR) & \(\Delta x=0.0025\) \\
TSX & Sensitivity on X-decenter tolerance (DLX) & \(\Delta x=0.02 \mathrm{~mm}\) \\
TSY & Sensitivity on Y-decenter tolerance (DLY) & \(\Delta x=0.02 \mathrm{~mm}\) \\
TSZ & Sensitivity on Z-decenter tolerance (DLZ) & \(\Delta x=0.05 \mathrm{~mm}\) \\
TSA & Sensitivity on \(\alpha\)-tilt (about X-axis (DLA) & \(\Delta x=5 \mathrm{arcmin}\) \\
TSB & Sensitivity on \(\beta\)-tilt (about Y-axis) (DLB) & \(\Delta x=5 \mathrm{arcmin}\) \\
TSG & Sensitivity on \(\gamma\)-tilt (about Z-axis) (DLG) & \(\Delta x=5 \mathrm{arcmin}\) \\
TSH & Sensitivity on homogeneity tolerance (HOM) & \(\Delta x=50 \cdot 10^{-6}\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Commands for defining Tolerance Sensitivity Items} \\
\hline \[
\begin{aligned}
& \text { TSF [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on test-plate fit. Assumes that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLF or a description of test plate fit on page 405. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLF 2.0 (fringes) for calculating tolerance sensitivity TSF. \\
\hline \[
\begin{aligned}
& \text { TSI [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on surface irregularity. Assumes that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command IRR on page 401. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes IRR 0.4 (fringes) for calculating tolerance sensitivity TSI. \\
\hline \[
\begin{aligned}
& \text { TST [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on surface thickness (distance). Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLT on page 401. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLT 0.02 for calculating tolerance sensitivity TST. \\
\hline \[
\begin{aligned}
& \hline \text { TSN [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on index of refraction. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLN, page 401, for defining index tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLN 0.001 for calculating tolerance sensitivity TSN. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline \[
\begin{aligned}
& \text { TSV [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on dispersion. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLN, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLV 0.008 ( \(0.8 \%\) ) for calculating tolerance sensitivity TSV. \\
\hline \[
\begin{aligned}
& \text { TSX [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on X-decenter. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLX, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLX \(0.02(\mathrm{~mm})\) for calculating tolerance sensitivity TSX. \\
\hline \[
\begin{aligned}
& \text { TSY [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on Y-decenter. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLY, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLY \(0.02(\mathrm{~mm})\) for calculating tolerance sensitivity TSY. \\
\hline \[
\begin{aligned}
& \text { TSZ [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on Z-decenter. A Z-decenter is equivalent to a thickness tolerance. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLZ, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLZ \(0.05(\mathrm{~mm})\) for calculating tolerance sensitivity TSZ. \\
\hline \[
\begin{aligned}
& \text { TSA [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on tilt about X-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLA, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLA 5 (arcmin) for calculating tolerance sensitivity TSA. \\
\hline \[
\begin{aligned}
& \text { TSB [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on tilt about Y-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLB, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLB 5 (arcmin) for calculating tolerance sensitivity TSB. \\
\hline \[
\begin{aligned}
& \text { TSG [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on tilt about Z-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLG, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLG 5 (arcmin) for calculating tolerance sensitivity TSG. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline \[
\begin{aligned}
& \text { TSH [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on index homogeneity. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command HOM, page 401, for defining homogeneity tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes HOM \\
\hline \[
\begin{aligned}
& \text { TSR [fk|fi..j } \\
& \text { wk|wi..j] sk|si..j }
\end{aligned}
\] & Tolerance sensitivity on radius change. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLR, page 401, for defining homogeneity tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes a radius change DLR \(0.0025(\mathrm{~mm})\) for calculating tolerance sensitivity TSR. \\
\hline
\end{tabular}

\subsection*{19.11.2 Using Tolerance Sensitivity Items in Optimization}

If optimizing (minimizing) for tolerance sensitivity, the various tolerance sensitivity items described in the previous section should be understood as aberrations added to the targets/constraints (merit function) list. The syntax for defining tolerance sensitivity in optimization is found in sect.27.1, page 477. Here is a typical example in the optimization targets/constraints list:
```

efl = 100
spd 0
tsa s1..5 f1..2 w1 0
tsa s1..5 f1..2 w1 0

```
tsy 0

Focal length shall be exactly 100 mm .
Spot diameter (rms) shall be zero (minimized) for all fields, wavelengths, zoom positions.
Tolerance sensitivity on surface tilt about X -axis shall be minimized for surfaces 1-5, fields 1-2 and wavelength number 1 .

Tolerance sensitivity on surface Y-decenter shall be minimized for all surfaces, all fields and all wavelengths defined in the system configuration.

\section*{Notes:}
- Do not attempt to request a tolerance sensitivity item to become exactly zero, e.g. 'TSA = \(0^{\prime}\) as this is impossible on elements/surfaces that have optical effect. Instead minimize it by omitting the equal ' \(=\) ' sign in the constraints definition, e.g. 'TSA 0 '.
- It is generally advisable to start with low weights on tolerance sensitivity constraints, for example
tsa sa f1 0 ; wt = 0.1
By gradually increasing the corresponding weight, an acceptable compromise between performance and general tolerance sensitivity is quickly found.

\subsection*{19.12 Description of Output}

A typical output from an optimization run is shown below (load \optalix \(\backslash\) examples \(\backslash\) double_gauss-2.otx and change the target EFL to 60 mm ).


In the first section a listing of the number of variables and constraints is shown. Equality and inequality constraints are separately listed. Following this is a list of the user-defined constraints with the target-, function- and error-values of the starting system (i.e. prior to optimization).
The last column indicates violations on constraints (i.e. equal, less than or greater than), shown as a bar of asterisks \((*)\) in steps of \(10 \%\). The maximum bar length is ten asterisks corresponding to \(100 \%\) deviation.

If requested, default constraints are tabulated. These are constraints created internally by the program for all variable thicknesses in order to maintain reasonable minimum/maximum element, air-space and edge thickness dimensions. The DEFC command enables (Yes) or disables (No) default constraints.

Each iteration step outputs the merit functions on constraints to be minimized ('Min.' column), to be held exactly ('Equal.' column), and the inequality ('Inequal.' column) constraints together with the current dumping factor and a relative improvement compared to the previous iteration step. For example, a relative improvement factor 0.01 corresponds to a \(1 \%\) improvement with respect to the previous
iteration. Note that the improvement factor only applies to the KT (Kuhn-Tucker) optimization; it is ignored in the LM (Levenberg-Marquart) optimization.
Iteration terminates if the improvement factor is below a threshold defined by the IMPR command. The error function components of the refined optical system are listed.

\subsection*{19.12.1 List of Active Constraints}

Inequality constraints are dynamically added or released during optimization, depending on whether they are violated by a solution or if they are in an acceptable region. When constraints are released they are allowed to drift into the acceptable region without affecting the solution. When constraints are added, the derivatives of the new constraints are calculated and added to the matrix. This causes additional 'minor' solution cycles to be calculated.
Active constraints are only reported if enabled in the Optimization Parameters dialog (there is currently no command line equivalent). From the main menu, select Optimization \(-->\) Optimization Parameters and in the 'Kuhn-Tucker (KT)' tab check 'Show active constraints for each cycle'. A sample output would be
\begin{tabular}{lrrr} 
Active Constraints \((\) 4) & Value & Target & Cost \\
thi s3 > 8 & 7.06120 & 8.00000 & \(-0.415859 \mathrm{E}+01\) \\
thi s5 > 8 & 7.50000 & 8.00000 & \(0.319846 \mathrm{E}+00\) \\
MNE S3 & 0.63518 & 2.40000 & \(0.227979 \mathrm{E}+02\) \\
MNE S5 & 1.65757 & 2.40000 & \(0.359234 \mathrm{E}+01\)
\end{tabular}

The output includes target/boundary values, the actual value and the relative "cost" of imposing the constraints. The relative cost is the "pressure" that a constraint applies to the solution.
Inactive constraints are not included in the 'active constraints' listing. Only if a constraint becomes active, it shows up in the constraints listing.

\subsection*{19.13 Terminating Optimization}

Optimization is terminated if
- the maximum number of iterations is reached, or
- the "Terminate OPT" button has been pressed in the lower right corner of the optimization parameter dialog (see Fig. 19.9), or
- the fractional improvement of the merit function is below a certain limit value, or
- the number of ray trace errors (if any) has exceeded a certain limit.

The maximum number of iterations is set in the optimization parameter dialog or by the command MXC. See section 19.15 for further information.

Optimization can also be interrupted if ray trace errors occur and a certain number of ray errors has been exceeded. The limit of allowable ray trace errors is set by the OERR command. See sect. 19.15 for details.
The limit on fractional improvement of the merit function is set by the IMPR command. That is, if the improvement of the merit function is smaller than IMPR, optimization will be terminated.
If the ESC-key is pressed, a dialog box will be invoked asking the user whether to terminate or to continue optimization. Note that it may take a while for the dialog to appear because a running iteration step must first be finished. It is therefore recommended to press the ESC-key only once.

A prematurely terminated optimization leaves the optical system in the state of the last iteration step, that is, before the ESC-key was pressed. This state is most likely not the optimum condition (i.e. minimum aberrations), however there are numerous reasons to interrupt optimization (for example, convergence is low, inappropriate variables/constraint settings, time reasons, etc).

\subsection*{19.14 Undo Optimization}

Optimization can be "undone" by selecting from the main menu Optimization -> Undo last optimization step, or from the command line
```

UNDO OPT

```

Note that "undo" only applies to the last optimization run. Multiple subsequent optimization cycles (prior to the last cycle) cannot be undone. It is recommended to save promising solutions in separate files.

\subsection*{19.15 Optimization Parameters}

Dialog based editing of optimization parameters is accomplished from the main menu, Optimization -> Parameters. The dialog box as shown in Fig. 19.9 contains several tabs. In the main (general) tab, the optimization algorithms are selected. In addition, it controls the level of outputs generated for each optimization cycle.


Figure 19.9: Optimization parameters main dialog.

The following commands allow control of the optimization process.
19.15.1 Optimization Parameters for local Optimizers KT and LM
\begin{tabular}{|l|l|}
\hline EDI OPT & \begin{tabular}{l} 
Edit operating parameters for optimization algorithms. \\
Note that the command 'EDI OPR' is obsolete but still \\
supported. Instead, use of the 'EDI OPT' command is en- \\
couraged.
\end{tabular} \\
\hline MXC max_Cycles & \begin{tabular}{l} 
Maximum number of permitted cycles. The optimization will \\
be terminated if that number of cycles is completed. Termination \\
will probably occur before if the fractional improvement is less \\
than the improvement factor (see IMPR command below).
\end{tabular} \\
\hline MNC min_cycles & \begin{tabular}{l} 
Minimum number of required cycles. Optimization will not exit \\
earlier.
\end{tabular} \\
\hline IMPR min_impr_factor & \begin{tabular}{l} 
Fractional improvement. Optimization is terminated if the im- \\
provement of the error function is less than IMPR. Example: \\
IMPR 0.01 corresponds to 1\% improvement. Termination may \\
occur before the maximum number of cycles (MXC) is reached.
\end{tabular} \\
\hline ORGR num_opt_rays & \begin{tabular}{l} 
Number of rays across pupil in optimization. Permissible val- \\
ues of num_opt_rays are 4, 8, 16, 32, 64, 128, 256 and 512. \\
However, ORGR must always be smaller than NRD. See the notes \\
below.
\end{tabular} \\
\hline OERR error_limit & \begin{tabular}{l} 
Error limit. Optimization is terminated if the number of ray trace \\
errors (if any) exceeds error_limit. Enter OERR 0 for dis- \\
abling this feature.
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}

The optimization ray grid defines the number of rays across the pupil diameter during optimization. This setting must not be confused with the number of rays used for performance analysis (see NRD command). Setting the optimization ray grid (ORGR) to a value lower than NRD will only reduce the number of rays during optimization. For example, selecting ORGR 16x16 and NRD 32 will only use every second ray in the ray matrix during optimization. This accelerates the speed of optimization by a factor 4 , whereas all performance analyses (e.g. spot, PSF, MTF, etc.) still use the \(32 \times 32\) ray grid.

\subsection*{19.15.2 Optimization Parameters for Global Optimizer GO}
\begin{tabular}{|l|l|}
\hline EDI OPT & \begin{tabular}{l} 
Open dialog for editing operating parameters, provides several \\
tabs for each optimization method (KT, LM, GO). For the global \\
optimization see also Fig. 19.10.
\end{tabular} \\
\hline GOH height & Global Optimization: Height of escape function. \\
\hline GOW width & Global Optimization: Width of escape function. \\
\hline GOT distance_tol & \begin{tabular}{l} 
Global Optimization: Distance tolerance of escape function. De- \\
fines the minimum distance in the parameter space from the pre- \\
vious solution to constitute a new solution.
\end{tabular} \\
\hline GOMXS max_solutions & Global Optimization: Maximum solutions. \\
\hline GOV & \begin{tabular}{l} 
Global optimization viewer. Invokes a dialog box for browsing \\
through the different GO solutions and view their optical layout.
\end{tabular} \\
\hline GOPT & Run (execute) the global optimization \\
\hline
\end{tabular}


Figure 19.10: Global optimization parameters subdialog.

\section*{Notes:}
- If a solution is found in the global optimization (GO) process, it will be stored in the directory \(\mathrm{c}: \backslash\) programdata \(\backslash o p t a l i x \backslash g o p t \backslash\). This is a fixed directory and cannot be changed. The file name for this solution is constructed by the components file prefix, current number of the solution and the merit function value. All components are separated by an underscore " - ". Example: prefix_number_meritfkn.otx
- The button "Terminate OPT" in the lower right of the optimization parameter dialog (see Fig. 19.10) allows to stop a current optimization process, for example when an optimization takes too long or ist not converging, respectively for other reasons. This button works in all optimization options (KT, LM, GO). It is advisable to keep this (modeless) dialog (and the button) visible and not let is obscured by other dialogs or windows to ensure rapid access to this button.

\subsection*{19.16 Global Optimization: A worked Example}

This section explains the parameter settings and steps needed to perform a global optimization. It is shown on the example global_opt_45-64_Projection-lens.otx found in the examples library under optimization. A prerequisite of the global optimization is a working local optimization with well defined variables and constraints (merit function). The local optimization must converge and does not generate (raytrace) errors. The parameters in this example are already properly preset. The lens should be stored before a global search is started.
Make sure that a sufficient number of optimization variables are defined so that the design can "float" or "breathe". First, we test the local optimization using the KT method, where the output should be as follows (default constraints ignored):
\begin{tabular}{rrrrrr} 
Iter & Min. & Equal. & Inequal. & DampingF. & Improv. \\
0 & 0.421598 & 0.001380 & 1.527570 & 1.000000 & \\
1 & 0.422651 & 0.005771 & 1.081881 & \(0.1100528 \mathrm{E}-01\) & -0.00250
\end{tabular}


We see that the merit function converges and there are no errors. The parameters for the global optimization are edited by the optimization parameter dialog, invoked by the command EDI OPT or from the main menue Optimization \(-->\) Parameters Editor. The last tab of this dialog, named "Global Opt." and shown in Fig. 19.10, allows editing of the main parameters H and W as well as the escape distance tolerance T of the parameter \(D_{E}\) (see eq. 19.7 and 19.8). This dialog is modeless, so it can (should) stay opened to allow always immediate access to edit the parameters or terminate the optimization.
The problem in the Isshiki escape function method is that the appropriate initial values for \(H, W\) and \(T\) are not known when starting the global optimization. The following empirical rules, as already mentioned in sect. 19.3 above, shall be repeated here to help in setting reasonable start values:
- The initial value of \(H\) shall be approximately the size of the error function that was obtained in the local optimization. The program first calculates the merit function from the local optimization and then sets \(H=\) meritfkn. This is the start value for \(H\) in the global optimization.
- The initial value of \(W\) can be safely set to 1 .
- A distance threshold in the range \(0.1<T<10\) is advised. Low values of \(T\) create more solutions of similar shape, high values of \(T\) create fewer, but more independent solutions
- The merit function and its constraints must be well defined so that the local optimization safely converges, i.e. the local optimizer must not diverge, must not lead to infeasible solutions or violate optical laws. It is advisable that the optical system is locally optimized first. The parameters and constraints of your merit function will then also used in the global optimization.

Appropriate values for the parameters \(H, W\) and \(T\) are already preset in the example design. The global optimization is then started by the command GOPT, or from the main menue Optimization \(-->\) Global Optimization, or from the optimization parameter dialog shown in Fig. 19.10. The partial output from a global optimization run is:
```

Searching no.: 2 MeritFkn =
Adapting ecape function W,H:
Searching no.: }3\mathrm{ MeritFkn =
Adapting ecape function W,H:
Searching no.: 4 MeritFkn =
Solution found: 1 MeritFkn =
Searching no.: 1 MeritFkn =
Adapting ecape function W,H:
Searching no.: 2 MeritFkn =

0.3788	Escape_dist =	3.4114
1.092	0.845	
0.3800	Escape_dist =	0.0036
1.190	1.099	
0.3763	Escape_dist =	6.8225
0.3763	C: \ProgramData \OpTa	liX\gopt \GOPT_1_0.3763.otx
0.3773	Escape_dist =	0.6472
1.226	1.428	
0.3800	Escape_dist =	1.7965

```

The program constantly does a local optimization with and without the escape funtion applied (the searching modus) and tests constantly if the parameter change (the escape distance) exceeds the predefined escape tolerance \(T\). If the escape distance did not meet the escape tolerance, i.e. the escape
from the local minimum failed, the parameter H and W are successively increased by small amounts until the escape tolerance \(T\) is reached. In case this escape condition is fulfilled, a new solution is filed. At the end of the global optimization run, either when the maximum number of solutions is reached or if the process was interrupted by pressing the "Terminate OPT" button, the solutions can be found in the directory \(\mathrm{c}: \backslash\) programdata \(\backslash o p t a l i x \backslash\) gopt \(\backslash\). The global solutions can be conveniently browsed by the global solutions viewer, command GOV, see also Fig. 19.11.


Figure 19.11: Global optimization viewer. Browse conveniently through all solutions from a global optimization run.


Figure 19.12: Solutions from a global optimization search. The upper left design is the start design.

\section*{20}

\section*{Coatings}

Optical components are usually coated with thin layers of solid materials for the purpose of altering their physical or optical properties. Depending on the application, only one thin layer or a stack of as many as fifty to over hundred layers are deposited to produce the desired optical behaviour. The terms "multi-layer" respectively "coating" in the following sections are used as generic terms for single or multiple thin films on optical surfaces.
The design, analysis and optimization of multi-layer coatings (thin films) is seamlessly integrated to OpTaliX. Thus, it is not necessary to perform a multi-layer design in a separate program and then laboriously transfer (import) the data to OpTaliX .
One single coating can be loaded during a session. It will be stored in memory in parallel to the classical optical surface data and it can be modified, optimized and analyzed independently from the optical system. Once the performance is considered sufficient, it may be attached to a particular optical surface or a range of surfaces (see also section 20.5).
OpTali \(X\) also allows access to coating designs from other thin-film packages such as "The Essential MacLeod" and "Thin-Film-Calc (TFCalc)". See sect. 29 (page 485) on importing coating designs from these packages.
Nomenclature: In the commands and the options to follow, "COA" always refers to the single coating stored in the coating editor; it can be independently edited and optimized from the system prescription data. If "MUL" is indicated in a command syntax, it refers to the coating attached to a surface. Note that a coating attached to a surface cannot be modified, it can only be removed (DEL MUL) or overwritten (ATT COA) by another coating stored in a file or in the coating editor.

\subsection*{20.1 Editing Coating Data}

Coating prescriptions may be edited either from the command line (sect. 6) or from the GUI via a spreadsheet editor giving access to all layer parameters. The coating editor is invoked by the command EDI COA
Note that the coating editor only allows modification of layer data (layer material, layer thickness, etc.) of a coating stack. The conditions of use of the coating stack (e.g. incidence angle, plotting parameters) are defined in the coating configuration dialog.

\subsection*{20.2 Coating Configuration}

The coating configuration data pertain to the use of thin-film multilayer coatings. For example, coating configuration data are reference wavelength, incident angle, plot or analysis wavelength, etc. A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{} & \multicolumn{2}{|l|}{- \(-\mathrm{G} \times\)} \\
\hline & MATERIAL & Pick & Index (real) & Index (imag.) & OTH & PTH (micron) & Pick & P-Factor & Var & \(\wedge\) \\
\hline 1 & & 0 & 1.000000 & 0.000000 & 0.000000 & 0.000000 & 0 & 1.0000 & & \\
\hline 2 & & 0 & 1.380000 & 0.000000 & 0.300300 & 0.110981 & 0 & 1.0000 & & \\
\hline 3 & & 0 & 2.250000 & 0.000000 & 0.128100 & 0.029036 & 0 & 1.0000 & & \\
\hline 4 & & 0 & 1.380000 & 0.000000 & 0.065700 & 0.024280 & 0 & 1.0000 & & \\
\hline 5 & & 0 & 2.250000 & 0.000000 & 0.678900 & 0.153884 & 0 & 1.0000 & & \\
\hline 6 & & 0 & 1.380000 & 0.000000 & 0.071800 & 0.026535 & 0 & 1.0000 & & \\
\hline 7 & & 0 & 2.250000 & 0.000000 & 0.084000 & 0.019040 & 0 & 1.0000 & & \\
\hline 8 & & 0 & 1.520000 & 0.000000 & 0.000000 & 0.000000 & 0 & 1.0000 & & \(\square\) \\
\hline \multicolumn{3}{|c|}{Coating Configuration} & Insert & elete & ose & & & & & \\
\hline
\end{tabular}

Figure 20.1: Coating editor, invoked by the command EDI COA.
dialog box for editing coating configuration data is invoked by the EDI CCFG command (see also command description in next section).

Important note: In this context, coating configuration data must not be confused with system configuration data (see EDI CNF command).

\subsection*{20.3 Coating Command Line:}
\begin{tabular}{|c|c|}
\hline EDI CCFG & Coating configuration dialog. \\
\hline RES COA [coating_name] & \begin{tabular}{l}
Restore a coating from file and keep it in memory (in parallel to the lens data). The standard file extension is ". otc". In absence of the extension, it will be automatically added. If the optional parameter coating_name is missing, a dialog box will be opened. Once loaded into memory, the coating may be attached to an optical surface using the ATT command (see below). The file specified by coating_name must reside in the coating directory which is by default \$i\coatings. Thus, it is not required to specify this path information explicitly. Examples of valid coating-file commands are: \\
res coa ar_coat.otc \\
res coa ar_coat
\end{tabular} \\
\hline SAV COA [coating_name] & Save a coating to file "coating_name". The default directory where to the coating prescription is saved is \$i\coatings. Do not modify this setting, because the stored file may not be loaded later (OpTaliX expects all coating files in this directory). In absence of coating_name, a dialog box is opened. \\
\hline LIS MUL [sk|si..j] & Lists multilayer coatings attached to surfaces. \\
\hline DEL MUL [sk|si, j] & Delete multilayer coating on surfaces sk|si..j. The surface is then assumed uncoated. In subsequent polarization and transmission analyses, Fresnel equations are used. \\
\hline EDI COA & Edit coating data using a spreadsheet. \\
\hline INV COA & Invert a multilayer coating, including the incident/substrate media. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline CREF coating_wavelength & Reference wavelength in \(\mu \mathrm{m}\) of thin-film multilayer coating stack. The coating must have been loaded before (see RES COA command). \\
\hline \[
\begin{aligned}
& \text { OTH li..j } \\
& \text { layer_thickness }
\end{aligned}
\] & Optical thickness (in wavelength units defined by the base wavelength). The physical thickness will be automatically evaluated according to the base wavelength. \\
\hline PTH li..j phys_thick & Physical thickness (in mm) of the layer(s) lk|li..j. The optical thickness will be automatically evaluated according to the base wavelength. \\
\hline INS li..j & Insert layer i to \(j\) \\
\hline DEL li..j & Delete layer i to \(j\) \\
\hline GLA li..j material & Material (glass) for layers i to j. \\
\hline IND li..j real_index imag_index & Complex index of refraction of layer(s) i to \(j\). Takes only effect, if no layer material (see GLA command above) is specified. \\
\hline ATT sk|si..j [ FILE
coating_name | DEF ] & Attach a multi-layer coating, stored in memory or in a file to surface(s) sk|si..j. The coating name refers to a file containing the coating prescription. The coating file MUST reside in the standard coating directory \(O p T a l i X\) (usually \$i\coatings). If the option [FILE coating_name] is absent, the actual coating stored in memory will be attached. The optional parameter DEF assigns a 'default' coating, consisting of single quarter-wave thickness MgF2 layer to the designated surfaces. \\
\hline MAN [ \(\mathrm{R}|\mathrm{T}| \mathrm{A}]\) [ANG incid_angle] & \begin{tabular}{l}
Numerical analysis of multi-layer performance. The analysis may be performed for : \\
\(R=\) reflection, \\
\(\mathrm{T}=\) transmission. \\
A \(=\) absorption \\
If optional parameters ( R or T ) are omitted, all possible options (transmission, reflection, absorption) will be printed. \\
An incidence angle (in degrees) can be optionally provided. In this case the ANG qualifier is obligatory. If ANG is omitted, the incidence angle specified in the coating configuration dialog (see EDI CCFG) is used.
\end{tabular} \\
\hline COA LAM R|T|RP|TP & \begin{tabular}{l}
Plot reflection/transmission properties vs. wavelength (LAM \(=\) \(\lambda\) ). \\
\(\mathrm{R}=\) reflection \\
\(\mathrm{T}=\) transmission \\
\(\mathrm{RP}=\) phase change on reflection \\
\(\mathrm{TP}=\) phase change on transmission
\end{tabular} \\
\hline COA FLD R|T & \begin{tabular}{l}
Plot reflection/transmission properties vs. field (i.e. incidence angle). The wavelength used is the coating reference wavelength, which must not be confused with the reference wavelength in the optical system (see REF command). \\
\(\mathrm{R}=\) reflection \\
\(T=\) transmission
\end{tabular} \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline COA FLA R|T & \begin{tabular}{l}
Plot reflection/transmission properties vs. field (i.e. incidence angle) and wavelength as 2-dimensional surface plot. \\
\(\mathrm{R}=\) reflection \\
\(T=\) transmission
\end{tabular} \\
\hline COA GD R|T & \begin{tabular}{l}
Plot group delay vs. wavelength. \\
\(\mathrm{R}=\) reflection \\
\(T=\) transmission
\end{tabular} \\
\hline COA GDD R|T & \begin{tabular}{l}
Plot group delay dispersion (or group velocity dispersion) vs. wavelength. \\
\(\mathrm{R}=\) reflection \\
\(T=\) transmission
\end{tabular} \\
\hline FTAR & Define performance targets (see section 20.9.2 on page 391). \\
\hline FOPT & Run the coating optimization. \\
\hline CLS COA [colour...n] & \begin{tabular}{l}
Selects the colour list used for coating analysis plots corresponding to \(\mathrm{S}, \mathrm{T}\) and A (average). With no colours specified, colours are set to default settings. \\
Examples: \\
cls coa red gre blu! defines red, green and blue for \(S\), T and average plane. \\
cls coa! no colours specified, default coating colours are selected. \\
See also names of predefined colours and their definition in sect. 28.1, page 483.
\end{tabular} \\
\hline EXP COA R|T plane [fil filename] & \begin{tabular}{l}
Save (export) coating reflection/transmission performance to a file in ASCII format. \\
\(R \mid T\) specifies reflection/transmission \\
plane \(=\) polarization plane, \(S=\) s-plane, \(P=p\)-plane, \(A=\) average plane ( \(\mathrm{S}+\mathrm{P}\) )/2 \\
By default, output is directed to the text output screen. If a file name is specified (' \(£ i 1\) ' option), output is written to a file designated by 'filename'. \\
This export option uses the parameters (max. angle, wavelength range, etc.) set in the general coating configuration (see also EDI CCFG command) \\
Example: exp coa R A fil c:\mycoat.txt: exports reflection properties ( R ) for average polarization (A) to file c: \mycoat.txt.
\end{tabular} \\
\hline
\end{tabular}

\section*{Spreadsheet Entry:}

The spreadsheet is invoked by the command EDI COA or from the main menu Coatings \(\rightarrow\) Edit Layers.
The meaning of the columns is:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{(*) E: \opx4\Coatings\dwdm_1.otc - - 回区} \\
\hline & MATERIAL & Index (real) & Index (imag.) & OTH & PTH (micron) & P-Factor & Var & \(\wedge\) \\
\hline 1 & & 1.000000 & 0.000000 & 0.000000 & 0.000000 & \(0.0000 \mid\) & & \\
\hline 2 & S102 & 1.444018 & 0.000000 & 0.250000 & 0.268348 & 0.0000 & \(\bar{V}\) & \\
\hline 3 & TA.205 & 1.997176 & 0.000091 & 0.250000 & 0.194024 & 0.0000 & \(\checkmark\) & \\
\hline 4 & SIO2 & 1.444018 & 0.000000 & 0.250000 & 0.268348 & 0.0000 & \(\bar{V}\) & \\
\hline 5 & TA.205 & 1.997176 & 0.000091 & 0.250000 & 0.194024 & \(0.0000 \mid\) & & \\
\hline 6 & S102 & 1.444018 & 0.000000 & 0.250000 & 0.268348 & 0.0000 & & \\
\hline 7 & TA, 205 & 1.997176 & 0.000091 & 0.250000 & 0.194024 & 0.0000 & & \\
\hline 8 & SIO2 & 1.444018 & 0.000000 & 0.250000 & 0.268348 & \(0.0000 \mid\) & & \\
\hline 9 & TA.205 & 1.997176 & 0.000091 & 0.250000 & 0.194024 & \(0.0000 \mid\) & & \\
\hline 10 & 5102 & 1.444018 & 0.000000 & 0.250000 & 0.268348 & \(0.0000 \mid\) & & \\
\hline 11 & TA205 & 1.997176 & 0.000091 & 0.250000 & 0.194024 & \(0.0000 \mid\) & & \\
\hline 12 & S102 & 1.444018 & 0.000000 & 0.250000 & 0.268348 & \(0.0000 \mid\) & & \\
\hline 13 & TA.205 & 1.997176 & 0.000091 & 0.250000 & 0.194024 & 0.0000 & & \(\checkmark\) \\
\hline \multicolumn{9}{|l|}{\(\square\) - \(\square^{\text {a }}\)} \\
\hline & Insert & lete & & & Close & & & \\
\hline
\end{tabular}

Figure 20.2: Editing coating data using a spreadsheet.

Material

Index (real)
Index (imag.)

The material can be any glass/material name from the glass catalogue. If a blank name is specified, the complex index of refraction must be entered, which is always referred to the reference wavelength. This index is used for all wavelengths, hence material dispersion cannot be accounted for. For catalog glasses (i.e. a material name is given), dispersion will always be taken into account. New materials can be defined by the user with the material editor (see sect. 20.10).

The real part \(n\) of the complex index of refraction, which is defined as \((n-i k)\).
The imaginary part \(k\) of the complex index of refraction \((n-i k)\), also known as extinction coefficient.

PTH The physical thickness as it would be measured by a ruler. The numbers in the column are always in microns.
P-Factor The P-factor describes the packing density, since materials in thin films seldom have bulk properties. Thin films usually exhibit a pronounced columnar morphology with pore-shaped voids between the columns. This reduces film packing density and in turn its optical properties. The P -factor is between 0 and 1 . When \(P\) is 1 , the whole void space is occupied by the material, this is equivalent to a bulk material. To model varying packing density, the refractive index of the layer is given by \(n=(1-P)\left[(1-f)+f n_{\nu}\right]+P n_{s}\)
Var A layer thickness can be made variable by checking the appropriate box. Variable layer thicknesses are required for coating optimization (refinement).

\subsection*{20.4 Composing a new Coating}

New coating designs can be created using a shorthand notation on the basis of quarter-wave layers. This option requires specification of two different materials, which are represented by capital letters (symbols) such as \(\mathbf{H}, \mathbf{L}, \mathbf{A}, \mathbf{B}\), etc. Commonly, the symbol H is used to represent a high-index material and L for a low-index material. The symbols can be combined into a formula using a sequence, such as HLHL or AH2LHB. The incident medium is assumed to be left of the formula and the substrate to the right. Air and substrate are always added to the stack and need not be specified in the formula.
Layer thicknesses other than quarter-wave are represented by multiples of the basic units. For example, 2.5 H is \(2.5^{*} 0.25\) waves \(=0.625\) full waves. Repeated sequences can be included in brackets with an exponent or replication factor. Exponentiation is indicated by the caret symbol ^ or alternatively by the asterisk symbol *, e.g. (HL) \({ }^{\wedge} 6\) or (HL)*6. The formula is then interpreted and expanded into a sequence of layers. The following table gives examples of valid and invalid shorthand notations:
\begin{tabular}{l|l|l} 
correct & invalid & Remarks to the invalid form \\
\hline HL & \((\mathrm{HL})\) & Brackets always require an exponent \\
2 HL & \(\left(\mathrm{H}^{\wedge} 2 \mathrm{~L}\right)\) & Exponent not allowed within brackets. \\
\((\mathrm{HL})^{\wedge} 2\) & \((\mathrm{HL})^{\wedge}\) & Exponent number missing \\
\((\mathrm{HL})^{\wedge} 2 \mathrm{~L}(\mathrm{HL})^{\wedge} 3\) & \((\mathrm{HL})^{\wedge} 2 \mathrm{~L}(\mathrm{HL})^{\wedge} 3\) & Blank space after exponent is missing
\end{tabular}

Note the space following the exponent, which is required. If it is omitted, the formula will be rejected. Nesting of brackets is NOT permitted. Air and substrate need not necessarily be specified, as they are always automatically created.

\section*{Dialog based entry:}

A dialog box is invoked from the menu Coatings \(->\) Compose new coating. It allows entry of the material symbols and the corresponding materials, which are chosen from dropdown lists. Since each symbol represents an optical thickness of a quarter-wave, there is no option for thickness entry. Once the symbols have been defined the shorthand notation can be entered in the corresponding string field. In the example below, three materials are defined, which are represented by the symbols \(\mathrm{H}, \mathrm{L}\) and B .


Figure 20.3: Dialog box to defining a new coating stack. Symbols (e.g. H or L) must first be assigned to materials, which can then be used in the shorthand notation, e.g. \(\mathrm{L}(\mathrm{HL})^{\wedge} 6\).

Command Line Entry:
\begin{tabular}{|l|l|}
\hline FCOMP 'formula' & \begin{tabular}{l} 
Film compose. Creates a new quarter-wave coating stack, \\
which is described by a formula. Since the formula may \\
contain blanks, it must be enclosed in quotation marks. \\
Example: fcomp 'L (HL) ^3 B (HL) ^^6'
\end{tabular} \\
\hline FSYM symbol material & \begin{tabular}{l} 
Assign a symbol to material. For example, \\
FMAT H TIO2 assigns the symbol "H" to the material \\
"TiO2". \\
This makes the symbol "H" available to defining a coating \\
formula using the command FCOMP (see above).
\end{tabular} \\
\hline
\end{tabular}

\subsection*{20.5 Specifying Coatings on Surfaces (Coating Attachment)}

There are two methods to specifying coatings on optical surfaces:
1. Assign a coating, which is stored in a file, directly. This means specifying a coating name.
2. Load a coating into the coating editor and then view, analyse or optimize it. Once the performance is considered sufficient, attach it to a lens surface using the ATT command. Attach a 'default' coating (single quarter wave \(M_{g} F_{2}\) layer) to optical surfaces by the "ATT sk-si..j DEF" command (see also comments below).

By default, air-glass surfaces are assumed uncoated. On reflecting surfaces (mirrors, see REFL) and total reflecting (TIR) surfaces \(100 \%\) reflectivity will be assumed.

\subsection*{20.5.1 Default (Single Layer \(M_{g} F_{2}\) ) Coating}

In addition to user-defined coatings a 'default' coating may be assigned to optical interfaces in absence of any other information. A default coating consists of a single layer quarter wave \(M_{g} F_{2}\) layer centered at the reference wavelength (see also section 17.1).
In the command line, a single layer ( \(M_{g} F_{2}\) ) coating is defined (i.e. attached to a surface) by
ATT sk|si..j DEF
In the surface editor, enter "DEFCOAT" in the column labelled "Coating" (see Fig. 20.4).


Figure 20.4: Defining 'default' coatings (i.e. single quarter wave layer \(M_{g} F_{2}\) ) in the surface editor.

See also section 8.36 .1 for more details.

\subsection*{20.6 Phase Changes introduced by Coatings}

The phase change that occurs at a coating when polarization ray tracing is active (POL YES) is automatically considered in the optical path length. That is, the optical path difference introduced by the finite thickness of a coating attached to a surface is added to the optical path length OPL). This may result in different optical path difference (OPD) and correspondingly different diffraction analysis results (MTF, PSF, etc), depending on whether coatings are attached to surfaces or not.
Phase changes that occur on coatings can normally be neglected, however, on high numerical aperture systems or wide-angle systems with steep incidence angles on optical surfaces coatings may have a noticeable effect on phase (=wavefront) response.

\subsection*{20.7 Coating Thickness Variation}

Usually it is assumed that thicknesses of layers in thin film stack is uniform over the whole area of the lens surface. In practice, however, there may be special conditions for which this assumption is not valid. For example, steep curved surfaces are very hard to coat uniformly. Due to the deposition process the overall thickness of the coating stack at curved surfaces gets thinner in the outer zones of the lens surface. It is obvious, that the performance (reflectivity, transmissivity, phase) of the coating will be different at the surface vertex (where rays usually hit the surface at near normal incidence) compared to the rim of the lens.
The most prominent effect of coating thickness variations are seen on transmissivity and reflectivity. However, phase effects induced by variations of coating thickness may affect the overall performane of a system, e.g. in systems with strongly curved surfaces, wide angles, or diffraction limited systems. In order to model this effect, the thickness profile of a coating can be specified by polynomial functions. Two forms are available:
- Radial thickness variation, i.e. coating thickness variation exhibits rotational symmetry,
- Non-rotational symmetry of coating thickness over surface.

Hint: Use the commands "POL Y" and "TRA Y" (without the quotes) to include variations of coating thicknesses in analyses, such as wavefront, PSF, MTF, etc.

\subsection*{20.7.1 Radial Thickness Variation}

The overall coating thickness is described as a function of the radial coordinate on a surface by
\[
\begin{equation*}
s_{c}=a_{1}+a_{2} r^{2}+a_{3} r^{4}+a_{4} r^{6}+a_{5} r^{8} \tag{20.1}
\end{equation*}
\]
where \(s_{c}\) is the scaling factor for the nominal coating thickness and \(r=\sqrt{x^{2}+y^{2}}\) is the radial coordinate measured from the surface vertex. All layers of a given coating stack will be scaled by s. The scaling factor \(s_{c}\) is expected to be a number between 0 and 1 . Negative values of \(s_{c}\) are not allowed, respectively are set to \(s_{c}=0\) in the analysis. The coefficients \(a_{i}\) are specified by the command

\footnotetext{
CTV NO|RAD|XY sk|si..j ck|ci..j coeff_1 coeff_2 ...
}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|l|}{ continued from previous page } & \begin{tabular}{l} 
Coating thickness variation defined by either radial (RAD) or non- \\
symmetrical (XY) polynomial. Enter the coefficients coeff_1, \\
coeff_2, etc, as given in Eq. 20.1. Coating thickness variation \\
is removed from a surface if \(\mathrm{C} 1=1\) and all other coefficients are \\
zero. \\
Examples: \\
ctv rad s3 c2 -0.002 \\
ctv rad s3 c2..5 0.01 \(0.02 \quad 0.03\) \\
ctv xy s2..3 c4 -0.002 \\
See also sect. 20.7.2 for a description of the non-symmetrical \\
(XY) coating thickness variation.
\end{tabular} \\
\hline EDI CTV & \begin{tabular}{l} 
Edit coefficients of coating thickness variation in a spreadsheet \\
editor.
\end{tabular} \\
\hline PLO CTV sk [style] & \begin{tabular}{l} 
Plot coating thickness variation (CTV) for a given surface sk. \\
Plots can be made in various styles specified by the optional pa- \\
rameter style: \\
WIR : wire-frame, \\
CON :contour plot, \\
FAL : false colour plot, \\
XY : slices in X- and Y-direction. \\
The default plot style is wireframe.
\end{tabular} \\
\hline POL Y|N] & \begin{tabular}{l} 
Activate/deactivate polarization analysis. Turn on polarization \\
analysis (pol y) if you want to analyze the effects of coating \\
thickness variation on wavefront.
\end{tabular} \\
\hline
\end{tabular}

See also related commands:
LIS MUL List multilayer coatings attached to optical surfaces,
PMA Plot system pupil map (i.e. transmission in system exit pupil).
POL Y Turn on polarization analysis to see CTV effects on wavefront.

\section*{Example:}

We assume a decrease of the coating thickness by a radial quadratic function. The thickness of the coating stack at the rim of a lens reduces to \(70 \%\) of the thickness at its vertex, i.e. the thickness scaling factor at the rim is 0.7 . From Eq. 20.1 we have
\[
0.7=a_{1}+a_{2} r^{2}
\]

Assuming furthermore a lens diameter of \(50 \mathrm{~mm}(r=25 \mathrm{~mm})\), we obtain
\[
0.7=a_{1}+a_{2} \cdot 25^{2}
\]

Since the thickness scaling factor \(s-c\) must be 1 at \(r=0\) (vertex), \(a_{1}\) must be 1 . Then, \(a_{2}\) is calculated by
\[
a_{2}=\frac{s_{c}-1}{r^{2}}=\frac{0.7-1}{25^{2}}=-0.00048
\]

The commands for this example are then (assuming coating thickness variation at surface 3)
```

ctv s3 c1 1 ! a
ctv s3 c2 -0.00048 ! a a = -0.00048

```

\subsection*{20.7.2 Non-symmetrical Thickness Variation}

Almost arbitrary (non-symmetrical) coating thickness variations can be modeled by a 2 -dimensional polynomial of the form
\[
\begin{align*}
s_{c}=a_{1} & +a_{2} x+a_{3} x^{2}+a_{4} x^{3} \\
& +a_{5} y+a_{6} y^{2}+a_{7} y^{3}  \tag{20.2}\\
& +a_{8} x y+a_{9} x^{2} y+a_{10} x y^{2}
\end{align*}
\]
where \(s_{c}\) is the scaling factor for the nominal coating thickness and \(x, y\) are the physical coordinates on the surface measured from the surface vertex. All layers of a given coating stack will be scaled by \(s_{c}\). The coefficients \(a_{1}\) to \(a_{10}\) are specified by the CTV command as given in the previous section 20.7.1, (page 388).

The coating thickness variation on specific surfaces can be plotted by the command PLO CTV. Set POL Y to see effects of coating thickness variation (CTV) on wavefront.

\subsection*{20.8 Accounting for the Phase in an Optical Coating}

The wavefront in an optical system may be distorted by optical coatings, depending on the type of coating, the incidence angle and the wavelength. Optical coatings introduce additional phase effects in an optical system, and therefore may have a significant impact on the wavefront passing through an optical system, in particular if the thicknesses of the coating layers are not uniform over the area of deposition.
Unfortunately, there is no commonly accepted method to which surface the phase is referred to, it can be the incident surface of a coating or to the exiting surface of a coating. Depending on the definition, the geometrical thickness of a coating stack must be included or not in order to obtain a correct phase/wavefront representation.

In general, the phase introduced by an optical coating is expressed by
\[
\begin{equation*}
\Phi_{w f}=\Phi+\frac{2 \pi n_{0} \cdot d \cdot \cos \left(\theta_{0}\right)}{\lambda} \tag{20.3}
\end{equation*}
\]
where \(\Phi\) is the phase as usually calculated by thin film codes, \(n_{0}\) is the refractive index of the entrance medium, \(d\) is the total thickness of the coating, \(\theta_{0}\) is the angle of incidence on the coating.
OpTaliX uses the convention defined in the MacLeod package where the geometrical term (i.e. the right term) in eq. 20.3 is already included in the phase result. Other thin film packages may use different definitions that must be carefully checked.

\subsection*{20.9 Thin Film Optimization (Refinement)}

Optimization is a process for the improvement of design performance. It requires an already existing starting design. Optimization does not synthesize a coating design as it would be possible by other methods (e.g. building a system virtually from scratch by automatically adding layers, such as the so-called "Needle" method, simulated annealing or "Optimac").

\subsection*{20.9.1 Variables}

Variables are thicknesses of layers. They can be defined in the coating spreadsheet editor. If the appropriate box is checked, the layer thickness is variable during optimization, if it is unchecked, the thickness will not be changed in the optimization. See also page 385 for editing coating data.

\subsection*{20.9.2 Targets}

Optimization (refinement) of coatings requires first of all the definition of a target performance. The actual performance is compared with the targets and the deviation of actual and required performance is expressed by the function of merit.
In coating optimization, targets are a series of reflectance or transmittance values at discrete wavelengths. Since there may be many targets required in complex designs, a dialog box supports the definition of targets. It is called from the main menu selecting Coatings \(->\) Targets.


Figure 20.5: Targets dialog box.

Targets are created by specifying a wavelength range and the number of wavelengths in that range. The target values in this range may be between 0 and 1 , corresponding to \(0 \%\) or \(100 \%\) transmittance or reflectance, respectively. Targets can be referred to the S-plane, P-plane or an average value between S- and P-plane by selecting the appropriate radio buttons, as shown below:
```

c s-Plane
C P-Plane
C Average

```

C Reflection
c Transmission

S-plane: Targets are for S-plane (German "senkrecht") only, P-plane: Targets are for P-plane (German "parallel") only, Average: The arithmetic average \((\mathrm{S}+\mathrm{P}) / 2\) is used.

Select whether transmittance or reflectance values shall be used.

Weights are usually set to 1 , but they may be between 0 and 100 . A weight 0 means, that this performance target does not contribute to the merit function. The higher a weight is, the more will the aberration (difference of actual performance from target) contribute to the merit function.

Pressing the Add button will create the targets. Several wavelength ranges with different targets (reflection, transmission, S- P- or average plane) can be combined to define more complex performance constraints.
Clear all: Pressing this button will clear all targets.
Deleting targets: Individual targets can be deleted by selecting a group of rows in the targets table. For example, deleting the variables (rows) numbered 2 to 3 is accomplished first by clicking onto the row label 2 (the whole row is marked), then holding the shift key and clicking onto row label 3 . Rows 2 and 3 are now marked black. Pressing the Del button on the keyboard will delete the rows. Alternatively, Ctrl-X will also delete the rows and the contents of the deleted rows is additionally copied to the clipboard.

\subsection*{20.9.3 Run Coating Optimization}

Having defined variables and performance targets, the coating can now be optimized (refined). This is accomplished in the command line by typing FOPT or from the main menu selecting Coatings \(->\) Optimize coating.
\begin{tabular}{|l|l|}
\hline FOPT [n_iter] & \begin{tabular}{l} 
Thin film optimization, requires proper setting of targets and \\
variables. The optimization stops after \(n\) iter cycles, independent
\end{tabular} \\
whether a local minimum has been reached. If n_iter is omitted, \\
optimization stops at the apparent (local) minimum.
\end{tabular}

\subsection*{20.10 Coating Material Editor}

The coating material editor manages a database of materials used in thin-films. OpTaliX provides a library of predefined coating materials (which cannot be modified) and a library of private (i.e. user-defined) coating materials which can be modified (editing, adding new materials or deleting unnecessary materials).
Thin film materials are both dispersive and absorbing. This is the major distinction from "conventional" glasses used in ray tracing which are only modelled by their dispersive properties. "Conventional" glasses, like BK7, exhibit almost negligible absorption within the wavelength range for which dispersion coefficients are valid.
Unlike "conventional" glasses, thin-film materials are defined by the refractive index \(n\) and the extinction coefficient \(k\) (i.e. the imaginary part of the complex index of refraction) against wavelength \(\lambda\) (given in microns).
If necessary, the values are interpolated or extrapolated. Interpolation is linear. Extrapolation keeps the last value from the material table. A linear interpolation is used for calculating \((n, k)\) pairs rather than dispersive formulae because of the wide range of different materials and conditions that are involved. Metals, for example, cannot be represented by the common normal dispersion formulae (such as Sellmeier or Herzberger equations) that are useful only for non-absorbing (dielectric) materials over a limited spectral region.
Private thin-film materials can be edited in the coating material editor which is invoked from the main menu by selecting Coatings \(-->\) Material Editor or from the command line by
\begin{tabular}{|l|l|}
\hline EDI CMAT & \begin{tabular}{l} 
Edit coating (thin-film) materials. This command opens a dialog box as \\
shown in Fig. 20.6. Each material can be defined by up to \(100(n, k)\) pairs. \\
The wavelengths do not need to be equally spaced.
\end{tabular} \\
\hline
\end{tabular}


Figure 20.6: Editor for defining coating materials.

\subsection*{20.11 Coating Index Profile}

Produces a plot of refractive index against thickness. In the index profile, the incident medium (typically Air) is on the left and the emergent medium, or substrate, on the right.
Refractive index profiles can be shown by real part, imaginary part or both components simultaneously.

\subsection*{20.12 Export Coating Performance Data}

The performance of optical coatings (reflection, transmission, phase) can be exported to an Excel spreadsheet. From the command line, this is accomplished by the command
\begin{tabular}{|l|l|}
\hline MAN R \(\mid T\) XLS file_name & \begin{tabular}{l} 
Perform multilayer analysis and export the transmis- \\
sion/reflection/phase performance to an Excel spreadsheet. \\
Example: \\
man \(r\) xls \(c: \backslash\) temp \(\backslash\) refl.xls
\end{tabular} \\
\hline
\end{tabular}

From the menu, select Coatings / Reflection / Numeric, as Excel file (see Fig. 20.8):

\subsection*{20.13 Basic Relations}

Generally, a thin film coating is a media, whose properties are constant throughout each plane perpendicular to a fixed direction and is called a stratified medium. The calculation scheme presented in this section follows the treatment by Macleod [32]. A similar treatment is found in Born and Wolf [4].
The electric field \(E\) and the magnetic field \(H\) at one boundary of a film are related to the fields \(E\) and \(H^{\prime}\) at the other boundary by two linear simultaneous algebraic equations, written in matrix form:
\[
\begin{equation*}
\binom{E}{H}=M_{j} \cdot\binom{E^{\prime}}{H^{\prime}} \tag{20.4}
\end{equation*}
\]
where the \(M\) is the characteristic matrix for an individual layer \(j\) :
\[
M_{j}=\left[\begin{array}{cc}
\cos \left(\delta_{j}\right) & -\frac{i}{p_{j}} \sin \left(\delta_{j}\right)  \tag{20.5}\\
-i p_{j} \sin \left(\delta_{j}\right) & \cos \left(\delta_{j}\right)
\end{array}\right]=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]
\]

For a multi-layer stack containing \(m\) layers, the calculation of reflectance, transmission and phase properties involves successive multiplication of the characteristics matrix
\[
\left[\begin{array}{l}
B  \tag{20.6}\\
C
\end{array}\right]=\left\{\prod_{j=1}^{m}\left[\begin{array}{cc}
\cos \left(\delta_{j}\right) & -\frac{i}{p_{j}} \sin \left(\delta_{j}\right) \\
-i p_{j} \sin \left(\delta_{j}\right) & \cos \left(\delta_{j}\right)
\end{array}\right]\right\} \cdot\left[\begin{array}{c}
1 \\
p_{s u b}
\end{array}\right]
\]
with
\(k_{0}=\frac{2 \pi}{\lambda}\)
\(N_{j}=n-i k=\) complex refractive index of layer \(j . n\) is the real refractive index and \(k\) is known as the extinction coefficient. \(k\) is related to the absorption coefficient \(\alpha\) by \(\alpha=4 \pi k / \lambda\).
\(d_{j}=\) physical thickness of layer \(j\)
\(\theta_{j}=\) refraction angle at boundary of layer \(j\), given by Snell's law: \(n_{0} \sin \theta_{0}=n_{j} \sin \theta_{j}\), the subscript 0 denoting the incident medium.
\(\delta_{j}=2 \pi N_{j} d_{j} \cos \theta_{j} / \lambda\)
\(i=\sqrt{-1}\)
We obtain different characteristic matrices for TE- and TM-waves \({ }^{1}\). For a TE wave we set \(p_{j}=\) \(N_{j} / \cos \theta_{j}\). For a TM wave, the same equations hold, with \(p_{j}\) replaced by \(q_{j}=N_{j} \cdot \cos \theta_{j}\). The reflection and transmission coefficients of the film are then obtained by:
\[
\begin{align*}
& r=\frac{m_{11} p_{0}+m_{12} p_{0} p_{\text {sub }}-\left(m_{21}+m_{22} p_{\text {sub }}\right)}{m_{11} p_{0}+m_{12} p_{0} p_{\text {sub }}+\left(m_{21}+m_{22} p_{\text {sub }}\right)}=\frac{p_{0} B-C}{p_{0} B+C}  \tag{20.7}\\
& t=\frac{2 p_{0}}{m_{11} p_{0}+m_{12} p_{0} p_{\text {sub }}+\left(m_{21}+m_{22} p_{\text {sub }}\right)}=\frac{2 p_{0}}{p_{0} B+C} \tag{20.8}
\end{align*}
\]

In terms of \(r\) and \(t\), the reflectivity and transmissivity are:
\[
\begin{gather*}
\mathcal{R}=|r|^{2}=\frac{\left(p_{0} B-C\right)\left(p_{0} B-C\right)^{*}}{\left(p_{0} B+C\right)\left(p_{0} B+C\right)^{*}}  \tag{20.9}\\
\mathcal{T}=\frac{p_{0}}{p_{\text {sub }}}|t|^{2}=\frac{4 p_{0} \operatorname{Real}\left(p_{\text {sub }}\right)}{\left(p_{0} B+C\right)\left(p_{0} B+C\right)^{*}} \tag{20.10}
\end{gather*}
\]

The phase \(\phi_{r}\) of \(r\) may be called the phase change on reflection and the phase \(\phi_{t}\) of \(t\) the phase change on transmission. The phase change \(\phi_{r}\) is referred to the first surface of discontinuity, whilst the phase change \(\phi_{t}\) is referred to the plane boundary between the stratified medium and the last semi-infinite medium.

We have different phase changes for each plane of incidence ( S and P ) and we obtain for the phase changes on reflection and transmission:

\footnotetext{
\({ }^{1}\) TE-wave \(=\) transverse electric wave: The electric vector is perpendicular to plane of incidence (S-plane, from German "senkrecht"). TM-wave = transverse magnetic wave: The magnetic vector is parallel to plane of incidence (P-plane, from German "parallel")
}
\[
\begin{align*}
\phi_{r} & =\phi_{r(S-\text { plane })}-\phi_{r(P-\text { plane })}  \tag{20.11}\\
\phi_{t} & =\phi_{t(S-\text { plane })}-\phi_{t(P-\text { plane })}
\end{align*}
\]

When a layer is a quarter-wave thick, particularly simple results can be obtained. A few special cases are summarized here (with \(n_{0}=\) index of incident medium, \(n_{s}=\) index of substrate):

Single layer, zero reflectivity requires

Double quarter, single minimum, zero reflectivity requires

Double quarter, double minimum, zero reflectivity requires

Triple Layer, Minimum reflectivity is accomplished for:
\[
n_{1}=\sqrt{n_{0} \cdot n_{\text {sub }}}
\]
\[
\frac{n_{2}}{n_{1}}=\sqrt{\frac{n_{s u b}}{n_{0}}}
\]
\[
n_{1} \cdot n_{2}=n_{0} \cdot n_{\text {sub }}
\]
\(n_{1} \cdot n_{3}=n_{0} \cdot n_{\text {sub }}\)
\(n_{2}^{2}=n_{0} \cdot n_{\text {sub }}\)


Figure 20.7: Coating Index Profile


Figure 20.8: Menu for exporting coating performance to Excel.

\section*{21}

\section*{Environmental Analysis}

The environmental analysis takes into account the changes in lens data which result from changes in temperature and pressure. The changed system becomes the basis for all subsequent analyses, e.g. image evaluation. The changed system can be saved and also optimization can be performed to test active compensation schemes. The environmental parameters can be applied to the entire optical system or individual parts to model temperature and/or pressure gradients.
It is important to note the initial conditions for all lens data:
- The nominal temperature is \(20^{\circ} \mathrm{C}\),
- all spaces, including the object and image space, are filled with air at sea level pressure (1013.25 • \(10^{9} \mathrm{~Pa}\) ),
- the index of air is regarded to be 1.0. This is also the assumption made in glass catalogues. See also section 13.8.

These conditions need not to be entered explicitly, they are assumed as default. When temperature and/or pressure is altered, all data are converted from relative indices to absolute indices, relative to vacuum as 1.0. This conversion is automatically done and does not require user interaction. If no other environmental changes are made to the optical system (i.e. it remains at \(20^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}\) ), the same optical answers are given before and after this process. The only difference is, that indices are now referred to vacuum. For example, the command TEM sa 20 assigns the temperature \(20^{\circ} \mathrm{C}\) to all surfaces. This, however, is the initial default condition and the system must show the same optical performance. The surface listing (see LIS) then reports indices relative to vacuum. Air, for example, has an index of refraction of approximately 1.000273 in the visible spectrum. Air spaces will automatically be filled with the pre-stored "material" AIR to account for the (small) dispersion of air.

\subsection*{21.1 Temperature}

A temperature distribution can be assigned to a range of surfaces or to the entire lens system.
\begin{tabular}{|c|c|}
\hline TEM si..j|sa temperature & \begin{tabular}{l}
Temperature at surface(s) si..j. The system data are changed immediately! Temperature gradients can be modelled by assigning different temperatures to individual surface ranges si..j. \\
Example: \\
TEM sa 30 ! sets temperature of all surfaces to \(30^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline DEL TEM si..j|sa & Deletes temperature data for surfaces si..j or all surfaces (sa). The construction data are retained from the previous temperature state. For example, deleting temperature data on a lens at a higher temperature (say at \(80^{\circ} \mathrm{C}\) ), retains all construction data at the expanded temperature level. To restore the lens condition at room temperature \(\left(20^{\circ} \mathrm{C}\right)\), first apply the command TEM sa 20 and then delete temperature data (DEL TEM sa). \\
\hline EXC si..j|sa expansion_coef, or CTE si..j|sa expansion_coef & Linear expansion coefficient for mount, glasses or surface(s). The assumed exponent is \(10^{-6}\). \\
\hline EXM si..j|sa expansion_coef & Linear expansion coefficient for first surface mirror substrate. The assumed exponent is \(10^{-6}\). Values apply to the substrate for the designated surface(s) si . . j or all surfaces sa. \\
\hline EXR sk|si..j ref_expansion_coef & Linear expansion coefficients for globally referenced distances. See also a detailed explanation below (section 21.1.2). \\
\hline \begin{tabular}{l}
DNDT si..j|wi..j dndt \\
DNDT si..j dndt(wl) ... dndt (wn)
\end{tabular} & \begin{tabular}{l}
Enter absolute \(d n / d T\) values explicitly, if the coefficients are unavailable in the glass catalogues. The assumed exponent is \(10^{-6}\). The second form expects data in the order the system wavelengths are specified. Thus, for 3 wavelengths defined, 3 dndt-values must be entered. The dndt-values must correspond to the system wavelengths. If there are more wavelengths defined than dndt-values entered in the second command form, \(\mathrm{dn} / \mathrm{dT}=0\) is assumed for the remaining wavelengths. \\
Example 1: dndt s3 w1..5 -1.5 \\
Example 2: dndt s3 1.5 2.53 .5 \\
See also querying DNDT as a LDI item (sect. 27, page 471. Further information on absolute and relative dndT is given in sect. 13.2, page 222. \\
continued on next page
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline & \begin{tabular}{l} 
Enter \(d n / d T\) coefficients for the surface(s) si..j. \\
The coefficients are \(D_{0}, D_{1}, D_{1}, E_{0}, E_{1}\) in equation \\
DNDTC si..j c1..c6
\end{tabular} \\
\begin{tabular}{l} 
13.17. Use of this command is recommended only \\
where dn/dT data are not available in the catalogue \\
glass model. Note, that in this command the \\
coefficients are assigned to a specific surface and \\
not to a catalogue glass, which is the normal case.
\end{tabular} \\
\hline
\end{tabular}

Changing the temperature causes all glass elements to expand or contract according to the expansion coefficient (EXC). Radii of curvature, axial thicknesses, aperture radii and aspheric coefficients change according to
\[
\begin{equation*}
L(T+\Delta T)=(1+\alpha \cdot \Delta T) \cdot L_{0} \tag{21.1}
\end{equation*}
\]
where \(L\) is a length at the changed temperature, \(T\) is the base temperature, \(\Delta T\) is the change in temperature and \(\alpha\) is the linear expansion coefficient.
All air spaces are changed by computing the change in the corresponding axial thicknesses and adding the thickness change to the axial separation. In the case of strongly bent surfaces the length of spacers may significantly differ from the axial air space. In this case the correct spacer expansion must me modeled by auxiliary surfaces with appropriate CTE assignments.
For surfaces, which are globally referenced to a preceding surface, the reference thickness (IHR) is changed according to the linear expansion coefficient EXR of the reference surface (see also section 21.1.2).

The expansion coefficient of the mount materials must always be explicitly entered using the EXC command.
The linear expansion coefficient of front surface mirrors must be explicitly entered by the EXM command.
Refractive indices change with the corresponding \(d n / d T\)-coefficient of the glasses. The \(d n / d T\) coefficient is unique for each glass/material and is taken from the glass catalogues, if available. If not available, it is set to zero or it may be explicitly entered using the DNDT command.

\subsection*{21.1.1 Temperature Effects on "zoomed" Parameters (Multiconfiguration)}

The thermal change of parameter defined in a Zoom/Multiconfiguration environment is also automatically adjusted with temperature, however, only a limited range of parameter is supported:
THI, THR
These two parameter allow the modelling of axial movements of components as is typical in classical variable focus lens systems.

\subsection*{21.1.2 Expansion Coefficients on Global References}

In order to fulfil certain requirements on thermal behaviour of an optical system, for example athermalization, it is sometimes required to apply special mounting techniques where single lenses or groups of lenses are mounted in separated housings. Quite often, housing materials with abnormal thermal expansion coefficients are used to maintain focus without any powered drive mechanism (passive athermalization).

When temperature changes, lenses (or lens groups) may move relative to another surface, typically a surface other than the immediately preceding one. The effect is that the change of the air space between two lenses is not dictated by the thermal expansion of the housing material, but follows a more complex relation.


Figure 21.1: Modelling thermal expansion with globally referenced surfaces.

Fig. 21.1 indicates a simple optical system, where the last lens (surfaces 7-8) is mounted in a separate housing being attached to a flange on the main housing close to surface 4 . If the main housing and the sub-housing for lens 4 are made of different materials, the air space between the third and fourth lens will change according to the expansion difference of the two materials involved.

In order to adequately model this optical-mechanical configuration, surface 7 is globally referenced to surface 4 . See also section 8.22 (page 116) for a general description of global references.
Instead of specifying the expansion coefficient of the air space between surfaces 6 and 7 , we directly specify the expansion coefficient for the reference length surface 7 to surface 4 . This is EXR, which always refers to a surface before the current surface. In other words, EXR is the linear expansion coefficient of a reference thickness (THR).

\subsection*{21.2 Pressure}

A pressure profile may be assigned to a range of surfaces or to the entire lens system. Inhomogeneous pressure profiles in axial direction may be accomplished by assigning different pressures to different surface ranges.
\begin{tabular}{|l|l|}
\hline PRE si..j|sa pressure & \begin{tabular}{l} 
Pressure in mm Hg at surface(s) si..j or all surfaces \\
(sa). Example: PRE sa 760, sets the pressure to 760 \\
mmHg (normal pressure).
\end{tabular} \\
\hline DEL PRE si..j|sa & \begin{tabular}{l} 
Deletes pressure data for surfaces si..\(j\) or all surfaces \\
\((\mathrm{sa})\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Tolerancing}

The goal of any tolerancing scheme is to determine the dimensional ranges of optical components that meets performance requirements. Tolerances are variations in design data related to fabrication considerations. Careful tolerancing is important for the designer to ensure that the performance will be maintained in the finished units. The various tolerances may be used in any combination to evaluate the impact of fabrication errors. The tolerance perturbations for system prescription data are always taken from the currently assigned values. Tolerances are automatically saved with the lens file.
The two most common effects in tolerancing an optical system are underspecification, that is incompletely describing of what is required, and overspecification, wherein much more severe tolerances are established than required. Thus, defining tolerances is a complicated process between the limits imposed by
a) the performance requirements of the optical system, and
b) the expenditure of money and time which is justified by the application.

As a guideline, tolerances should be established as large as the requirement for satisfactory performance of the optical system will permit. The tolerancing calculations available in OpTaliX are divided into three separate categories:
- Sensitivity analysis
- Inverse tolerancing
- Monte Carlo analysis

All of these categories require the definition of tolerance items (section22.1, page 401) and tolerance criteria (section 22.2, page 408, which are described in the following two sections.

\subsection*{22.1 Surface Tolerance Items}

Tolerance items assigned to surfaces can be edited by the command EDI TOL, which invokes a dialog box, or they may be directly specified in the command line as described below. A detailed definition of each tolerance item is given in the table below and in the following sections.

EDI TOL \(\quad\) Opens a dialog box for editing surface tolerances. continued on next page
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{continued from previous page} \\
\hline DEL TOL [si..j] & \begin{tabular}{l}
Delete all types of existing tolerances on designated surfaces si..j. \\
Example: \\
del tol s1.. 3 ! Delete tolerances at surface 1 to 3. \\
del tol sa ! Delete tolerances at ALL surfaces.
\end{tabular} \\
\hline DLF si..j tol_testplate_fit & Tolerance on test-plate fit (in fringes at \(\lambda=546 \mathrm{~nm}\) ) over the clear aperture. See also section 22.1.3 for more information. In ISO 10110 notation, DLF corresponds directly to the A-value, e.g. \(3 / \mathrm{A}(\mathrm{B}, \mathrm{C})\) is synonymous to \(3 / \operatorname{DLF}\) ( \(B, C\) ). Note that sensitivity on test-plate fit may also be included in optimization using the TSF function (see page 361). This option allows minimization of tolerance sensitivity on this parameter, whenever possible. \\
\hline IRR si..j total_irregularity & Tolerance on cylindrical irregularity, in fringes at \(\lambda=\) 546 nm . The irregularity of a spherical surface is a measure of its departure from sphericity. See sect. 22.1.4 for more details. Note that sensitivity on surface irregularity may also be included in optimization using the TSI function (see page 361). This option allows minimization of tolerance sensitivity on this parameter, whenever possible. \\
\hline ```
SYM si..j
symmetrical_irregularity
``` & Tolerance on symmetrical aspherical irregularity, in fringes at \(\lambda=546 \mathrm{~nm}\). In ISO 10110 notation, SYM corresponds directly to the C-value, e.g. \(3 / \mathrm{A}(\mathrm{B}, \mathrm{C})\) is synonymous to \(3 / A\) ( \(B, S Y M\) ). \\
\hline DLT si..j tol_thickness & Tolerance on axial thickness, in mm. Shows the effect of a change in the axial thickness between surfaces. Thickness tolerances applied to a surface will also move subsequent surfaces, except the subsequent surface(s) is/are globally referenced to any other preceding surface. See also sections 22.1.6 and 22.1.7 for more information. Note that sensitivity on surface irregularity may also be included in optimization using the TST function (see page 361). This option allows minimization of tolerance sensitivity on this parameter, whenever possible. \\
\hline DTR si..j tol_ref_thickness & Tolerance on (global) reference thickness (see THR), in mm . Shows the effect of a change in the reference thickness. This option is only applicable for surfaces, which are globally referenced to a preceding surface. See also sections 22.1.6 and 22.1.7 for more information. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline continued from previous page & \\
\hline DLN si..j tol_index & \begin{tabular}{l}
Tolerance on index of refraction, at the reference wavelength. The tolerance value tol_index is specified as absolute difference to the nominal index. \\
Example: \\
dln s3 0.001 ! increases index of refraction by 0.001 \\
Note that sensitivity on surface irregularity may also be included in optimization using the TSN function (see page 361). This option allows minimization of tolerance sensitivity on this parameter, whenever possible.
\end{tabular} \\
\hline DLV si..j tol_V_number & \begin{tabular}{l}
Tolerance on dispersion. The tolerance value is specified as a fraction of the nominal Abbe number \(\nu_{d}\). \\
Example: \\
dlv s3 0.008 ! changes the Abbe number by 0.8\% \\
Note that sensitivity on dispersion may also be included in optimization using the TSV function (see page 361). This option allows minimization of tolerance sensitivity on this parameter, whenever possible.
\end{tabular} \\
\hline DLR si..j tol_radius & Tolerance on absolute radius, in mm. \\
\hline HOM si..j tol_homogeneity & Tolerance on index homogeneity, in \(10^{-6}\) units. See also section 22.1.9, page 407 for details. Note that sensitivity on index homogeneity may also be included in optimization using the TSH function (see page 362). This option allows minimization of tolerance sensitivity on this parameter, whenever possible. \\
\hline AXG si..j tol_axial_grin & Tolerance on axial linear index gradient \\
\hline RAG si..j tol_radial_grin & Tolerance on radial quadratic index gradient \\
\hline DLX si..j tol_x_decenter & Tolerance on lateral displacement in X-direction, in mm . Note that sensitivity on X-displacement may also be included in optimization using the TSX function (see page 361). This option allows minimization of tolerance sensitivity on this parameter, whenever possible. \\
\hline DLY si..j tol-y_decenter & Tolerance on lateral displacement in Y-direction, in mm. Note that sensitivity on Y-displacement may also be included in optimization using the TSY function (see page 361). This option allows minimization of tolerance sensitivity on this parameter, whenever possible. \\
\hline DLZ si..j tol_z_decenter & Tolerance on longitudinal displacement in Z-direction, in mm . Note that DLZ is equivalent to a thickness tolerance. Also note that sensitivity on Z-displacement may be included in optimization using the TSZ function (see page 362). This option allows minimization of tolerance sensitivity on this parameter, whenever possible. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|l|}{ continued from previous page } \\
\hline DLA si..j tol_a_tilt & \begin{tabular}{l}
Tolerance on tilt about X-axis (\(\alpha\)-tilt), in arcmin. Note \\
that sensitivity on tilt about X-axis may also be included \\
in optimization using the TSA function (see page 362). \\
This option allows minimization of tolerance sensitivity \\
on this parameter, whenever possible.
\end{tabular} \\
\hline DLB si..j tol_b_tilt & \begin{tabular}{l}
Tolerance on tilt about Y-axis \((\beta\)-tilt), in arcmin. Note \\
that sensitivity on tilt about Y-axis may also be included \\
in optimization using the TSB function (see page 362). \\
This option allows minimization of tolerance sensitivity \\
on this parameter, whenever possible.
\end{tabular} \\
\hline DLG si..j tol_c_tilt & \begin{tabular}{l}
Tolerance on tilt about Z-axis \((\gamma\)-tilt), in arcmin. Note \\
that sensitivity on tilt about Z-axis may also be included \\
in optimization using the TSG function (see page 362). \\
This option allows minimization of tolerance sensitivity \\
on this parameter, whenever possible.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{22.1.1 Tolerance Editor}

Editing of surface tolerance items, tolerance criteria and compensators is accomplished from the menu Edit \(->\) Tolerances or by clicking on the TOL button in the toolbar. A dialog box as shown in Fig. 22.1 is invoked.

Figure 22.1: Spreadsheet for editing surface tolerance items and tolerance criteria.

Surface tolerances are entered in rows (surfaces) and columns (tolerance type). Each tolerance must be made active in the check box right to each tolerance field. If the field is unchecked, it is not used in subsequent tolerance analyses.
Default tolerances in various grades may be assigned to surfaces (see section22.1.2).
Up to eight performance criteria may be arbitrarily selected from the pull down menus. The example in Fig. 22.1 shows four performance criteria, which will be evaluated depending on surface or component tolerances:
```

MTFA f1 !mean MTF at field 1
SPD f1 ! rms spot diameter at field 1
EFL! ! equivalent focal length
CY si f1 w1 ! direction cosine Y at the image plane, field number 1 and wavelength
number 1. This function gives a good measure of boresight stability.

```

The default setting for compensators is none.

\subsection*{22.1.2 Default Tolerances}

Default tolerances may be assigned to certain construction items. These tolerance values are taken from the ISO 10110-5 standard. Two other grades on tolerances are provided, "low" and "high", which are intended for "low"-performance and "high"-performance systems respectively.
It is important to note, however, that these default tolerances may not be appropriate for your particular optical performance requirements. Therefore, the defaults should be considered as convenient starting points for examining the relative sensitivities of the various lens parameters. It is up to the user to deviate from the defaults and change the tolerances correspondingly.

\subsection*{22.1.3 Tolerance on Test-Plate Fit (DLF)}

Shows the effect of a change in the radius of curvature of a surface. The perturbation is specified in terms of interference fringes \({ }^{1}\) relative to test plate or interferometer fit at the reference wavelength used in the optical system. As default, ISO \(10110-5\) specifies \(0.54607 \mu m\) (e-line). If the reference wavelength differs from \(0.54607 \mu \mathrm{~m}\), the tolerance specification may be converted to another wavelength by
\[
\begin{equation*}
D L F_{\lambda 2}=D L F_{\lambda 1} \cdot \frac{\lambda_{1}}{\lambda_{2}} \tag{22.1}
\end{equation*}
\]
where \(D L F_{\lambda 1}\) and \(D L F_{\lambda 2}\) are the numbers of fringe spacings at \(\lambda_{1}\) and \(\lambda_{2}\), respectively.
The number of fringe spacings corresponding to a dimensional radius tolerance, provided the radius change is small, is given by
\[
\begin{equation*}
D L F=\frac{2 \Delta R}{\lambda}\left[1-\sqrt{1-\left(\frac{D}{2 R}\right)^{2}}\right] \tag{22.2}
\end{equation*}
\]

If the ratio \(D / R\) is small, Eq. 22.2 may be approximated by
\[
\begin{equation*}
D L F=\left[\frac{D}{2 R}\right]^{2} \frac{\Delta R}{\lambda} \tag{22.3}
\end{equation*}
\]

Note that in ISO 10110-5 notation, DLF corresponds directly to the A-value, e.g. \(3 / \mathrm{A}(\mathrm{B}, \mathrm{C})\) is synonymous to \(3 / \operatorname{DLF}(\mathrm{B}, \mathrm{C})\). More generally, \(3 / \mathrm{A}(\mathrm{B}, \mathrm{C})\) is equivalent in OpTaliX to \(3 /\) DLF (IRR, SYM).

\footnotetext{
\({ }^{1}\) Due to the double pass of test plate or interferometer tests, fringes give twice the surface error measured in waves.
}

\subsection*{22.1.4 Tolerance on Irregular Surface Deviation (IRR)}

Tolerance on cylindrical irregularity, in fringes at \(\lambda=546 \mathrm{~nm}\). The irregularity of a spherical surface is a measure of its departure from sphericity, that is a difference in the radii of curvature between the \(X / Z\) and \(Y / Z\) meridians. The irregularity is applied by increasing the value of the \(X / Z\) radius by \(\Delta R / 2\) and by decreasing the value of the \(\mathrm{Y} / \mathrm{Z}\) radius by \(\Delta R / 2\).
In ISO 10110 notation, IRR corresponds directly to the \(B\)-value, e.g. \(3 / A(B, C)\) is synonymous to \(3 / \mathrm{A}\) (IRR, C).
In statistical tolerance simulations (TOL STAT command, see also sect. 22.7), the orientation (azimuth) of the cylindrical deformation is assumed always along the local Y-coordinate axis.

\subsection*{22.1.5 Tolerance on Symmetrical Aspherical Surface Deviation (SYM)}

The SYM tolerance specifies the rotationally symmetrical (aspherical) surface irregularity according to the ISO 10110-5 norm. As such, the SYM tolerance is directly comparable to the C-value in ISO 10110-5. More generally, 3/A (B, C) is equivalent in OpTaliX to 3/ DLF (IRR, SYM).
In OpTaliX, SYM is modeled by a Zernike deformation using coefficient 9 (spherical and focus, \(3^{d}\) order) to generate a surface deformation of SYM fringes. Example: SYM 1.0 (fringes) corresponds to a PV surface deformation of 0.000273 mm at the reference wavelength 546 nm . A representation of this error form is given in Fig. 22.2.

Figure 22.2: Symmetrical (aspherical) surface deformation representing the ISO 10110 C-value.

\subsection*{22.1.6 Tolerance on axial Thickness (DLT)}

Axial thickness tolerances (DLT) change both, thicknesses of lens elements and of air spaces between lenses. The way DLT-tolerances affect the optical system depends on how subsequent surfaces are referenced. Fig. 22.3 shows the effects of DLT for two cases:
a) All surfaces are sequentially referenced, that is the position of a surface is defined with respect to its immediately preceding surface. A thickness tolerance of the first surface (DLT s1) will move the absolute position of all subsequent surfaces.
b) Surface 3 is globally referenced to surface 1 . A thickness tolerance of the first surface does not change the absolute position of subsequent surfaces (here surfaces 3 and 4) and surface 2 now moves into the air space between the first and second lens.

Thus, in order to apply tolerance changes to the absolute position of surface 3 , a DTR-tolerance must be assigned to this surface.
a) sequential referencing

b) global referencing

Figure 22.3: Axial thickness tolerance for different types of surface referencing.

\subsection*{22.1.7 Tolerance on global Thickness (DTR)}

A DTR-tolerance changes the axial position of a surface, which is referenced to a preceding surface. This must not be confused with a DLT-tolerance at the same surface. As for the nominal value THR, which defines the separation before the surface vertex to the referenced surface, the DTR-tolerance changes the nominal THR value.
Since a surface may be globally referenced to another surface, which itself is globally referenced (i.e. a chain of global references), complex housings and interdependencies can be simulated. Referring to Fig. 22.3b, we see that surfaces 1 and 3 are directly attached to the housing. Since tolerances on mechanical distances are generally different from tolerances on lens thicknesses, also DLT and DTR tolerances will be different.

\subsection*{22.1.8 Tolerance on Surface Tilt (DLA, DLB, DLG)}

Tolerances on surface tilts are expressed by DLA, DLB, DLG, representing the tilt around the \(x\)-axis, \(y\)-axis and z-axis, respectively. The tilt tolerances are defined in minutes of arc (arcmin). This unit has been chosen to directly relate to typical drawing specifications about tilt and lens wedge.

\subsection*{22.1.9 Tolerance on Homogeneity (HOM)}

Homogeneity of refractive index (HOM) is modelled in \(O p T a l i X\) by a radially symmetric gradient, which cannot be completely cancelled by a focus compensator. The radial GRIN model used is
\[
\begin{equation*}
n=n_{0}+c_{t} r^{2} \tag{22.4}
\end{equation*}
\]
where \(n_{0}\) is the base (vertex) index of the glass, \(r\) is the radial distance from the optical axis and \(q\) is calculated from the specified index tolerance \(\Delta n=n-n_{0}\). Note that \(\Delta n\) must be specified in \(10^{-6}\) units.

\subsection*{22.2 Tolerance/Performance Criteria}

Once reasonable tolerances are entered, tolerance criteria are established to allow a sensitivity tolerance analysis based on any quality measure available in \(O p T a l i X\). Tolerance criteria are measures of system performance, whose sensitivities to changes in the construction parameters we wish to study. Thus, a tolerance function may be any arbitrary performance measure such as rms-spot diameter, MTF, Strehl ratio or boresight, to name a few. Anything that can be computed as an performance measure and that can be addressed in the optimization can also be used as a criterium in tolerance analysis. An overview of available performance functions is found in section 19.7, page 357. This approach provides the capability to "tolerance on anything".
\begin{tabular}{|c|c|}
\hline TOLC fen_no fon_string & \begin{tabular}{l}
Tolerance criterium, i.e. the performance measure to be used in sensitivity analysis. Up to 5 tolerance criteria can be simultaneously defined for sensitivity analysis. fon_no is the number of the function (criterium), which must be between 1 and 5 . Tolerance criteria may also be edited in a dialog box, which is invoked by EDI TOL. \\
Since tolerance criteria usually contain blank characters, fen_string must be enclosed in apostrophes if entered in the command line. \\
Examples: \\
tolc 2 'spd f3' ! Defines rms spot diameter at field 3 as tolerance criterium. It is stored as \(2^{\text {nd }}\) function. \\
tolc 3 'mtfa f3' ! Defines average (mean) MTF at field 3 as tolerance criterium. Note, that MTF is always given in \%, ranging between 0 and 100 .
\end{tabular} \\
\hline TOCL fcn_no limit & \begin{tabular}{l}
Limit on tolerance criterium, to be used in inverse sensitivity analysis. fen_no is the number of the function (criterion), which must be between 1 and 5 . \\
Example: \\
tocl 35 ! In the second example of the TOLC command (tof 3 'mtfa f3') a degradation limit of \(5 \%\) is defined for mean MTF at field 3 . Note that MTF is always specified in \%.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{22.3 Tolerance Compensators}

Compensators are variable construction parameters that are changed after a tolerance has been applied. The most common compensator is the back focus to keeping the image plane always at best focus, but also any other parameter may be used to adjust for arbitrary performance measures. The introduction of compensators prior to calculating tolerances is an important means for reducing tolerance sensitivity of an optical system. There are two basic compensation methods:
a) Adjusting the back focus only,
b) defining a complete optimization set, which may have multiple compensating variables.

Tolerance compensators can be specified by the command
\begin{tabular}{|l|l|}
\hline TOCM NO \(|\mathrm{BF}| \mathrm{OPT}\) & \begin{tabular}{l}
Tolerance compensator method. \\
NO disables compensator, \\
BF uses back focal length as compensator (see section 22.3.1), \\
OPT uses settings in optimization as compensator (see section 22.3.2).
\end{tabular} \\
\hline
\end{tabular}

\subsection*{22.3.1 Back Focus Compensator}

Adjustment of the back focus is performed by the autofocus module. By default, minimum rmsspot size at all fields and wavelengths is used for finding the optimal focus. If focus adjustment for selectable fields, wavelengths or other performance criteria is desired, optimization shall be used as compensating module (see below).

\subsection*{22.3.2 Compensation using Optimization}

Arbitrary construction parameter and target (performance) criteria may be selected when tolerance compensation is performed via the optimization module. This requires proper setting of variables and performance criteria. The optimization settings may be identical to the settings used for optimization of the system. Compensators are designated by optimization variables (i.e. thicknesses, radii of curvature, etc). However, it is preferable to setup special optimization settings, since generally only a few parameters (for example air spaces) will be used for tolerance compensation.
Before using the tolerancing routines, make sure that the current optimization variables correspond to those system parameters that you wish to use as compensators. See section 19, page 345 for defining optimization variables and performance functions (criteria).
Using optimization is much more powerful than simply adjusting the back focus, as any construction parameter, which can be edited, can be used as a compensator. There is also no limit in the number of compensator variables. Typical compensator variables used in tolerancing are air spaces and lens/group tilts or decentrations.
The functions (performance criteria) defined and used in the optimization module are completely independent from the tolerance criteria (section 22.2). Thus, it is possible to compensate (optimize) on wavefront and analyse tolerance sensitivity on MTF.

\subsection*{22.4 Sensitivity Analysis}

This analysis provides information about the direct sensitivity of an optical system to fabrication and mounting errors. Each parameter is changed by its tolerance, and the changes in the requested performance measures are computed.
\begin{tabular}{|l|l|}
\hline TOL SEN & \begin{tabular}{l}
Performs a sensitivity analysis based on surface tolerance items and \\
tolerance criteria, both defined under EDI TOL
\end{tabular} \\
\hline
\end{tabular}

The variation of most performance measures is, in general, approximately quadratic with respect to changes of lens (construction) parameters. To model this variation, sensitivity is calculated for plus and minus tolerances and a quadratic function \(F\) as given in Eq. 22.5 is then calculated.
\[
\begin{equation*}
F=A \cdot T^{2}+B \cdot T+C \tag{22.5}
\end{equation*}
\]

For each individual pair of tolerance and performance criterion a quadratic equation is calculated. For example, 5 types of tolerances at 10 surfaces and three tolerance/performance criteria will already create \(5 \times 10 \times 3=150\) quadratic functions.
Once surface tolerance items (section 22.1) and tolerance criteria (section 22.2) are established, a sensitivity analysis can be run. As an example, we use the Cooke triplet from the examples library \optix \(\backslash\) examples \(\backslash \mathrm{misc} \backslash\) cooke .otx. For the sake of simplicity, we only define tolerances on test-plate-fit, irregularity, axial thickness and x-decenter at the first three surfaces. The axial shift of the focal surface (back focus) is used as compensator. It is worthwhile to remember that back focus adjustment uses the autofocus module, which - by default - optimizes for minimum spot size over the entire field. This may or may not be appropriate for a specific application. Other compensators may be defined in the optimization settings (see sections22.3.2 and 19). We will also define three tolerance criteria, the on-axis MTF and the tangential and sagittal MTF separately at field number 2, which is at \(70 \%\) of the maximum field. These are the system performance measures, whose sensitivities to changes in the construction parameters we wish to study.
```

TOLERANCE DATA :
DLF s1 3.0000
IRR s1 2.0000
DLT s1 0.10000
DLX s1 0.50000E-01
DLF s2 3.0000
IRR s2 2.0000
DLT s2 0.10000
DLX s2 0.50000E-01
DLF s3 3.0000
IRR s3 2.0000
DLT s3 0.10000
DLX s3 0.50000E-01
Compensator: back focus.
Tolerance Criteria:
MTFA f1 ! mean MTF (S+T)/2
MTFT f2 ! tangential MTF
MTFS f2 ! sagittal MTF

```

The sensitivity analysis is started with the command "SEN" or by selecting Manufacturing -> Tolerances \(\rightarrow>\) Sensitivity analysis from the main menu.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Compensator: back focus (BFL)} \\
\hline & & & & MTFA f1 & MTFT f 2 & MTFS f 2 & BFL-Change \\
\hline \multicolumn{3}{|l|}{Nominal value(s)} & & 91.62532 & 47.32400 & 35.41631 & \\
\hline \multicolumn{8}{|l|}{Sur Tol. (fringes)} \\
\hline \multirow[t]{2}{*}{1} & DLF & \multirow[t]{2}{*}{3.0000} & & 0.19083 & -1.31205 & 1.72375 & 0.00244 \\
\hline & & & (-) & 0.38478 & -0.43768 & 1.98080 & 0.01047 \\
\hline \multirow[t]{2}{*}{2} & DLF & \multirow[t]{2}{*}{3.0000} & (+) & 0.37379 & 0.42367 & 1.40129 & 0.01046 \\
\hline & & & (-) & 0.13386 & -1.94613 & 1.81060 & 0.00080 \\
\hline \multirow[t]{3}{*}{3} & DLF & \multirow[t]{2}{*}{3.0000} & & -0.05128 & -1.11433 & 0.85838 & -0.01033 \\
\hline & & & (-) & 0.51189 & -0.77738 & 2.93915 & 0.02351 \\
\hline & & RSS & & 0.77896 & 2.77957 & 4.63812 & \\
\hline Sur & Tol. & \multicolumn{2}{|l|}{(fringes)} & & & & \\
\hline \multirow[t]{2}{*}{1} & IRR & \multirow[t]{2}{*}{2.0000} & & -0.14500 & -3.56583 & -3.22650 & 0.02389 \\
\hline & & & (-) & -0.12578 & 1.52675 & 7.49339 & -0.00928 \\
\hline \multirow[t]{2}{*}{2} & IRR & \multirow[t]{2}{*}{2.0000} & & -0.14084 & 1.75238 & 7.72477 & -0.00927 \\
\hline & & & (-) & -0.19613 & -3.71870 & -3.59981 & 0.02318 \\
\hline \multirow[t]{2}{*}{3} & IRR & \multirow[t]{2}{*}{2.0000} & & -1.64383 & -6.54326 & -7.60950 & 0.04369 \\
\hline & & & (-) & -1.76839 & 4.15559 & 12.38967 & -0.02792 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{RSS} & 2.43403 & 9.59317 & \multicolumn{2}{|l|}{18.72432} \\
\hline Sur & Tol. & \multicolumn{6}{|l|}{(mm)} \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{DLT} & \multirow[t]{2}{*}{0.1000} & (+) & 0.33377 & -1.69334 & 2.79460 & 0.01194 \\
\hline & & & (-) & 0.24226 & -0.07476 & 0.85278 & 0.00087 \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{DLT} & \multirow[t]{2}{*}{0.1000} & (+) & 0.48737 & 4.42504 & 2.10420 & 0.03149 \\
\hline & & & (-) & -0.58395 & -5.42251 & 0.79647 & -0.02039 \\
\hline \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{DLT} & \multirow[t]{2}{*}{0.1000} & (+) & -0.56635 & -7.47778 & 2.78950 & -0.01111 \\
\hline & & & (-) & 0.52615 & 6.20604 & -0.76605 & 0.01977 \\
\hline & & RSS & & 1.16026 & 12.09503 & 4.68692 & \\
\hline Sur & \multicolumn{7}{|l|}{Tol. (mm)} \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{DLX} & \multirow[t]{2}{*}{0.0500} & (+) & 0.03605 & -1.48804 & 1.98951 & 0.00730 \\
\hline & & & (-) & 0.03597 & -1.48800 & 1.98886 & 0.00729 \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{DLX} & \multirow[t]{2}{*}{0.0500} & (+) & 0.29881 & -0.98564 & 1.93998 & 0.00706 \\
\hline & & & (-) & 0.29878 & -0.98563 & 1.93977 & 0.00706 \\
\hline \multirow[t]{4}{*}{3} & \multirow[t]{3}{*}{DLX} & \multirow[t]{2}{*}{0.0500} & (+) & -3.09337 & -2.01578 & -1.17260 & 0.01254 \\
\hline & & & (-) & -3.09320 & -2.01357 & -1.17472 & 0.01255 \\
\hline & & RSS & & 4.39522 & 3.80646 & 4.26555 & \\
\hline & & al RSS & & 5.21493 & 16.14106 & 20.30455 & \\
\hline
\end{tabular}

At the top of the sensitivity table (sometimes called change table) are the nominal values of the tolerance criteria, that is the performances of the undisturbed system. The output is grouped in the different types of tolerances (e.g. test-plate-fit, irregularity, etc) and within each group tabulated according surface numbers. Each column lists the changes in MTF for each tolerance item.

The changes in the back focus compensation are listed in the rightmost column under the label "BFL-Change". If more than one tolerance criterion is defined, the maximum value of back focus compensation is printed. The RSS values given for each column and each tolerance group is a "statistical sum" of the performance perturbations \(\Delta F\) and is defined as
\[
\begin{equation*}
R S S=\sqrt{\Delta F^{2}} \tag{22.6}
\end{equation*}
\]

Tolerance sensitivities are usually given for plus and minus tolerances respectively. This is indicated by \((+)\) and \((-)\) in the sensitivity table.

\subsection*{22.5 Tolerance Sensitivity in Optimization}

Typically, an optical designer needs to find the optimal compromise between optical performance, costs, volume constraints and manufacturing aspects. In particular, the latter requirement asks for an optical system that is insensitive to manufacturing tolerances to a maximum extent.

That is, optimizing for maximum (optical) performance alone will most likely not yield a design that fulfills all requirements mentioned above. Furthermore, considering the sequence of a typical design process, we have concept design, optimization, tolerancing and then, if needed, several re-iterations to achieving a design that can be economically manufactured.

This is a tedious process. OpTaliX helps you in that it allows integration of tolerancing issues already during the optimization process. This means that you can specify certain surfaces (or all surfaces) whose sensitivity to alignment errors or manufacturing errors in general are to be minimized. Thus, in other words, OpTaliX can simultaneously optimizes for both optimum image performance and minimum tolerance sensitivity.
See the commands TSF, TST, TSI, TSN, TSV, TSX, TSY, TSZ, TSA, TSB, TSG for defining tolerance sensitivity functions in optimization (sect. 19.11 and pages 361 to 362).

Tolerance sensitivity is calculated on the basis of wavefront aberration (WAV) for a given tolerance item. A basic introduction to the method used in OpTaliX is given by Grey [16], and practical examples are given by Isshiki et.al, [23].

\subsection*{22.6 Inverse Tolerancing}

Inverse tolerance analysis starts from a predefined change in system performance and determines the tolerance limit for each construction parameter. This analysis is based on the functional relationship between tolerances and performance measures, which is obtained during sensitivity analysis from the quadratic functions in Eq. 22.5. Then, using this data, the allowed tolerances for specified changes in performance (the tolerance criteria) are computed.
\begin{tabular}{|l|l|}
\hline TOL INV & \begin{tabular}{l}
Performs an inverse tolerance based on tolerance criteria (TOLC) and \\
limits on tolerance criteria (TOCL), both defined under EDI TOL
\end{tabular} \\
\hline
\end{tabular}

\subsection*{22.7 Monte Carlo Analysis}

The Monte Carlo tolerancing is a statistical approach to simulate production yields on the basis of predetermined surface/component tolerances. It allows prediction of freely definable performance metrics on the basis of statistical (random) perturbations of construction parameters within limits defined by the individual surface/element tolerances.
A successful statistical tolerance (yield) analysis is performed in several steps:
- Define the surface/component tolerances, e.g. in the tolerance editor (22.1.1), tab "Tolerances".
- Define the performance parameters you want to analyze, e.g. in the tolerance editor (22.2), tab "Tolerance Functions".
- Define the statistical distributions of tolerances and the statistical population (number of individual objectives), e.g. in the tolerance editor (22.7.1), tab "Statistics".
- Run the statistical analysis, e. g. by the command TOL STAT or from the tolerance dialog, tab "Analyses".

A central dialog allows defining and editing of all tolerance parameters and function. It is invoked by the command EDI TOL, or from the main menu "Edit" - \(¿\) "Tolerance Editor".

\subsection*{22.7.1 Statistical Parameters and Distributions}

The parameter variation within a given tolerance can be differently distributed. Currently, three distribution forms are possible:
- Even distribution
- Gaussian distribution
- Beta distribution

Figure 22.4: Even distribution with pseudo-random numbers. Left: linear plot, right: cumulative plot.

\subsection*{22.7.1.1 Even Distribution}

This distribution form assumes that all parameter perturbations are evenly distributed within a given maximum tolerance. A graphical illustration is given in Fig. 22.4 below.

\subsection*{22.7.1.2 Gaussian Distribution}

The Gaussian distribution is the most common form in statistical tolerancing. The statistical perturbations are based on normally (Gaussian) distributed pseudo-random numbers with zero mean. In OpTaliX tolerancing, the Gaussian distribution accepts one parameter \(\sigma\) which denotes the standard deviation. For \(1 \sigma\) about \(68 \%\) of all perturbations lie within the tolerance band defined, \(2 \sigma\) will include \(95.4 \%\), and \(3 \sigma\) include \(99.7 \%\) of all tolerance perturbations.

Figure 22.5: Gaussian distribution with \(2 \sigma\) variance on a \(\pm 0.1 \mathrm{~mm}\) tolerance. Left: linear plot, right: cumulative plot.

\subsection*{22.7.1.3 Beta Distribution}

The Beta distribution is a special continuous probability distribution that allows simulation of special non-symmetrical distributions. It is currently implemented with fixed parameters \((\alpha=2, \beta=5)\) that result in the distribution form given in Fig. 22.6.
This distribution is well suited to modeling fabrication specific effects. For example, polishing/grinding of lenses is typically stopped when the thickness of a specific lens is within a defined
tolerance. Because this process always starts from a thicker blank and removal of material reduces the axial thickness, there is a tendency that axial thicknesses of lenses towards the upper tolerance interval, hence, the non-symmetrical thickness distribution.

Figure 22.6: Beta distribution. Left: linear plot, right: cumulative plot.

\section*{Manufacturing Support}

\subsection*{23.1 Footprint Analysis}

The footprint option plots the boundaries of the light beams going through the optical system on a specified surface. This is done by calculating the intersection of the beam with the surfaces of interest. In case of curved surfaces, the beam intersections are plotted parallel to the local Z-axis onto the vertex tangent plane. All wavelength, activated fields and zoom positions are represented and the resulting plot is a composite of the used area of the surface. Vignetting is always taken into account. Note that rays are only vignetted if a fixed aperture (seeFHY command, page 169) has been assigned to the designated surfaces. Internal obscurations are not taken into account in footprint analysis. They are, however, considered in the ray intersection analysis (page 14.1.8), which is equivalent to footprint analysis, where a ray grid is traced to the designated surface.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
FOO [sk | fi..j | \\
plot_extent|NUM|?]
\end{tabular} & \begin{tabular}{l}
Plot the footprint on surface sk for fields fi..j. For 'zoomed' (multi-configuration) systems, the currently selected zoom position is used (see POS command). The parameter plot_extent is optional and defines the maximum displayed area. Absence of plot_extent or a zero value invokes automatic determination of the plot area on \(s k\), respectively uses the previously entered value of plot_extent. The optional parameter NUM outputs additional data, such as enclosed area, center of gravity and maximum extensions of the beam footprints (see page 23.1). \\
Examples: \\
FOO \\
plots the footprint for all fields. Surface 1 is the default. \\
FOO ? \\
invokes a dialog box to select surface, field and plot extents. \\
FOO s4 f4.. 6 \\
plot footprint on surface 4 , fields 4 to 6 . \\
FOO s4 25.0 footprint with manual definition of plot_extent, all fields.
\end{tabular} \\
\hline
\end{tabular}

Like many options in OpTaliX, for footprint analysis the chief rays must be traceable, even if it is obscured. Boundary calculations are performed by a search algorithm moving from the chief ray outward in radial direction until the stop aperture or a fixed aperture on any other surface in the system is found. The algorithm is not designed to handle obscuring sub-apertures like spiders, which divide
the pupil into three (or four) parts.
See also the ray intersection option (page 14.1.8), which plots the used area on surfaces based on a full grid of rays traced to the selected surface for each field bundle and zoom position.

In the following example (Fig. 23.1), a fold mirror has been added behind a Double Gauss lens. The footprint on the fold mirror shown for nine field points indicates how large it must be to avoid additional vignetting of the beams within the field of interest.

Figure 23.1: Beam footprints on fold mirror behind a Double Gauss lens.

\section*{NUM Option in Footprints:}

The NUM option in footprint analysis outputs additional data, such as enclosed area, center of gravity and maximum extensions of each beam footprint, separated for field and zoom position. Note that this analysis does NOT include aperture obscurations on the designated surface. See the sample output below:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Pos. & Field & X-Center & Y-Center & Area (mm^2) & X -min & X-max & Y-min & Y-max \\
\hline 1 & 1 & 0.0000 & 0.0000 & 313.57982 & -9.994 & 9.994 & -9.994 & 9.994 \\
\hline 1 & 2 & 0.0000 & -4.1785 & 306.45888 & -9.996 & 9.996 & -13.943 & 5.578 \\
\hline 1 & 3 & 0.0000 & -9.3060 & 251.48431 & -10.006 & 10.006 & -16.999 & -2.024 \\
\hline & & & & & -10.006 & 10.006 & -16.999 & 9.994 \\
\hline
\end{tabular}

\subsection*{23.2 Aspheric Deformation}

The aspheric deformation option calculates the deviation of an aspherical (non-spherical) surface with respect to a perfect sphere. The radius of the perfect sphere is taken as a reference and can be selected according to different criteria.

Aspheric deformation is expressed as difference of the sag of the asphere to the sag of the perfect sphere (i.e. the reference sphere).
\begin{tabular}{|c|c|}
\hline ASD sk [ref] [ref_rad] [?] & \begin{tabular}{l}
Aspheric deformation in radial direction. Plots and prints the sag of the asphere compared to a reference sphere which may be contacting at one or two zones on the air side of the surface. \\
sk surface number \\
ref reference describing the type of reference radius, where ref can be one of: \\
VER : vertex radius \\
CEN : center and rim zero \\
RIM : only rim zero \\
BFR : best-fit radius. \\
ref_rad spherical reference radius \\
Example: \\
ASD s3 CEN : Plots aspheric deviation with reference radius calculated for zero deviation at center and rim of surface.
\end{tabular} \\
\hline ASD2 [sk|?] [ref_rad] & Aspheric deformation shown over full surface area. The deformation is based on the reference radius ref_rad. If ref_rad is omitted or is 0 , the vertex radius of the designated surface is used. \\
\hline
\end{tabular}

\subsection*{23.2.1 Aspherization in radial Direction}

Enter "ASD ?" in the command line or select from the main menu Manufacturing \(->\) Aspheric Deformation \(->\) in radial direction. Four options are selectable in a dialog box to determine the reference radius
1. the vertex radius is taken as the reference radius
2. the reference sphere contacts center and rim of the surface
3. only the rim of the surface is contacted by the reference sphere,
4. a "best fit" approach is attempted (the reference sphere touches the aspheric surface at 0.7 of the aperture radius.

Each of the options has its distinct advantages. The following treatment shall be a concise guide in selecting the optimum reference radius (see figure 23.2).

\section*{Option 1:}

Vertex Radius: This option is probably the first and simplest choice as it directly reflects the mathematical definition of the asphere. However, for fabrication purposes, it is not reasonable as the amount of material to be removed is extremely large. In addition, it may lead to infeasible solutions for steep (conic) aspheres, as already shown in the drawing above.

\section*{Option 2:}

Center + Rim Zero: The spherical reference radius is constructed such that the reference sphere has contact (touches) the asphere at two zones: The center (of revolution) and the rim (at the max. aperture). Thus, only in the intermediate zones, material must be removed.

\section*{Option 3:}

Only Rim Zero: Here, the reference sphere touches th asphere at only one zone, the rim. Compared to option 2 (center and rim zero), much more material must be removed during grinding and polishing. The main advantage is, however, that the edge does not require further shaping during the subaperture grinding phase which generally avoids the "turned down edge" problem.

\section*{Option 4:}

Best Fit: This option is equivalent to option 3 (only rim zero) but differs in that the zone at which the reference sphere touches the asphere is at 0.7 of the maximum aperture radius. Much less material must be removed (compared to option 3) but the danger of turned down edges during polishing exist.

Figure 23.2: Construction of reference radius to an aspheric surface.

In addition to the aspheric deviation plot, numerical values are also printed at 21 positions along the Y-height of a surface. A typical output lists the surface parameters (curvature, conic constant, aspheric coefficients) and subsequently the Z-coordinates at various radial heights in Y-direction.
[h]
ASPHERIZATION DATA:
\begin{tabular}{llr}
File : F15_33.OTX & \\
Surface : 15 \\
Vertex Curvature & \(:\) & \(-0.17277313 \mathrm{E}-01\) \\
Vertex Radius & \(:\) & \(-57.87937061 \mathrm{E}+00\) \\
Conic Constant & \(:\) & \(0.00000000 \mathrm{E}+00\) \\
A & \(:\) & \(10.77564552 \mathrm{E}-06\) \\
B & \(:\) & \(23.69965431 \mathrm{E}-09\) \\
C & \(:\) & \(-53.48477648 \mathrm{E}-12\) \\
D & \(:\) & \(441.68107450 \mathrm{E}-15\) \\
E & \(:\) & \(0.00000000 \mathrm{E}+00\) \\
F & \(:\) & \(0.00000000 \mathrm{E}+00\) \\
G & \(:\) & \(0.00000000 \mathrm{E}+00\) \\
H & \(:\) & \(0.00000000 \mathrm{E}+00\)
\end{tabular}

Aspherization is determined for zero deviation at center and rim. Radius \(=-91.49306\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Radial height \\
(mm)
\end{tabular} & \[
\begin{array}{r}
\mathrm{z} \text {-Sphere } \\
(\mathrm{mm})
\end{array}
\] & \[
\begin{array}{r}
\text { Z-Asphere } \\
(\mathrm{mm})
\end{array}
\] & Difference (mm) & Slope (micron/mm) & CXN & Surface \(\begin{aligned} & \text { Normal } \\ & \text { CYN }\end{aligned}\) & CZN \\
\hline 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.00 & 0.000000 & 0.000000 & 1.000000 \\
\hline 0.70000 & -0.002678 & -0.004231 & -0.001553 & -2.22 & 0.000000 & 0.012079 & 0.999927 \\
\hline 1.40000 & -0.010712 & -0.016893 & -0.006181 & -6.61 & 0.000000 & 0.024069 & 0.999710 \\
\hline 2.10000 & -0.024103 & -0.037897 & -0.013794 & -10.88 & 0.000000 & 0.035878 & 0.999356 \\
\hline 2.80000 & -0.042855 & -0.067093 & -0.024238 & -14.92 & 0.000000 & 0.047410 & 0.998876 \\
\hline 3.50000 & -0.066969 & -0.104261 & -0.037291 & -18.65 & 0.000000 & 0.058560 & 0.998284 \\
\hline 4.20000 & -0.096452 & -0.149108 & -0.052657 & -21.95 & 0.000000 & 0.069219 & 0.997601 \\
\hline 4.90000 & -0.131306 & -0.201261 & -0.069955 & -24.71 & 0.000000 & 0.079263 & 0.996854 \\
\hline 5.60000 & -0.171540 & -0.260255 & -0.088715 & -26.80 & 0.000000 & 0.088557 & 0.996071 \\
\hline 6.30000 & -0.217159 & -0.325522 & -0.108363 & -28.07 & 0.000000 & 0.096949 & 0.995289 \\
\hline 7.00000 & -0.268173 & -0.396376 & -0.128204 & -28.34 & 0.000000 & 0.104264 & 0.994550 \\
\hline 7.70000 & -0.324589 & -0.471991 & -0.147401 & -27.43 & 0.000000 & 0.110291 & 0.993899 \\
\hline 8.40000 & -0.386419 & -0.551366 & -0.164947 & -25.07 & 0.000000 & 0.114768 & 0.993392 \\
\hline 9.10000 & -0.453673 & -0.633286 & -0.179614 & -20.95 & 0.000000 & 0.117354 & 0.993090 \\
\hline 9.80000 & -0.526363 & -0.716246 & -0.189883 & -14.67 & 0.000000 & 0.117587 & 0.993063 \\
\hline 10.50000 & -0.604502 & -0.798349 & -0.193847 & -5.66 & 0.000000 & 0.114832 & 0.993385 \\
\hline 11.20000 & -0.688104 & -0.877160 & -0.189056 & 6.84 & 0.000000 & 0.108190 & 0.994130 \\
\hline 11.90000 & -0.777185 & -0.949495 & -0.172310 & 23.92 & 0.000000 & 0.096392 & 0.995343 \\
\hline 12.60000 & -0.871760 & -1.011118 & -0.139358 & 47.07 & 0.000000 & 0.077646 & 0.996981 \\
\hline 13.30000 & -0.971847 & -1.056340 & -0.084493 & 78.38 & 0.000000 & 0.049448 & 0.998777 \\
\hline 14.00000 & -1.077464 & -1.077464 & 0.000000 & 120.70 & 0.000000 & 0.008382 & 0.999965 \\
\hline
\end{tabular}

The meaning of the columns is:
\begin{tabular}{ll}
Z-Sphere & \begin{tabular}{l}
Z-coordinate of the base sphere, respectively the reference sphere if fit- \\
ting to the deviation at the rim or to the best-fit sphere (options 2-4, see \\
above) is requested.
\end{tabular} \\
Z-Asphere & \begin{tabular}{l}
Z-coordinate of the aspheric surface
\end{tabular} \\
Difference & \begin{tabular}{l}
The deviation of the aspheric surface from a sphere (either base sphere \\
or best-fit sphere) \\
The derivative of the aspheric deformation with respect to the base or \\
reference sphere, as shown in Fig. 23.3.
\end{tabular} \\
Slope & \begin{tabular}{l}
Direction cosines of the surface normal.
\end{tabular} \\
CXN, CYN, \\
CZN
\end{tabular}

Figure 23.3: Slope of aspheric deformation based on the reference sphere.

\subsection*{23.2.2 Aspherization as 2D Surface Deformation}

Enter "ASD2 ?" in the command line or select from the main menu Manufacturing \(->\) Aspheric Deformation \(->\) as \(2 D\)-surface deviation which invokes a dialog as shown in Fig.23.4.

Figure 23.4: Dialog box for creating 2D surface deformation plots.

The program searches for the first aspheric surface in the optical system and displays the corresponding surface parameter in the dialog. The reference radius is always the vertex radius, however, it may be changed to any other arbitrary value.

2D aspheric deformation data may also be exported as X-Y-Z coordinates to a file in ASCII or Excel format. Note that this option is currently only available from the dialog.

\subsection*{23.3 Hologram Phase}

This section displays the phase on diffractive surfaces, and indicates the required surface profile on a substrate according to the hologram coefficients.
\begin{tabular}{|l|l|}
\hline HPH [?] & \begin{tabular}{l}
Plots phase on diffractive/holographic surfaces. \\
Also plots the sag of the surface profile based on the \\
corresponding hologram coefficients.
\end{tabular} \\
\hline HPHN sj xabs yabs & \begin{tabular}{l}
Returns the phase (in waves) on a diffrac- \\
tive/holographic surface sj. The parameter xabs, \\
yabs are the local absolute coordinates (in mm) on \\
this surface.
\end{tabular} \\
\hline HZO [?] & \begin{tabular}{l}
Calculates the radial zones of radially symmetric \\
diffractive (HOE) phase profiles based on 2 \(=1 \lambda\) \\
intervals. Output is only generated on "H" and "'" " \\
surface types. Otherwise, an error message is dis- \\
played. See also sect. 23.3.2
\end{tabular} \\
\hline
\end{tabular}

\subsection*{23.3.1 Converting Symmetric Hologram Coefficients to other Programs}

\subsection*{23.3.1.1 To Code V}

On hologram surfaces with symmetric phase functions, the \(O p T a l i X\) hologram coefficients are converted to Code V by the following relation:
\[
\begin{equation*}
c_{C o d e V}=\frac{c_{O p T a l i X} \cdot \lambda_{0}}{1000} \tag{23.1}
\end{equation*}
\]

Note that the factor in the denominator describes the conversion from micrometers (OpTaliX default) to nanometers (Code V default).

\subsection*{23.3.1.2 To Zemax}

The BINARY_2 surface type in Zemax is a direct equivalent of symmetrical hologram surface in OpTaliX . The symmetrical hologram coefficients from the Zemax BINARY_2 surface to OpTaliX are converted by:
\[
\begin{equation*}
c_{O p T a l i X}=\frac{c_{b i n a r y 2}}{2 \pi \cdot R_{N}^{i}} \tag{23.2}
\end{equation*}
\]
where \(R_{N}\) is the normalization radius in Zemax and \(i\) is the \(t^{t h}\) power of the coefficient. Note that the import may fail, because Zemax supports coefficients up to the \(i=480^{t h}\) power whereas OpTaliX is limited to coefficients of \(27^{\text {th }}\) power.
Other hologram (binary) surface types available in Zemax are not supported yet.

\subsection*{23.3.2 Hologram Zone Calculation}

This section describes calculation of zones on diffractive structures (in absolute and \(2 \pi\) terms) with symmetrical phase profiles. The absolute phase is usually represented by a surface profile similar to Fresnel zones, where the steps are arranged at modulo \((2 \pi)\) phase intervals. Each interval corresponds to \(1 \lambda\) phase difference at the reference (design) wavelength. A typical cross-sectional representation of the phase profile is given in Fig. 23.5.
The sagitta of the radial groove profile (i.e. modulo \((2 \pi)\) of the diffractive phase function), also commonly described as blaze depth \(d\), is then calculated by [62],
\[
\begin{equation*}
d=\frac{\lambda_{0}}{n_{0}-1} \tag{23.3}
\end{equation*}
\]
where \(\lambda_{0}\) is the reference wavelength, and \(n_{0}\) is the refractive index at the reference wavelength.
The radial coordinates of rotationally symmetric diffraction zones are calculated by theHZO command. Phase \(2 \pi\) steps are located at 1 nm intervals which should be sufficiently accurate for all manufacturing aspects.

\subsection*{23.4 Edge Thickness}
\begin{tabular}{|l|l|l|}
\hline ET si..j X_height Y_height & \begin{tabular}{l}
Edge thickness of surface(s) si..j at surface co- \\
ordinates X_height, Y_height. If X_height, \\
Y_height are omitted, the clear aperture Y-height will \\
be used. For tilted/decentered surfaces see the conven- \\
tion in sect.23.4.1 below.
\end{tabular} \\
\hline
\end{tabular}

Figure 23.5: Modulo \(2 \pi\) zones on diffractive surface with radially symmetric phase function

\subsection*{23.4.1 Calculating edge thickness at tilted/decentered surfaces}

If any surface within of the specified range si. j is tilted or decentered, edge thickness (ET) is calculated with reference to the local coordinate system of the first surface in the range given, i.e. ET is measured along the local Z -axis of the first surface.

Figure 23.6: Edge thickness at tilted surfaces.

\subsection*{23.5 Test Plate Fitting}

Performs automatic fitting of surface radii to a test plate list of a specific manufacturer. All test plate information is provided by the respective vendors.
\begin{tabular}{|l|l}
\hline TPL [si..j \| manuf] & \begin{tabular}{l}
Find the nearest radius of curvature from a manufacturers test \\
plate list and replace it against the existing radius. The expres- \\
sion manuf describes the manufacturer. The first three charac- \\
ters are significant. See table 23.1 below for a complete list of \\
available test plate lists. If manuf is absent, a dialog box will \\
be opened. \\
Example: \\
tpl s4. . ROD selects test plates from Rodenstock and re- \\
places the actual radii of surfaces 4 to 7.
\end{tabular} \\
\hline LIS TPL [manuf] & \begin{tabular}{l}
Reports test plate list of manuf. The first three characters of \\
the manufacturer string are significant to identify the list. If \\
manuf is omitted, a dialog box will be invoked for selection of \\
the appropriate manufacturer. \\
Examples: \\
lis tpl mel \\
lis tpl melles griot
\end{tabular} \\
\hline
\end{tabular}

\subsection*{23.6 Adding a Test Plate List}

Test plate lists (TPL) are stored in readable unformatted ASCII files, ending in the extension TPL. New lists may be added easily if the specific TPL file structure is preserved. A detailed description of the test plate file structure is given in section32.6.

The file "tplinfo.txt" in the ./testplat directory contains a summary of all available testplate files and a short description. New (user defined) testplate files must have an entry to this file. For each testplate list, two kinds of information must be entered (unformatted) in a single line, separated by at least one blank character:
The testplate filename (including extension) and a descriptive text to the testplate list, which also appears in the dialog combo box. If the descriptive text itself contains blanks, the text must be enclosed in quotation marks.
Example of tplinfo.txt file:
```

din.tpl "DIN (Deutsche Industrie Norm)"
kreischer.tpl Kreischer
s\&h.tpl Spindler\&Hoyer
kodak.tpl Kodak
liebmann.tpl Liebmann
lightnin.tpl Lightning
ofr.tpl OFR
optolyth.tpl Optolyth

```

\subsection*{23.7 ISO Element Drawing}

Element drawings in accordance to the ISO 10110 standard can be generated from the lens prescription data. Such drawings are useful when a lens design is prepared for fabrication. The tolerances used in element drawings are taken from the previously entered or calculated tolerances.
Element drawings are created by the command
\begin{tabular}{|l|l|l|l|}
\hline ELE [sk \(\mid ~ ? ~] ~\) & \begin{tabular}{l}
Element drawing according to ISO 10110, starting from surface sk. \\
Drawing items are taken from prescription data and (where available) \\
from tolerance data. The optional question mark invokes a dialog \\
box (see Fig. 23.7) for editing drawing items. The drawing can be \\
immediately printed/plotted using the redirection symbol, for example \\
ELE s3 > plt.
\end{tabular} \\
\hline
\end{tabular}

One drawing is generated for each element. Multiple elements must be printed separately. Single lenses or cemented doublets can be drawn. Only centered (axially symmetric) elements are drawn correctly. Tilts or decenter in an element are not reproduced.

Figure 23.7: ISO element drawing dialog box for editing element drawing indications (left) and corresponding sample output (right). The dialog box is invoked from the command line by the command ELE ?

The dialog box as shown in Fig. 23.7 is the central focus for editing and controlling the appearance of the element drawings. Changes take effect immediately and can be viewed interactively in the associated preview window, which remains open as long as the ISO element drawing dialog box is opened.
Data entry in the dialog box is grouped in six tabbed sections. The first three tabs belong to the first surface, the material and the last surface of a lens. Title information can be entered independently for each lens in the sixth tab. The fourth and fifth tab are reserved for cemented doublets and are activated only when doublet drawing is required (selected from the menu in the upper right corner of the dialog).
Tolerances in the ISO element drawing dialog are automatically taken from the current tolerance data if specified in the tolerance spreadsheet editor (see chapter 22), however, they can always be overwritten by manually entered tolerances.
Element drawing data is retained in the lens file if the appropriate check box "Save element drawing data with the prescription data" in the dialog as shown in Fig. 23.7 is checked. Otherwise, element drawing data are lost on program exit or when a new optical system is restored (loaded).
The following description gives a concise overview about the meaning of all data entry fields in the

ISO element drawing dialog box. It does not replace a detailed study of the ISO 10110, Parts 1-11, specifications.

Radius: The radius of curvature is taken from the prescription data and cannot be changed in the element drawing dialog. In order to produce manufacturing ready drawings, it is assumed that the radii have been fitted to test plates (see section 23.5). Concave surfaces are denoted by "CC" and convex surfaces are denoted by "CX".

Clear Diameter: Initially the clear diameter is taken from the prescription data and constitutes the effective optical diameter which is required by all defined ray bundles. Note that the clear diameter can be automatically determined by the command SET MHT (set maximum heights). The clear diameter can always be overwritten by the user.

Mech. Diameter: The outside diameter of the element can be specified with a \(\pm\) tolerance. The diameter must be greater or equal to the clear diameter.

Chamfer: Minimum and maximum permissible widths of the protective chamfers. Pertains to all edges and corners that are not explicitly specified.

Coating: Coatings may be specified in a text field. No predefined form is given as coating specifications typically require separate specification documents. Usually, the coating indication contains a reference to the specification document.

Surface Form: Definition and specification of the surface form is given in detail in ISO 10110, Part 5. Surface form deviation is "the distance between the optical surface under test and the nominal theoretical surface, measured perpendicular to the theoretical surface, which shall be nominally parallel to the surface under test."
Surface form deviation is indicated in fringe spacing (one-half the wavelength of light at 546 nm) in one of the three forms:

3/A(B/C)
3/A(B/C) RMSx ; \(\mathbf{D}\), where \(x\) is either \(t\), \(i\) or a.
3/ - RMSx ; D
where
\(\mathbf{A}\) is the maximum permissible sagitta error in fringes,
\(\mathbf{B}\) is the maximum permissible value of irregularity expressed in fringe spacings,
\(\mathbf{C}\) is the maximum permissible rotationally symmetric irregularity expressed in fringe spacings,
\(\mathbf{D}\) is the maximum permissible value for rms residual deviation. Only RMSi values can be specified in the dialog box.

Centering: Indicates the maximum permissible tilt angle in minutes of arc.
Imperfections: Specifies surface imperfections (scratches, pits and coating blemishes) in the form
```

5/NxA; C N'xA'; L N'xA''; E A'י'

```
where
\(\mathbf{N x A}\) is the number and size of general surface imperfections,
\(\mathbf{C} \mathbf{N}^{\prime} \mathbf{x} \mathbf{A}^{\prime}\) indicates coating blemishes, where \(\mathbf{N}^{\prime}\) is the number of allowed blemishes and \(\mathbf{A}^{\prime}\) indicates the grade number,
\(\mathbf{L} \mathbf{N}{ }^{\prime \prime} \mathbf{x} \mathbf{A}^{\prime \prime}\) indicates the long scratch specification with \(\mathbf{N}\) " being the number of allowed long scratches (\(>2 \mathrm{~mm}\)) and \(\mathbf{A}^{\prime \prime}\) is the maximum with of the scratches,
\(\mathbf{E} \mathbf{A}^{\prime \prime}\) is the edge chip specification where \(\mathbf{A}^{\prime \prime}\) specifies the maximum permissible extent of a chip from the physical edge of the surface.

Material: The material (glass) name is taken from the prescription data and cannot be edited.
nd: The index of refraction at the d-line (587.6nm). Only the tolerance on refractive index can be specified. The default value is 0.001 .

Vd: The Abbe number at the d-line (587.6 nm). Only the tolerance on Abbe number can be specified. The default value is \(0.8 \%\).

Stress Birefringence: It is specified in terms of optical path difference, expressed in \(\mathrm{nm} / \mathrm{cm}\). The default value is \(10 \mathrm{~nm} / \mathrm{cm}\).

Bubbles and Inclusions: The specification is indicated by \(\mathbf{1 /} \mathbf{N x A}\), where \(\mathbf{N}\) is the allowed number of bubbles and inclusions and \(\mathbf{A}\) is a grade number. See ISO 10110 Part 3 for further reading.

Striae and Inhomogeneity: The specification is indicated by \(\mathbf{2 / A ; B}\), where \(\mathbf{A}\) is the inhomogeneity and \(\mathbf{B}\) is the striae class. Inhomogeneity is characterized by the maximum permissible variation in refractive index, given in \(10^{-6}\) units. Striae is defined in five classes where classes \(1-4\) are related to a density of striae. Class 5 is virtually free of striae and requires further information in a note. See ISO 10110 Part 4 for further reading.

Thickness: The tolerance on axial thickness.
Mirror Thickness: This field is only active on mirror surfaces. The mirror thickness is the center thickness to the back surface of a first-surface mirror. In the command line, this value is specified by the THM command.

Part: The element can be identified by a part name. Even though it is possible to enter a part name for every surface, only the part name of the leftmost surface of the element/doublet appears on the drawing.

Part No.: A number identifying the element. The field is limited to 64 characters.
Revision: Tracks version changes. The field is limited to 64 characters.
Remarks: A text field limited to 64 characters for entering additional notes.

\subsection*{23.8 CAM Calculation}

The CAM option provides a table of parameters for constructing a precise relationship between movable parts (lenses or groups of lenses). This option is preferably used in constructing the cam for a mechanically compensated zoom lens, however, it is not restricted to calculate axial separations but allows any lens parameter to be included in the calculation. Thus, in OpTaliX CAM may also be used for calculating relationships between tilt and decenter parameters (for example in scanning systems) or any other exotic combination of description parameters.
CAM generates cam data by optimizing the optical system at each step of the cam. This is done by successive passes through the optimization option incrementing the linear variable (stepping) parameter STE before each pass.
The CAM option does not primarily require a zoomed system, or that the system is 'dezoomed' prior to calculating cam tables. CAM mode is universally available for both zoomed and non-zoomed (fixed focus) systems.
In order to facilitate this capability, OpTaliX provides two completely independent data areas to hold optimization variables, targets and constraints, which do not interfere. That way, 'normal' optimization and CAM calculation can be performed independently in the same setup.

Two modes of operation are provided, a 'normal' zoom mode and a CAM mode. Switching between those two modes is accomplished by the commands "CAM Y" and "CAM N".
In the description to follow we will concentrate on the most often required case of mechanically compensated zoom lenses, that is, the computation of a table of axial separations between moved groups.
In a zoomed system, simply switch to CAM mode, define a second optimization set and perform CAM calculation. Then the user may switch back to normal zoom/multi-configuration mode and continue optimization or analysis of the zoomed system. OpTaliX saves both optimization sets with the prescription data. This allows continuation of 'normal' zoom optimization/analysis and/or CAM calculation from saved and restored systems.
Also note that due to the close relationship of CAM calculation and optimization settings, menu items to edit CAM parameters are found both in the Optimization and Manufacturing main menus.
When switching to CAM mode in a zoomed system, the program temporarily converts the system to a non-zoomed system (without losing the zoom data!) and calculates the cam. The previous zoomed state can always be restored by the "CAM N" command.

\section*{Commands:}
\begin{tabular}{|c|c|}
\hline CAM \(\mathrm{Y}|\mathrm{N}| \mathrm{zk} \mid\) RUN [XLS file.xls] & \begin{tabular}{l}
Switch between CAM mode (Y) and normal zoom mode (N). Automatically dezooms a system to position 1 . Specify zk to start CAM calculation from any other position zk . If in CAM mode, CAM calculation can be initiated by the RUN parameter. The XLS option exports the cam table to an Excel file. See also the notes on creating an Excel file (page 496). \\
Examples: \\
CAM Y ! switch to CAM mode starting with position 1, \\
CAM z2 ! switch to CAM mode starting with position 2, \\
CAM RUN ! execute CAM calculation, \\
CAM N ! switch back to normal zoom mode. \\
CAM RUN XLS c: \my_data.xls !execute CAM and export data to Excel file.
\end{tabular} \\
\hline \begin{tabular}{l}
STE sk|param or \\
CAM STE sk|param
\end{tabular} & \begin{tabular}{l}
Designates the separation or parameter to be stepped linearly. If only a surface qualifier is specified, separation of that surface is assumed. That is, sk is implicitly understood as "THI sk". It is, however, possible to specify any prescription parameter, which is specified in the param string. \\
For example, \\
STE s5 ! steps separation 5 (THI s5) linearly, \\
STE ADE s7 ! steps tilt about X-axis on surface 7 \\
(ADE s7) linearly, \\
STE 'ADE s7' ! as above but param provided as string.
\end{tabular} \\
\hline \begin{tabular}{l}
INC step_size or \\
CAM INC step_size
\end{tabular} & Size of step to be taken in the separation or parameter target. \\
\hline \begin{tabular}{l}
LIM max_value or \\
CAM LIM max_value
\end{tabular} & Stop the CAM calculation when the value of the stepped separation/parameter (given by STE) exceeds this value. \\
\hline & continued on next page \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ continued from previous page } \\
\hline & \begin{tabular}{l}
Designates up to 10 parameters for which values are listed. \\
The parameter definitions must be provided as strings, that is \\
they must be enclosed in quotes. Parameter strings must be \\
Ceparated by at least one blank character. Parameter strings \\
param_string1..10 \\
do not (yet) accept lens database items and arithmetic expres- \\
sions. \\
Example: \\
CAM OUT 'thi s5' 'thi s10' 'efl' 'oal'
\end{tabular} \\
\hline \begin{tabular}{l}
BAS offset \\
or \\
CAM BAS offset
\end{tabular} & \begin{tabular}{l}
Designates a constant value to be added to each of the listed \\
parameters. Allows matching of table to reference points in the \\
mechanical design.
\end{tabular} \\
\hline LIS CAM & \begin{tabular}{l}
List CAM parameter and associated CAM optimization vari- \\
ables and constraints.
\end{tabular} \\
\hline EDI CAM & \begin{tabular}{l}
Edit CAM parameter and associated CAM optimization vari- \\
ables and constraints in a dialog box.
\end{tabular} \\
\hline
\end{tabular}

Upon exit from a cam calculation in the CAM mode, the system is left in the configuration of the last cam step so that a continued run (with different parameters) may be made if desired. If the system is later switched to normal zoom mode (see CAM N command), the optical system is restored at zoom position 1 .

\section*{Example:}

The CAM calculations performed in this example are based on the design CAM Example . otx found
 are variable to accomplish the movement of the groups. Thickness 5 will be linearly stepped through the allowable movement range \((1 \mathrm{~mm}-50 \mathrm{~mm})\). The remaining thicknesses 10,15 are optimized to fulfil a constant focus on the optical axis and a constant overall length (OAL).
We enter the CAM mode,
```

CAM Y

```
and define the linear stepping parameter
```

STE THI s5 !Step thickness on surface 5
INC 2.0 ! Increment for surface 5
LIM 50.0 ! Maximum value of surface 5

```

The variables and targets/constraints for CAM calculation are defined in the same way as for normal optimization. Variables can be edited in a dialog (use VAR ? command) or directly from the command line:
```

VAR sl0 THI
VAR s15 THI

```

The targets/constraints definition for CAM calculation is short and sweet:
```

spd f1 0 ! Minimize spot diameter at field 1 (axis),
oal = 121.5 !Maintain overall length (OAL).

```

Finally we need to define the parameters to be listed. These are the thicknesses 10 and 15. In addition we want to monitor focal length (EFL) and the overall length (OAL).
CAM OUT 'thi s5' 'thi s10' 'efl' 'oal' 'spd f1'
Note that the parameters to be listed must be given as strings (that is enclosed in apostrophes) and parameter strings must be separated by at least one blank character.
Here is a summary of the whole story, obtained by the LIS CAM command:
```

CAM CALCULATION PARAMETERS:
Linear stepping parameter (STE) : THI S5
Stepping increment (INC) : 2.00000
Maximum of stepped parameter (LIM) : 50.00000

	List Parameter	Offset
$1:$ THI S10	0.0000	
$2:$ THI S15	0.0000	
$3:$ EFL	0.0000	
$4:$ OAL	0.0000	
$5:$ SPD F1	0.0000	

```
```

CAM VARIABLES :

```
CAM VARIABLES :
 S10 THI
 S10 THI
 S15 THI
CAM TARGETS AND CONSTRAINTS :
 spd f1 0
 oal = 121.5
```

The cam calculation is initiated by the command CAM RUN:

CAM CALCULATION						
FILE = CAM_Example.otx						
	THI S5	THI S10	THI S15	EFL	OAL	SPD F1
1	1.00000	56.47201	1.12499	5.90331	121.50000	0.00367
2	3.00000	54.37153	1.22547	6.25214	121.50000	0.00354
3	5.00000	52.26517	1.33183	6.63267	121.50000	0.00343
4	7.00000	50.15151	1.44549	7.04912	121.50000	0.00338
5	9.00000	48.03185	1.56515	7.50546	121.50000	0.00330
6	11.00000	45.90509	1.69191	8.00707	121.50000	0.00324
7	13.00000	43.76938	1.82762	8.56059	121.50000	0.00325
8	15.00000	41.62445	1.97255	9.17309	121.50000	0.00333
9	17.00000	39.46936	2.12764	9.85319	121.50000	0.00348
10	19.00000	37.30302	2.29398	10.61110	121.50000	0.00373
11	21.00000	35.12420	2.47280	11.45900	121.50000	0.00411
12	23.00000	32.93149	2.66551	12.41154	121.50000	0.00463
13	25.00000	30.72328	2.87372	13.48641	121.50000	0.00529
14	27.00000	28.49768	3.09932	14.70510	121.50000	0.00609
15	29.00000	26.25255	3.34445	16.09395	121.50000	0.00700
16	31.00000	23.98536	3.61164	17.68545	121.50000	0.00801
17	33.00000	21.69320	3.90380	19.51995	121.50000	0.00913
18	35.00000	19.37267	4.22433	21.64797	121.50000	0.01033
19	37.00000	17.01982	4.57718	24.13323	121.50000	0.01159
20	39.00000	14.63009	4.96691	27.05663	121.50000	0.01284
21	41.00000	12.19831	5.39869	30.52153	121.50000	0.01397
22	43.00000	9.71879	5.87821	34.66022	121.50000	0.01478
23	45.00000	7.18589	6.41111	39.64128	121.50000	0.01493
24	47.00000	4.59570	7.00130	45.67467	121.50000	0.01383
25	49.00000	1.95113	7.64587	53.00207	121.50000	0.01075

INFORMATION: The system has been left at the last step in the CAM
Enter "CAM N" to restore all zoom positions (Zoom systems only).

Short form	Manufacturer
app	Applied Optics
bm	B \& M Optik
bef	Befort
ber	Bern Optics
br1	Brighten Optics, Shop 1
br2	Brighten Optics, Shop 2
br3	Brighten Optics, Shop 3
coa	Coastal Optical Systems
com	Computer Optics Inc.
con	Continental Optical Corp
ddo	DD-optik
din	DIN (Deutsche Industrie Norm)
gos	GOST Russian testplates
har	Harold Johnson Optical Lab.
ii-	II-IV Incorporated
jan	Janos
jlw	JLWood Optical Systems
kod	Kodak
kre	Kreischer
lig	Lightning
lie	Liebmann
lin	Linos
mel	Melles Griot
mod	Model Optics
med	MediVision
nee	Neeb Optik
new	Newport
oci	OCI (Optical Components Inc.)
ofr	OFR (Optics for Research)
ogf	OGF (Optico Glass Fabrication)
opt	Optimax
opl	opl Optolyth
pog	Praezisionsoptik Gera
pro	PRO (Pacific Rim Optical)
rmi	Rocky Mountain Instruments
rod	Rodenstock
sil	Sill Tools
spe	Special Optics
spc	Spectros
swi	SwissOptik
tel	Telic Optics
tro	Tropel Corp.
tuc	Tucson Optical Research Corp.
tow	Tower

Table 23.1: Available test plate lists and corresponding 3-letter short forms.

## Glass Manager

OpTaliX contains a number of auxiliary tools to select, view and analyze optical properties of glasses.

### 24.1 Use of Glass Catalogs

This section describes the use of glass catalogs. Typically, one or multiple glass catalogs can be loaded for a particular optical system. The following commands support this feature:

LOAD GCAT cat1 cat2 cat3 ...	Load glass catalogues, designated by a sequence of   catalogue names, e.g.   load gcat schott hoya oha   would load the glass catalogs from Schott, Hoya and   Ohara. Only the first three characters are significant.
LOAD GCAT ALL\|?	As above, loads glass catalogues. The parameter   ALL loads all glass catalogs that are available in
OpTaliX. The question mark "?" invokes a dialog	
box for interactive selection of catalogues.	

Alternatively, interactive selection of glass catalogues is accomplished by from the main menu

## Glass Manager $-->$ Select Glass Catalogs

A dialog box is invoked which allows selection of particular glass catalogs or all glass catalogs that are available in $O p T a l i X$ (see Fig. 24.1).

### 24.2 Glass Map

The glass map is a diagram of index of refraction versus Abbe number $\nu$ or versus dispersion $n_{F}-n_{C}$ as provided by most glass manufacturers. The collection of glass catalogues is selectable by the command LOAD GCAT ?


Figure 24.1: Selection of particular glass catalogs using the command "LOAD GCAT ?" (without quotes).

NNU	Plot glass map, index of refraction vs. Abbe number
NFNC [?]	Plot partial dispersion diagram. Use the optional "?" pa-   rameter to invoke a dialog for selecting glass catalogues   and diagram options. See also sect. 24.3 below.

### 24.3 Partial Dispersion Plots

The partial dispersion plots are invoked by the NFNC command and show the deviation of the glass dispersion from the Abbe normal line (defined as a straight line connecting the Schott glasses K7 and F2). The selectable partial dispersions are $P_{g, F}, P_{C, s}$, two artificial partial dispersions for the spectral regions $1-2 \mu m$ and $3-5 \mu m$, and a plot of the partial dispersions $P_{g, F}-P_{d, C}$. For the latter, a similar plot is available using the Buchdahl coefficients $\eta_{1}, \eta_{2}$.

### 24.4 Athermal Map

The athermal map plots chromatic dispersive power versus thermal dispersive power, see Fig. 24.5. This is a useful tool for finding optical systems corrected for both chromatic aberrations and focus shift over temperature. See also section 24.5 for a more analytical approach to this subject.
For each material, chromatic dispersive power $\omega$ and thermal power $\psi$ can be computed as

$$
\begin{gather*}
\omega=-\frac{(\partial n / \partial \lambda) \Delta \lambda}{n-1}  \tag{24.1}\\
\psi=\frac{\partial n / \partial T}{n-1}-\alpha \tag{24.2}
\end{gather*}
$$



Figure 24.2: Glass maps, shown for Schott glasses. Left: index of refraction vs. Abbe number, right: index of refraction vs. dispersion $n_{F}-n_{C}$.
where $\alpha$ is the linear expansion coefficient. Note that the chromatic dispersive power $\omega$ is proportional to $1 / \nu$, where $\nu$ is the Abbe number as defined in Eq. 13.14 (page 221). For the sake of simplicity, we consider a thin-lens doublet (i.e. two materials) only, which we want to achromatize (zero chromatic dispersive power) and athermalize (zero thermal power). This requires the solution of three linear equations,

$$
\begin{gather*}
\Phi=\Phi_{1}+\Phi_{2}=1  \tag{24.3}\\
\Delta \Phi=\omega_{1} \cdot \Phi_{1}+\omega_{2} \cdot \Phi_{2}  \tag{24.4}\\
\frac{d \Phi}{d T}=\psi_{1} \cdot \Phi_{1}+\psi_{2} \cdot \Phi_{2} \tag{24.5}
\end{gather*}
$$

Referring to Fig. 24.5, this means that the two materials should lie on a straight line O-L intersecting the origin O in the thermal map. If no such material combination can be found, in particular when materials must transmit in a non-visible wavelength range (e.g. infrared glasses), three materials must be combined to accomplish the desired effect. For further reading see Tamagawa et.al. [55],[56].

## Notes:

The athermal map does NOT take into account thermal effects of the housing structure (i.e. changes of air spaces under temperature), lens thicknesses and higher order ray aberrations. Therefore, in real systems, the athermal map can only be used as a guideline for selecting materials suitable for athermalization.
The following section 24.5 describes a method to include effects of housing expansion, at least in the paraxial domain.

### 24.5 Athermal Glass Selection

Tamagawa et.al. have devised a numerical method for athermalizing optical systems by combining optical materials with suitable lens powers and simultaneously fulfilling the achromaticity condition [54], [55], [56]. The method is based on determining both thermal and dispersive powers and calculating the corresponding lens powers, including the effects of thermal housing expansion.
Because it is difficult to find pairs of two glasses that lie on a straight line going through the origin of the athermal glass map (Fig. 24.5), accomplishing an athermal doublet is unlikely, albeit not


Figure 24.3: Partial dispersion plots, shown with Schott glasses. Left: index of refraction vs. $P_{g, F}$, right: index of refraction vs. $P_{C, s}$.
impossible. The following treatment focusses on a combination of three materials (triplet) which gives more flexibility and always allows to find suitable glass combinations for a given application. With three glasses, we have three equations to be simultaneously fulfilled:

$$
\begin{gather*}
\Phi=\Phi_{1}+\Phi_{2}+\Phi_{3}=1  \tag{24.6}\\
\Delta \Phi=\omega_{1} \cdot \Phi_{1}+\omega_{2} \cdot \Phi_{2}+\omega_{3} \cdot \Phi_{3}  \tag{24.7}\\
\frac{d \Phi}{d T}=\psi_{1} \cdot \Phi_{1}+\psi_{2} \cdot \Phi_{2}+\psi_{3} \cdot \Phi_{3} \tag{24.8}
\end{gather*}
$$

These equations can be expressed in matrix form,

$$
\left[\begin{array}{l}
\Phi_{1}  \tag{24.9}\\
\Phi_{2} \\
\Phi_{3}
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 1 & 1 \\
\omega_{1} & \omega_{2} & \omega_{3} \\
\psi_{1} & \psi_{2} & \psi_{3} \\
M &
\end{array}\right]=\left[\begin{array}{l}
\Phi \\
0 \\
-\alpha_{h} l \Phi
\end{array}\right]
$$

The thermal expansion of the housing is considered by $-\alpha_{h} l \Phi$ where $\alpha_{h}$ is the linear expansion coefficient of the housing material and $l$ is the length of the housing. The individual lens powers are then obtained by

$$
\left[\begin{array}{l}
\Phi_{1}  \tag{24.10}\\
\Phi_{2} \\
\Phi_{3}
\end{array}\right]=M^{-1}\left[\begin{array}{l}
\Phi \\
0 \\
-\alpha_{h} l \Phi
\end{array}\right]
$$

It is important to note that the above equations refer to the paraxial domain. Solutions of Eq. 24.10 do not necessarily result in systems with good aberration correction. It is therefore advisable to search for glass combinations with minimum individual lens powers $\Phi_{1}, \Phi_{2}$ and $\Phi_{3}$.

## Command Input:

ATH3	Find three-glass combinations for athermal and achromatic correction   in the paraxial domain.



Figure 24.4: Partial dispersion plots with Buchdahl coefficients $\eta_{1}, \eta_{2}$, shown for Schott glasses.

### 24.6 Glass Selection for Thin-Lens Apochromats

This option is intended as an aid to selecting glass combinations, which are suitable for achieving apochromatic colour correction. Combinations of two and three glasses are supported. In finding such combinations, the program compares the dispersion properties of all glasses against a base glass and prints the required powers of the individual lenses.
The comparisons are based on Buchdahl's simplified equations for modeling dispersion by introducing a change in variables from wavelength $\lambda$ to a chromatic coordinate $\omega$. It is defined as

$$
\begin{equation*}
\omega=\frac{\lambda-\lambda_{0}}{1+\frac{5}{2}\left(\lambda-\lambda_{0}\right)} \tag{24.11}
\end{equation*}
$$

where $\lambda_{0}$ is the reference wavelength.
Using the chromatic coordinate, the index at any wavelength is expressed by the power series

$$
\begin{equation*}
n=n_{0}+\nu_{1} \omega+\nu_{2} \omega^{2}+\ldots+\nu_{i} \omega^{i} \tag{24.12}
\end{equation*}
$$

where $n_{0}$ is the index at the reference wavelength $\lambda_{0}$ and the quantities $\nu_{1}, \nu_{2}, \ldots$, characterize the dispersion of the glass. This Taylor series converges very rapidly. The dispersive properties of glass are modelled with sufficient accuracy in the visible range $(400-700 \mathrm{~nm})$ by a quadratic equation, and in the range 400-1000 nm by a cubic equation.
It is important to note, that the above equations, if applied to real glasses and optical systems, are only valid in the paraxial domain. However, it may turn out that certain combinations will not perform as expected. In almost all cases, this is due to higher order monochromatic and chromatic spherical aberration, which is not covered by paraxial quantities.

### 24.6.1 Two-Glass Apochromats

APO2 [ base_glass \| ? ]	Find two-glass combinations forming apochromatic cor-   rection in the paraxial domain.



Figure 24.5: Athermal map, plotting chromatic dispersive power vs. thermal power for Schott glasses in the visible spectral range.

## Example:

For a given base glass, the command APO2 selects glass combinations, where the ratio of the dispersion coefficients is as identical as possible to another glass.
The output gives a list of matching glasses (including their equivalent name) and the lens powers for a doublet of power $=1$. The last column shows the expected rms-error of the longitudinal chromatic aberration (secondary spectrum) in the paraxial domain. Promising combinations are those with small lens powers (Phi1, Phi2) and small rms-error. However, even if the rms-error is small, high lens powers indicate large amounts of higher order chromatic aberrations (spherochromatism).

```
Glass dispersion coefficients based on Buchdahl chromatic coordinates :
 Baseglass : KZFSN4
 Eta_1 : -0.14080
 Eta_2 : : 0.04012
\begin{tabular}{llrrr}
Glass & Equiv.Glass & Phi1 & Phi2 & RMS \\
SCH:LLF1 & N-LLF1 & -30.308 & 31.308 & 0.3855 \\
SCH:N-BAF3 & BAM3 & -19.172 & 20.172 & 0.2716 \\
SCH:N-BAF10 & S-BAH10 & -15.614 & 16.614 & 0.0964 \\
SCH:N-BAF51 & N-BAF51 & -64.353 & 65.353 & 0.9895 \\
SCH:N-KF9 & N-KF9 & -6.107 & 7.107 & 0.0631 \\
SCH:N-KZFS4 & N-KZFS4 & -206.546 & 207.546 & 0.7215 \\
SCH:N-KZFS11 & N-KZFS11 & 23.824 & -22.824 & 0.0012 \\
SCH:N-LAF2 & N-LAF2 & -75.176 & 76.176 & 0.9451
\end{tabular}
.......
```


### 24.6.2 Three-Glass Apochromats

| APO3 [ base_glass \| ? ] | Find three-glass combinations forming apochromatic <br> correction in the paraxial domain. |
| :--- | :--- | :--- |

The following output is an example list for the base glass KZFSN4 from Schott:


### 24.7 Gradient Index Profile

The profile of gradient index glasses shows the index of refraction as a function of the local zcoordinate. Currently, this plot is only available for pre-stored gradient index glasses with axial gradient. The plots are shown at the selected wavelengths.


Figure 24.6: Gradient index profile, shown for five wavelengths.

### 24.8 View and Edit Glass Catalogues

GCAT [cat_name]	Invokes a spreadsheet containing glass data stored in the glass catalogues. The optional parameter cat_name is a three-character string designating the catalogue. The following catalogues are available:

Only the melts catalogue (MLT) may be edited and saved whereas the data of all other catalogues can only be viewed. This is mandatory in order to preserve data integrity of glass catalogues during later updates.

©/6lass Catalogue Editor : Schott								- 回区
Schott		Glass Name	Equiv.Name	Index (d)	Nue (d)	Coef. 1	Coef. 2	Coef. 3
	F2	F2	F2	1.620037	36.35	1.3453336	0.20907318	0.93735716
chott	F5	F5	F5	1.603417	38.01	1.3104463	0.19603426	0.96612977
Ohara	K7	K7	K7	1.511119	60.38	1.1273555	0.12441230	0.82710053
Hoya	K10	K10	K10	1.501369	56.39	1.1568708	0.64262544E-01	0.87237612
	LAFN7	LAFN7	LAFN7	1.749498	34.94	1.6684262	0.29851280	1.077437 E
Corning	LakN13	LAKN13	LAKN13	1.693499	53.31	1.2579237	0.55340286	1.0633574
Sumita	LASFN9	LASFN9	LASFN9	1.850250	32.16	1.9788819	0.32043530	1.9290075
Hikari	SF1	SF1	SF1	1.717355	29.50	1.5591292	0.28424629	0.9688429 :
	SF10	SF10	SF10	1.728245	28.40	1.6162598	0.25922933	1.0776236
Cargille	SF11	SF11	SF11	1.784714	25.75	1.7384840	0.31116897	1.1749087
LightPath	SF14	SF14	SF14	1.761814	26.52	1.6918254	0.28591993	1.1259515
	SF15	SF15	SF15	1.698947	30.06	1.5392593	0.24762093	1.0381641
Special	SF2	SF2	SF2	1.647685	33.83	1.4030182	0.23176750	0.93905655
	CEA	¢FA	¢FA	1755196	2757	1 ¢195783	ก २२949319	$1 \mathrm{n} 2 \mathrm{FFGG:}$

Figure 24.7: Spreadsheet for viewing and editing glass catalogue data. Only part of the dialog is shown.

The meaning of the columns is as follows:

Glass Name	The manufacturers glass name
Equiv.Name	Glass name of an equivalent glass. That is its optical properties are very similar. This can also be a glass from an other manufacturer.
Index(d)	Index of refraction at d-line
Nue (d)	Abbe number $\nu_{d}$
Coef. 1-6	Dispersion coefficients. The type of dispersion formula is defined in the Column "Eq".
Eq.	Type of dispersion formula   $0=$ Old Schott formula, see Eq. 13.1 page 219.   $1=$ Sellmeier formula, see Eq. 13.2 page 219.   $2=$ Herzberger formula, see Eq. 13.8 page 220.
L-min	minimum wavelength in $\mu m$ for which the dispersion coefficients are valid.
L-max	maximum wavelength in $\mu m$ for which the dispersion coefficients are valid.
D0	
D1   D2   E1   E2   LTK	Temperature coefficients $d n / d T$ of index of refraction according to Eq. 13.2.
CTE	Thermal coefficient of expansion in $10^{-6}$ units.
Rho	Specific gravity $\rho$ in $\mathrm{g} / \mathrm{cm}^{3}$.
RTI	Thickness in mm for which internal transmission data are defined.
2500-250	Internal transmission (excluding reflection losses) for a glass plate of thickness RTI at the wavelength (in nm) given in the column heading.

### 24.9 Melt Glasses

Manufactured optical glass and other materials as well vary slightly in refractive index from batch to batch as compared to the nominal or catalogue value. Typical tolerances for optical glass as supplied without any other specification are $n_{d} \pm 0.001$ and $\nu_{d} \pm 0.8 \%$.
For critical applications such as long-focal-length high-resolution types, such (standard) tolerances are not sufficient and analysis with the exact measured refractive index data must be performed. To aid this process, glass manufacturers generally supply melt data sheets for each batch of glass, which allows adjustment of the values of radii, lens thicknesses or air spaces. Typically, the data is provided by the glass manufacturer at the wavelengths of a few selected spectral lines and some sort of fitting is required to obtain refractive index data at the wavelengths for which the optical system is designed. The interpolation uses the Sellmeier equation as described in equation 13.2.
In order to use measured melt data, a new glass must be created on the basis of the manufacturer's melt data sheet and then added to the (melt) glass catalogue. Once created, the melt glass can be used like any ordinary catalogue glass.
This method is very general and can be used not only for melt glasses (i.e. glasses which deviate only slightly from a pre-stored catalogue glass) but also for creating entirely new glasses. Any feasible wavelength range may be entered, thus also "infrared" glasses or "UV" glasses may be created this way. It is, however, important to note that this scheme only applies for homogeneous glasses/materials. Inhomogeneous glasses such as gradient index cannot be created with this option.

## Commands:

MELT [?\|fil melt_file_name]	Create a melt glass from a set of discrete wavelength/index data pairs. Interpolation to Sellmeier coefficients is performed and the melt glass is then added to the "melts" catalogue. For command line input, the wavelength/index data pairs must be stored in an ASCII-file with extension ". ind". The melt glass file format is described in section 32.8. When used with the "?" option, a dialog box is invoked for interactive editing.   Examples:   melt fil c:\optix\glasses\my_melt.ind   Fits index data contained in a file.   melt ? Invokes dialog box for melt data editing

## Dialog based Creation of Melt Glasses:

A particulary convenient method of creating and fitting melt glasses is using the dialog box. It is invoked by the command "MELT ?" or from the main menu Glass Manager $->$ Create Melt Glass.


Figure 24.8: Dialog box for entering, fitting and creating melt glasses and new glasses respectively.

Two types of index data may be entered, either

- from the Schott melt data sheet (check the "Schott melt data sheet" radio button). The data must be entered manually into the dialog fields,
- or as pairs of wavelength/index data (check the "Measured index data" radio button. This data can be entered manually or can be restored from an ". ind" file, which should be preferably stored in the $\backslash$ optix $\backslash$ melts $\backslash$ directory (but may be any other).

Using the example dialog shown in Fig. 24.8, the steps to creating a melt glass are

1. Enter the wavelength/index pairs or load it to the dialog from an ". ind" file in the melts directory (click on the "load indices" button underneath the wavelength/index spreadsheet). Check those wavelengths, which shall be included into the fit. A maximum of 100 wavelength/index data pairs may be entered.
2. Select the formula to which the data shall be fitted. Currently, the old Schott equation (Eq. 13.1) and the Sellmeier equation (Eq. 13.2) are selectable.
3. Fit the data according to selected formula (click the "fit coeffs." button). The coefficients are then displayed in the rightmost table and are also reported (along with the accuracy of the fit) in the text window.
4. Enter a name for the new melt glass. A unique name (maximum 10 characters) must be given to identify the melt glass and distinguish it from the other catalogue glasses.
5. Select (or enter directly) a "base" glass name, from which other glass properties (such as internal transmission, $\mathrm{dn} / \mathrm{dT}$, CTE, specific gravity, etc.) are taken and are also assigned to the new melt glass. In this way the melt glass possesses all properties of the base glass and behaves identically to the base glass (except index of refraction) for all subsequent analyses. Thus, analyses on transmission, thermal expansion, weight, etc. produce the same results for melt glass and base glass.
6. Add the fitted glass to the melts catalogue (press the "Add" button).
7. Close the dialog box.

## 25

## Printing and Plotting

Throughout this section, the term "printing" is understood as printing text to the printer, i.e. all text and analysis output, which normally appears in the "text window" on the screen. The term "plotting" is denoted as "printing" graphics to the printer using the Windows print manager. By default, all graphics and analysis output is directed to screen windows. To perform printing or plotting, the output device must be changed. Once an output unit is changed, all subsequent outputs are directed to the chosen device. To display the graphics and/or text output on the screen again, the corresponding output must be switched back to the screen. This concept works like a light switch, which is turned on and off. The currently selected output device (graphics or text) is displayed in the status bar of the main window as indicated in Fig. 25.1.


Figure 25.1: Print status shown in the status bar at the bottom of the main window.

In order to print/plot from the command line, you must switch the output devices manually as described in the following sections. From the GUI, switching output devices is done automatically in the background.

### 25.1 Printing and Plotting from the Command Line

out prn \| t	file file_name	Direct text output to the default printer (prn) or the terminal/screen ( t ). Text output can be written to a file with the command out fil file_name. See examples below.	
gra prn\|plt	t	file	Direct graphics output to the printer (prn), plotter (plt), screen or text output window ( t ), or to a file (fil).
	continued on next page		


continued from previous page	
bmpx pixels_horiz	Number of horizontal pixels in writing bitmaps (BMP,   PCX). See sect. 25.2.2 for an example. The default   width is 640 pixels.
bmpy pixels_vert	Number of vertical pixels for writing bitmaps (BMP,   PCX). See sect. 25.2.2 for an example. The default   height is 480 pixels.

For example, the following commands direct text output to the printer, a file or to the to the screen (text output window):

```
out prn ! output is directed to the default printer (output device is "prn")
out t ! output is directed (back) to the text output window (terminal)
out fil 'c:\my output.txt' ! write text output to file "c:\my output.txt".
```

In a similar way, changing the plot device (i.e. "printing" graphics) is accomplished by:

```
gra prn ! graphics output is directed to the default printer(output device is "prn")
gra t ! graphics output is directed back to the screen.
```


### 25.2 Printer and Plotter Device Units

The following output devices exist for printing text and plotting graphics:

prn	the default printer	text + graphics
plt	the plotter	graphics only
t	Screen (terminal)	text + graphics
clp	Clipboard	graphics only
file	Text/analysis output to a file	text only
silent	Disables text output (silent operation)	text only
hpgl	HPGL (Hewlett Packard Graphics Language)	graphics only
dxf	Graphics output to AutoCad DXF File	graphics only
eps	Graphics output to Encapsulated Postscript (EPS)	graphics only
wmf	Graphics output to Windows Metafile Format (WMF)	graphics only
cgm	Graphics output to Computer Graphics Metafile (CGM)	graphics only
bmp	Graphics output to Windows Bitmap format (BMP)	graphics only
pcx	Graphics output to Paitbrush file format (PCX)	graphics only
png	Graphics output to Portable Networks Graphics (PNG) format	graphics only
svg	Graphics output to Scalable Vector Graphics (SVG) format	graphics only

The following sections (25.2.1, 25.2.3) describe how printing/plotting is accomplished from the command line. Section 25.3 describes printing/plotting from the graphical user interface (GUI) directly.

### 25.2.1 Printing/Plotting Graphics

The default graphics output device is the screen. Other graphics output devices may be selected by the following commands:

```
gra dxf [file filespec] ! redirect graphics to DXF-File
gra hpgl [file filespec] ! redirect graphics to HPGL-File
gra bmp [file filespec] ! redirect graphics to Windows bitmap (BMP) file
gra prn ! redirect graphics to default printer
gra plt ! redirect graphics to default printer, synonymous to gra prn
gra t ! redirect graphics to default screen
```

Other than for screen, printer and clipboard, graphics are always written to a file and, in this sense, redirecting a graphics output may be understood as "exporting" the contents of a graphics window in the specified format.
For single plots, the graphics may be redirected to the printer/plotter temporarily by using the redirection symbol ">". For example,

```
fan > plt
vie > plt
```

redirect the ray-fan or lens layout plot immediately to the corresponding output unit, which is the Printer/Plotter "plt". Note, that the command entries must be separated by at least one single blank character. It is also important to note that the redirection is active only for one particular command, all subsequent commands appear on the previously selected device (usually the screen).

### 25.2.2 Controlling Bitmap Size

The size of graphics exported (printed) to bitmaps (BMP, PCX, Clipboard) can be controlled in two ways:

## From the GUI:

The size of exported graphics to raster image files such as BMP, PCX, as well as to the clipboard corresponds to the size of the graphics window on the screen in pixel. That is, a small graphics window on screen will produce a small raster image file. The file size (and hence the number of pixels in horizontal and vertical direction) increases with increasing screen window size.

## From the Command Line:

Specify the size of exported graphics by the commands BMPX, BMPY. The following example defines a lens layout plot (VIE command) as a bitmap of 800 pixels wide and 600 pixels high written to the file "c: \my_graphics.bmp":
gra bmp fil c:\my_grahics.bmp
bmpx 800
bmpy 600
vie
gra t

Note the logic of exporting graphics: In the command "gra bmp . . ." you define an output unit for the graphics (in this case, a file c:\my-graphics.bmp). Then additional commands can be added to define the property of the graphics such the bitmap size (BMPX, BMPY). Generate the type of graphics and then re-direct the graphics output back to the screen (windows) using the "GRA T" command.

### 25.2.3 Printing Text Output

The default output device for text is the screen (terminal device). Other devices for text output may be selected by the following commands:

```
out prn redirect all subsequent text output to default printer
out file file_name redirect all subsequent text output to file_name.
out t redirect all subsequent text output to default screen
out silent disables text output (silent operation). Use one of the commands
 "out t" or "out prn" to enable text output again.
```

Once the output is directed to the printer (out prn), all subsequent text outputs will be printed on the default printer until the the text output is switched back to the screen (out t). Text output may be immediately redirected to the printer in a single command with the redirection symbol ">". For example,

```
lis > prn !Listing is immediately printed on the default printer.
rsi fl wl > prn !Single ray trace data is redirected to printer
lis > xxx.txt ! output to file xxx.txt
```

Note, that the command entries must be separated by at least one single blank character! The redirection is active only for one particular command, all subsequent outputs are written to the previously selected device (usually the screen).

### 25.3 Printing/Plotting from the GUI

The previous sections have shown how text/graphics can be printed/plotted from the command line. Whereas this is most useful in macros, for example to automate reports, there is an easier way for printing/plotting text and graphics.

### 25.3.1 Printing Text from the GUI

The entire text displayed in the text window or selected text can be printed.
Printing is then performed by clicking on the printer icon in the main window toolbar (Fig.25.3).
Note: If no text is selected, the contents of the entire window is printed. See also theCLS command for clearing the text window.

### 25.3.2 Printing Graphics from the GUI

Each graphics window has a toolbar to the left. Simply click on the printer icon to print the graphic contents of this window:

### 25.3.3 Examples

## Send graphics to the clipboard:

gra clp
fan
gra t


Figure 25.2: Select text in the text window. Printing of selected text is performed by clicking on the main menu printer icon (see Fig. 25.3). Note: If no text is selected, the contents of the entire window is printed. See also the CLS command for clearing the text window.


Print whole text or selected text
Figure 25.3: Print selected text from the text window. Note: For printing graphics, click on the printer icon at the left bar of each graphics window (see also Fig. 25.4).

## Send graphics to a file:

```
gra bmp fil c:\graphics.bmp
fan
gra t
```


## Send graphics with a specified size to a bitmap file:

```
gra bmp fil c:\graphics.bmp
```

bmpx 1200 ! horizontal with 1200 pixels
bmpy 800 ! vertical height 800 pixels
vie
gra t

## Send text output to printer:

out prn
lis
out t

## Send text output to printer (short form):

lis > prn

Send text output to a file:
out fil c:\text.txt
lis
out t


Figure 25.4: Print graphics.

## 26

## Macro Language

A macro is a sequence of $O p T a l i X$ commands, arithmetic expressions and database item specifications stored in a file. Macro commands may also interactively entered and executed in the command line. There is no functional difference between commands in a command line or stored in a file.
Macros are written to summarize often repeated command sequences into one single command or to enhance the capabilities of $O p T a l i X$ with new user-defined or user-specific features.
Creating and executing a macro is a two step process. Macro commands to be used must first be entered in a text file, which has the preferred extension .mac (such as test.mac) but any other extension is also accepted. Editing can be done with any ASCII text editor available under the operating system. OpTaliX offers a built-in macro editor, which avoids the need to invoke an external editor. Up to 20 macros may be edited in the OpTaliX macro editor. The OpTaliX macro editor can be invoked by the command

EDI MAC
or from the menu Edit -> Macro files.


Figure 26.1: Macro Editor Window. This example passes one parameter (3.14159) to the macro which is interpreted in the macro script by the $\% 1$ token as the first parameter. In the first line of this script, a variable $\$ p i$ is defined based on the passed parameter. The second line assigns the value of variable $\$$ pi to the radius of surface 1 , multiplied by sqrt (2). The third line list the prescription data and in line 4 , radius of surface 1 is output (queried) from the lens database.

After editing the macro sequence, the macro can be immediately executed by clicking on the 'Run' menu item. External parameters passed to the macro, if required, may be defined in the field labeled
"Macro Parameters:" at the bottom of the macro editor window (see Fig. 26.1). In case a requested $\%$ i parameter in the macro script is not available, respectively not defined, it is assumed zero (for numeric values) or blank (for character variables).
The macro editor offers several buffers to hold more than one macro sequence. Selecting the 'File' $-->$ 'New' option or by clicking on the icon $\square$ in the macro editor menu opens a new buffer. Buffers can be selected from the 'View' menu in the macro editor's main menu.

You will be asked at program exit whether to save unsaved buffers or not. Also on closing the macro buffer, either by selecting 'File' -i 'Exit' or by clicking on the icon Y in the upper right corner, a dialog box will request saving of still unsaved macro sequences.

### 26.1 RUN Statement

From the macro editor, the macro can be immediately executed by clicking on the 'Run' menu in the macro editor window. Alternatively, a saved macro file is executed by the command
run filename [parameter1...9]

This command reads in and executes the contents of a macro file (given with full path) where [parameter1..9] allows up to 9 expressions (numbers, strings or arithmetic expressions) to be passed to the macro as parameters. Each parameter expression is evaluated and the result (number or string) is substituted for a corresponding special symbol (\%1, \%2, .. \%9) in the macro.
Suppose the following very simple example macro example.mac,

```
! Prints the root of a number
print 'The root of ' %1 'is ' sqre(%1)
```

which is executed from the command line by

```
run example.mac 2
```

where the number 2 following the macro name is the first parameter to be passed to the macro. The output is
The root of 2.000000000000000 is 1.414213562373095
Note that parameters are not variables, they are essentially constants that are defined at runtime.

### 26.2 Arithmetic Expressions

An expression consists of operands and operators. Operands are constants, lens database items and user defined variables. Operators are

```
+ addition
- subtraction
* multiplication
/ division
** exponentiation
^ exponentiation
```

There exist also an extensive set of intrinsic functions:

$\sin (\mathrm{r})$	sine of angle in radians
$\cos (\mathrm{r})$	cosine of angle in radians   $\tan (\mathrm{r})$
$\operatorname{tangent}$ of angle in radians	
$\exp (\mathrm{x})$	$e^{x}$
$\log (\mathrm{x})$	natural logarithm
$\log 10(\mathrm{x})$	common logarithm
$\operatorname{logn}(\mathrm{n}, \mathrm{x})$	logarithm base n
$\operatorname{sqrt(x)}$	square root
$\operatorname{acos}(\mathrm{r})$	arccosine
$\operatorname{asin}(\mathrm{r})$	arcsine
$\operatorname{atan}(\mathrm{r})$	arctangent
$\cosh (\mathrm{r})$	hyperbolic cosine
$\sinh (\mathrm{r})$	hyperbolic sine
$\tanh (\mathrm{r})$	hyperbolic tangent
$\operatorname{besj0(x)}$	Bessel function $1^{\text {st }}$ kind, order 0
$\operatorname{besj1(x)}$	Bessel function $1^{\text {st }}$ kind, order 1
$\operatorname{besjn(n,x)}$	Bessel function $1^{\text {st }}$ kind, order n
$\operatorname{aint(x)}$	truncate to a whole number
$\operatorname{anint(x)}$	real representation of the nearest whole number
$\operatorname{abs}(\mathrm{x})$	absolute value
$\min (\mathrm{a}, \mathrm{b})$	minimum value
$\max (\mathrm{a}, \mathrm{b})$	maximum value
$\operatorname{sech}(\mathrm{x})$	hyperbolic secant $(=1 / \cosh (x))$
$\operatorname{csch}(\mathrm{x})$	hyperbolic cosecant $(=1 / \sinh (x))$
$\operatorname{rand}$	random number

Numbers are all assumed to be real and are entered in the usual FORTRAN double precision way. The \# sign represents an integer digit.

	Example:
\#	1
.\#	.1
\#.\#	1.2
\#.\#d\#	1.2 d 3
\#.\#d-\#	$1.2 \mathrm{~d}-3$
\#.\#d+\#	$1.2 \mathrm{~d}+3$
\#.\#e\#	1.2 e 3
$\# . \# \mathrm{e}-\#$	$1.2 \mathrm{e}-3$
\#.\#e+\#	$1.2 \mathrm{e}+3$
\#.\#D\#	1.2 D 3
\#.\#D-\#	$1.2 \mathrm{D}-3$
\#.\#D+\#	$1.2 \mathrm{D}+3$
\#.\#E\#	1.2 E 3
\#.\#E-\#	$1.2 \mathrm{E}-3$
\#.\#E+\#	$1.2 \mathrm{E}+3$

Note that blank characters are not allowed in arithmetic expressions, except where enclosed in brackets. Valid arithmetic expressions are:

```
print 2+3
```

```
print (2 + 3)
print ([EFL] + 2)
```

Invalid arithmetic expressions:

```
print 2 + 3
print [EFL] + 2
```


### 26.3 Lens Database Items

Macro expressions may include lens database items, which are retrieved from the current optical system. Almost anything that can be entered in the command line has a corresponding lens database item (see also chapter 27 for a complete list of available lens database items). All references to lens database items must be enclosed in rectangular brackets [ and ], even if there are no qualifiers. The syntax for database items mirrors the syntax used for command line input.
For example,

```
rdy s1 43.5
```

specifies the curvature on surface 1 . The same syntax, but now enclosed in square brackets, without the value 43.5 , returns the curvature on surface 1

```
[rdy sl]
```

This syntax may be combined with other commands as given in the following examples:

```
thi s2 [EPD] ! sets thickness s2 equal to entrance pupil diameter
cuy s3 -[cuy s4] ! curvature on surface 3 is equal to minus the
! curvature on surface 4
```

Note that the last example (cuy s3 - [cuy s4]) does NOT constitute a permanent functional relationship (or pickup) between the curvatures cuy s3 and cuy s4, it occurs only at the moment of input or macro execution.
Lens database items can be combined with arithmetic operators to form an arithmetic expression anywhere a numeric data entry is expected.

```
fno [EFL]/[EPD] ! sets F-number
thi s3 2*sqrt(3)*[thi s1]
```

As already expressed in section 26.2 above, arithmetic expression must not contain blank characters, except within lens database items or when enclosed in () brackets. For example,

```
valid: fno [EFL]/[EPD]
valid: fno ([EFL]/ [EPD])
invalid: fno [EFL]/ [EPD]
```


### 26.4 PRINT Statement

The print statement is used to send data to an output unit (text output window or file). See also section 25 (page 443) for selecting output units and section 26.7 (page 457) for defining formatted output. The print command is followed by a list of expressions. For example,

```
print 'The entrance pupil diameter is' [epd]
```

generates the output

The entrance pupil diameter is 12.00000

Strings must be enclosed in quotation marks. Numeric data, being either arithmetic expressions or constants, are output in free floating format displaying full double precision ( 64 bit ) accuracy. The output format can be controlled using the format option as described in section26.7 (page 457).
Arithmetic expressions are directly solved in print statements. Multiple expressions in an output list may be comma separated. The comma is then repeated in output. For example,

```
$pi = 3.14159
$diam = 10.0
print 'Area of a circle with 10mm diameter = ' $pi*($diam/2)**2 'mm^2'
print 'Some expressions:' 2*[EFL] , atan([NA]), 4*3.14159
```

results in

```
Area of a circle with 10mm diameter = 78.53975000000000 mm^2
Some expressions: 100.0000000000000, -0.1566953104668687, 12.56636000000000
```

Example of changing the output unit in a macro sequence:

```
out file c:\test.txt ! directs output to file
print 'System focal length' [EFL] ! prints EFL to file
out t ! redirects output to screen (terminal)
```

If several arithmetic expressions or database items shall be printed in one line, they can be separated by appropriate separators. Valid separators are ',' (comma) or any text enclosed in quotes ' '. Examples:

```
print 'Two expressions:' [efl], 2*[bfl]
```

print 'Two expressions:' [efl] $2 *[b f l]$

### 26.5 Formatted Output

The FORMAT statement, when used in conjunction with the print statement, provides explicit information how data and characters are displayed on output. The syntax for defining formatted output closely (but not entirely) follows the conventions of the FORTRAN programming language.
The major difference to the FORTRAN convention is that formatted output is defined by a character string enclosed in apostrophes and appended to the print statement.

Table 26.1: Format Definition

'format format-items'	Statements for defining the output format must always   be enclosed in apostrophes (') or quotes ("). Typically,   a format statement is given in conjunction with the print   statement. The definition of output formats closely fol-   lows the FORTRAN convention. See examples below on   how format-items are constructed.

## Description of format-items:

format-items is a comma-separated list of data-edit-descriptors, (B, O, Z, F, D, E, EN, ES, G, L, A), and control-edit-descriptors (X). The different forms of edit descriptors are described as follows:

Table 26.2: Format Edit Descriptors

Edit Descriptor	Interpretation	Type
Iw [.m]	Displays value as integer number with field width of wand m   digits. Example: I3	Integer
Fw.d	Displays decimal number with field width of w and d decimal   places, no exponent. Example: The format F8.5 prints the   value 12.345 as 12.34500.	Real
Ew.d	Displays decimal number with field width of w and d deci-   mal places in exponential representation. Example: The format   E12.5 prints the value 12.345 as 0.12345E+02.	Real
ENw.d	Displays decimal number with field width of w and d deci-   mal places in engineering notation. Example: The format   EN12.5 prints the value 12.345 as 12.34500E+00.	Real
Gw.d	Displays decimal number in generalized format width of wand   d decimal places. The output format is adapted to optimally   fit the output width. If necessary, exponential representation is   used. Example: The format G12.5 prints the value 0.012345   as 0.12345E-01.	Real or Inte-   ger
A [w]	Displays alphanumeric field (text string) with a field width of   w. Example: A10 outputs the string 'This is another exam-   ple' as "This is an" without the quotation marks. Longer   strings are truncated to width w. Use the "A" format character   without the width (w) descriptor if the length of the text output   is unknown.	Character
Zw [.m]	Displays value as hexadecimal number with field width of w   and m digits. Example: The format Z4 prints the (decimal)   value 43 as 2B in hexadecimal notation.	Integer
Ow [.m]	Displays value as octal number with field width of w and m   digits.	Integer
nX	Move n spaces right of current position. Inserts space of n   (blank) characters.	None

## Example 1:

print 'format F7.3,F10.1' 12.314 .5

Prints the numeric values $(12.3,14.5)$ as floating numbers in the formats F7.3 and F10.1. The output is, where $\lrcorner$ represents a blank character (space):


## Example 2:

print 'format F7.3,2X,A12' 12.3 'This is a long text'
prints

```
12.300 This is a lo
```

because the format descriptor (A12) limits text output to 12 characters. If the length of the output string is not known, use the the generic $A$ format as shown in example 3 below. It will not truncate text output, however, due to the unknown string length, formatted output is not predictable.

## Example 3:

print 'format $\mathrm{F} 7.3,2 \mathrm{X}, \mathrm{A}, \mathrm{I4}$ ' 12.3 'This is a long text' 17
prints

```
12.300 This is a long text 17
```


### 26.6 READ Statement

The READ statement transfers values from an input unit (typically a file) to the variables specified in an input list. Before reading variables from a unit, the input unit must be opened (see OPEN statement) and selected by the SELECT statement. Example:

```
open (unit=1, file='c:\temp\mac_read.txt')
select (1)
read $x $y
close (1)
```


### 26.7 Format Statements defined in Variables

Format definitions may also be stored in variables and re-used for printing data. An example of formatted output is given here:

```
$fmt1 = 'A4,F12.5'
print $fmt1 'formatted number' 4
```

In this example, the format definition is assigned to the variable $\$ \mathrm{fm} t 1$. This variable is then re-used in the print statement in line 2.

### 26.8 CONCATENATION of Strings

The character sequence '//' denotes the concatenation operator. In a command or macro statement, the concatenation operator joins two character strings end to end. For example the strings "sun" and "light" may be concatenated to give "sunlight".

## Example 1: Concatenation of Two Strings:

```
print 'abc'//'123' outputs the string: 'abc123'
```


## Example 2: Concatenation of String and Variable:

\$x = 4
print 'abc'//\$x
outputs the string 'abc4'

## Example 3: Dynamic File Names:

```
do $x = 1,5
 $file = 'test'//$x//'.dat'
enddo
```

creates the file names

```
test1.dat
test2.dat
test5.dat
```

Multiple strings may be concatenated in one line, e.g.
print 'abc'//'def'//'ghi'

Note that blank strings are considered as "empty" strings according to the OpTaliX syntax definition, i.e. they have no meaning. Accordingly the instruction 'my' //' '//'wife' results in mywife and NOT my wife.

### 26.9 Evaluate Statement "EVA"

The evaluate statement EVA is functionally equivalent to the print statement (see above). It has been included for command compatibility with Code V. In addition to evaluating expressions, the EVA command also supports character strings. For example, the commands

```
print 'The half focal length is' [EFL]/2
eva 'The half focal length is' [EFL]/2
```

are equivalent. The EVA command also evaluates variables and functions such as
eva \$x
eva @myfunc

### 26.10 File Inclusion

A file can be included with the command
\#include filename
and the contents of the file "filename" is executed as if it were entered directly in the macro file or on the command prompt. Nesting of included files is permitted to a depth of 10 , i.e. an included file itself may call other files via the \#include command. For example, consider the macro file "macro1.mac" which calls (includes) the file "macro2.mac"

```
! macrol.mac
#include macro2.mac
print 'Result' pi
```

and
! macro2.mac
\$pi = 3.14159

On execution, they are executed as if all macro statements were entered in a single file:

```
! macro1.mac
$pi = 3.14159
print 'Result' pi
```


### 26.11 Variables

Variables are used for temporary storage of values. A variable may contain either a numeric value or a string of characters as data. The length of a variable name can be up to 60 characters. The type of a variable is the type of the data it contains. No distinction is actually made between integer or floating point numbers; all numbers are stored as double precision floating point values. The length of a variable definition (arithmetic expression) may be up to 128 characters. String data may also contain up to 128 characters.
Only scalar variables are permitted, that is, only a single value can be stored in a variable. The LVR command (list variables) may be used to display information about the currently defined variables.

The default value of an explicitly defined variable is zero (for numeric variables) or an empty string (for string variables).
A variable name always begins with a dollar character (\$) followed by at least one alphabetic character, digits or underscores (_). Spaces are not allowed in variable names. Variable names are case insensitive, that is, \$xy is equivalent to \$XY. The following are examples of valid and invalid variable names.

valid	invalid	
$\$ x$	$\$$	(at least one alphanumeric character required)
$\$ x y$	$\$ x y$	(space not allowed)
$\$ a _l o n g _n a m e$	$x$	(missing \$)
$\$ 1 a$	$\$ a-b$	(arithmetic operators not allowed)

Variables are always declared 'global', that is, a variable is recognized during the entire run of OpTaliX , they can be accessed (set or queried) in all modules (e.g. macros, command line, userdefined graphics, etc) at any time they are required.
Variables may also be combined with qualifiers for surface, field, wavelength or zoom position. For example, a variable definition $\$ \mathrm{x}=2$ may be reused for defining surface, field, wavelengths, zoom positions. With this example $s \$ x$ would define surface $s 2$. See section 6.2 .3 , page 36 for more details about this option.

### 26.11.1 Assignment Statement

The assignment statement is used to assign a value to a user-defined variable. The assignment operator (=) must have spaces preceding it and after it. The format of an assignment statement is as follows:

```
$user_var = expression
```

where

$$
\begin{array}{ll}
\text { user_var } & =\text { Specifies a user-defined variable name } \\
\text { expression } & =\text { Specifies the value assigned to the variable }
\end{array}
$$

## Examples:

$\$ x=2$	Assigns the value 2.0 to the variable $\$ x$.
$\$ y=3 * \$ x$	Assigns the value $3 * \$ x$ to the variable $\$ y$. The variable $\$ x$ must   have been previously assigned.
$\$ z=2 *[e f l]$	Assignment using a lens database item
$\$ g l a s s=$ BK7	Assigns the string 'BK7' to the variable \$glass

### 26.12 INPUT Statement

The INPUT statement interrupts the macro execution and prompts the user for numeric data or text data. A dialog box is displayed to enter up to five parameters. Input data is expected from the keyboard only. Up to five variables can be entered simultaneously in a single INPUT statement.


Figure 26.2: Input data
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { INPUT 'text' \$var1 [\$var2 } \\
\text { \$var3 \$var4 \$var5] }\end{array}
$$ \quad \begin{array}{l}Input data in a macro sequence. The command inter- <br>
rupts execution of the macro, displays a dialog box for <br>
entering the variable(s) and then continues execution of <br>
the macro. The parameter 'text' (enclosed in apostro- <br>

phes or quotes) is a descriptive text displayed in the dia-\end{array}\right\}\)| log. 'text' is optional and can be omitted. At least one |
| :--- |
| variable (\$var1) must be specified/entered, otherwise the |
| macro will be terminated. |

## Example 1:

```
input 'Enter x and Y coordinates:' $x $y
print $x $y
```

displays a dialog box for entering the variables $\$ x$, $\$ y$, as shown in Fig. 26.2:
Pressing the OK button continues execution of the macro, CANCEL terminates it.

## Example 2:

The text field can be omitted, such as

```
input $x $y
print $x $y
```


### 26.13 OPEN Statement

The OPEN statement connects an external file to an input/output unit for subsequent read or write. The files are always opened in ASCII format. If a designated file does not exist, it is created.

```OPEN (unit = external-file-unit, file = 'filename')```	Opens an external file specified by 'filename' and connects it to an input/output unit external-file-unit.   The external-file-unit is a scalar INTEGER expression that evaluates to the input/output unit number of an external file. external-file-unit may be any INTEGER number greater than 0 . The unit may also be defined in a variable and re-used in the OPEN statement (see example 2 below).   filename is a scalar CHARACTER expression, enclosed in apostrophes, that evaluates to the name of a file, including the path specification. Files without path specification are assumed in the directory of the currently loaded optical system. The file name may also be specified in a variable, as shown in example 2 below.   Syntax examples:   open (unit=3, file='c:\temp\test.txt')   open (unit $=1$ file $=c: \backslash t e m p \backslash t e s t . t x t)$   open(unit=\$unit, file=\$file)   See also the corresponding statements CLOSE and SELECT.

Example 1: Writing data to a file:

```
open (unit=1, file='c:\temp\test.txt')
print 'format F10.4,2X,F7.4' EFL BFL
close (1)
```


Example 2: Using variables in OPEN statement:

```
$unit = 4
$file = 'c:\temp\my test file.txt'
open (unit=$unit, file=$file)
print 'some input/output follows'
close ($unit)
```

Note that the unit number 0 (zero) is reserved for the text output window and is not allowed in OPEN and CLOSE statements. See also the SELECT statement for re-directing output to the text output window.

26.14 CLOSE Statement

The CLOSE statement terminates the connection between a specified input/output unit number and an external file. The unit must have been opened previously by the OPEN statement.

	Terminates the connection between a specified in- put/output unit number and an external file. ELOMPles: (external-file-unit)
close (3) close (\$unit) See also the corresponding statements OPEN and SELECT.	

26.15 SELECT Statement

Selects an input/output unit that has been previously opened using the OPEN statement. This statement is particularly useful if more than one unit/file is opened and different operations (read, write) are performed on different files.

SELECT (external-file-unit)	Selects an input/output unit that has been previously opened using the OPEN statement. Example: select (3)

Example 1: Opening more than one unit and selecting the units:

```
open (unit=1, file='input.txt')
open (unit=2, file='output.txt')
select (1)
    print 'Writing text to unit 1'
select (2)
    read $x $y
close (2)
close (1)
```


Example 2: Selecting units with variables:

```
$unit = 1
$screen = 0
open (unit=$unit, file='input.txt')
print $x $y
select ($screen) ! select screen/window (unit 0)
print $x $y ! print to text window
close ($unit)
```

Note that unit number 0 (zero) is reserved for the text output window. Unit 0 is always opened and need not to be OPENed explicitly. By default, all outputs (PRINT command) are directed to unit 0 (text output window). Only when a output unit other than 0 has been selected and is in use, unit 0 must be explicitly selected in order to write to the text output window. Example:

```
open (unit=37, file='output.txt')
select (37)
```

```
    print 'Writing text to unit 37'
select (0)
    print 'other stuff' ! output goes to text output window
close (37)
```


26.16 User-defined Functions

A user-defined function is the replacement of a defined name by its corresponding definition. A userdefined function name consists of an at-sign (@) followed by the name. The length of a function name can be up to 60 characters. The function name can have any number of alphabetic characters, digits, and underscores (\quad) following the at-sign (@). A special assignment operator (==) must be used for defining functions. The (==) assignment operator cannot have spaces separating the two = signs. A user-defined function assignment (i.e. definition) may include arithmetic expressions and operators $\left(+-/ * * *^{\wedge}\right)$, lens database items or intrinsic functions. The length of a function definition (arithmetic expression) may be up to 128 characters.

Examples:

$$
\begin{array}{ll}
@ m y _f k n==2 *[e f l] & \text { ! Defines a function name "my_fkn" using a lens database item } \\
@ 123==12+\sin (1) & \text { ! Function names may contain digits }
\end{array}
$$

Invalid Function Definitions:

```
@my_fkn = 2*[efl] ! Function definition requires two = signs
abc == 12+\operatorname{sin}(1) ! Function names must start with at-sign (@).
```

The function definitions may be listed by the LFK command:

LFC	List user-defined function names and the arithmetic definitions associ- ated.

Note that the \#define form is obsolete and should no longer be used.

26.17 Control Statements

Control statements allow the order of execution of statements to be changed. All control statements may be nested.

26.17.1 DO Construct

The DO construct specifies the repeated execution (loop) of a block of code. A DO statement begins a DO construct. An ENDDO statement ends the innermost nested DO construct. The maximum nesting depth of DO-ENDDO constructs is 20 .

Syntax:

do \$user_var = expr1, expr2 [,expr3]
\{statements
enddo
where:
\$user_var Specifies a variable reference to contain the loop values.
expr1 Specifies the initial value of the loop variable \$user_var.
expr2 Specifies the final value of the loop variable \$user_var.
expr3 Optional. Specifies the increment/decrement value of the loop variable \$user_var. If omitted, the default is +1.0 . An increment value of 0 is not valid.
\{statements\} Specifies the statement(s) to be executed within the DO-ENDDO environment.

Note: expr1, expr2 and expr3 may contain any valid arithmetic expression using variables, functions or lens database items.

Example 1:

A simple example indicating the use of arithmetic calculations.

```
do $x = 2,10,2
    $y = 2*$x
    print $x $y
enddo
```


Example 2:

This example alters the image surface thickness (the defocus) to step through a range of $\pm 0.1 \mathrm{~mm}$ in increments of 0.02 mm . The coupling efficiency (CEF) is printed at the various focal positions.

```
do $x = [thi si]-0.1, [thi si]+0.1, 0.02
    thi s2 = $x
    print $x [cef]
enddo
```


Example 3:

This example uses macro parameters passed from the command line to the macro. For example the command 'RUN my_macro.mac 210 2' passes the parameter values to be used for $\% 1, \% 2$ and $\% 3$ in the following DO-loop:

```
do $x = %1, %2, %3
    print $x
enddo
```


26.17.2 WHILE Construct

The WHILE construct specifies the repeated execution (loop) of a block of code until a condition is true. A WHILE statement begins a WHILE construct. An ENDWHILE or ENDDO statement ends the innermost nested WHILE construct. The maximum nesting depth of WHILE-ENDWHILE constructs is 20 .

Syntax:

```
while (while_expr)
```

 \{statements \(\}\)
    ```
endwhile
```

In a WHILE loop-control, while-expr is evaluated and if false, the loop terminates. while_expr may contain any valid arithmetic expression using variables, functions or lens database items.

Example 1:

```
$x = 0
while ($x < 10)
    $x = $x+1
    print $x
endwhile
```


Example 2:

```
$x = 0
while ([thi sl] < 5)
    $x = $x+1
    thi s2 $x
    print [mtfa fl]
endwhile
```


26.17.3 IF Construct

The IF construct controls whether a block of statements will be executed based on the value of a logical expression. The syntax of IF constructs is:

```
IF (expr) THEN
    {statements}
ELSEIF (expr) THEN
    {statements}
ELSE
    {statements}
ENDIF
```

where expr is a scalar LOGICAL expression. The statements are evaluated in the order of their appearance in the construct until a true value is found, or an ELSE statement or ENDIF statement is encountered. If a true value is found, the block immediately following is executed. Statements in any remaining ELSEIF statements of the IF construct are not evaluated.
If none of the evaluated expressions is true, then the block of code following the ELSE statement is executed. The ELSE statement and its statements must be the last block in the IF construct.
The characters accepted for enclosing IF/ELSEIF expressions are parenthesis () or braces \{ \}.
Logical expressions may include arithmetic expressions (e.g. 2*sqrt (\$x)) or database items or a combination of both (such as $2 *[e f l]$).
IF constructs my be nested. The maximum nesting depth of IF-ELSEIF-ELSE-ENDIF constructs is 20 .

Rules for constructing Logical Expressions:

- Logical expressions must be enclosed in () or $\}$ brackets.
- Logical expressions must have a logical operator, such as $=,==, /=,>,>=,<,<=$.
- Blank characters are allowed within logical expressions, except within arithmetic expressions.

That is,
IF $(2 * 2>3)$ is correct, whereas
$\operatorname{IF}(2 * 2>3)$ is not accepted (blanks within arithmetic expression).

Operators in IF Expressions:

The intrinsic operators in IF expressions are:

```
= equal to
== equal to
/= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to
```


Example 1:

```
$x = 0
if($x > 3) then
    print '$x is greater than 3'
elseif ($x > 0 ) then
    print '$x is greater than 0 but less than 3'
elseif ($x < O) then
    print '$x is less than zero'
else
    print '$x is zero'
endif
```


Example 2:

```
$x = 0
if( [bfl] <= sqre(100)) then
    $r = 0.5*[rdy sl]
    rdy s3 $r
    print 'Radius at s3 has been adjusted to ' $r
else
    print 'BFL is greater than 10'
endif
```


Example 3:

```
if ([gla s2]='n-bk7') then
    print 'true'
else
    print 'false'
endif
```


26.18 Return

The return statement passes one or more values from a macro to its caller. A return statement without variables has no effect. Arithmetic expressions are not allowed in the return statement.

Example 1:

```
$x = sqrt(2)
return $x ! pass the value of $x to the caller
```


Example 2:

\$x = sqrt(2)
\$ $y=\sin (1)$
return $\$ \mathrm{x} \$ \mathrm{y}$! pass the values of $\$ \mathrm{x}$ and $\$ \mathrm{y}$ to the caller

Example 3:

```
return ! statement has no effect (variables missing)
return 3*($x+2) !arithmetic expressions not allwed in return statement!
```


26.19 Comments

The character ! indicates a comment except where it occurs in a character context. Examples:

```
$a = 3 ! this is a comment, which is not processed
print 'variable $a ' $a ! this prints the variable
```


26.20 Logical Line Separation

The character ; separates logical lines on a single physical line. For example,

```
THI s1..3 12 ; LIS; fan
```

is processed as if the following lines were entered separately

```
THI s1..3 12
```

LIS
fan

26.21 Logical Line Continuation

The character \& as the last non-blank character of a line signifies that the logical line is continued on the next physical line. ${ }^{1}$ If a character context in a macro file is being continued, the $\&$ may not be followed by a comment. If the first non-blank character is $\&$, then the continuation begins at the character position immediately following the $\&$; otherwise it begins in column 1 .

Example:

The first line will be \& continued by a second line

[^1]is interpreted as a single line:
The first line will be continued by a second line

27

Lens Database Reference

This chapter summarizes the available lens database items. Almost all commands have a corresponding lens database item. The syntax for lens database items is identical to the syntax used in the command line. Unless otherwise noted, the returned quantity is a numeric value.
When specifying lens database items, the same mnemonics and syntax is used in thecommand line, in a macro file or as constraint/target in the definition of the optimization merit function. Lens database items must always enclosed in square brackets, [and]. Examples of valid and invalid lens database items are

```
[thi s3] valid
thi s3 invalid, brackets missing
[EFL] valid
[EFL ] valid
[E F L ] invalid, keywords must not include blanks
```

Lens database items can also be used in arithmetic expressions such as
thi s3 sqrt(2*[SYL]+3.14159)

Lens database items can be printed via the print command. For example,
print 'Radius $=$ ' [rdy s3]
outputs the radius of curvature on surface 3 .
Lens database items accept variables in conjunction with qualifiers (for surface, field, wavelength, zoom, etc), such as
thi s\$var 10.5
where $\$$ var is the integer value of variable \$var. Assuming \$var = 3, this syntax may be understood as concatenating "s" (without the quotes) and the integer value of \$var to form the string "s3".

| Configuration Data: | |
| :--- | :--- |
| REF [zk] | Reference wavelength number
 WL wk [zk]
 NWL |

| continued from previous page | |
| :---: | :---: |
| XAN fi [zk] | X -angle (in degree) for field number fi and (optional) zoom position zk. Note: If XAN is not the field specification value, for example when XIM defines the X-field, XAN returns the paraxial equivalent to the field specification. $\mathrm{XAN}=\tan ^{-1}$ (XIM/EFL). |
| YAN fi [zk] | Y-angle (in degree) for field number $f i$ and (optional) zoom position zk. See also the note given for XAN. |
| XOB fi [zk] | X -object height for field number fi and (optional) zoom position zk. See also the note given for XAN. |
| YOB fi [zk] | Y-object height for field number fi and (optional) zoom position zk. See also the note given for XAN. |
| XIM fi [zk] | X-image height (paraxial) for field number fi and (optional) zoom position zk . See also the note given for XAN. |
| YIM fi [zk] | Y-image height (paraxial) for field number fi and (optional) zoom position zk . See also the note given for XAN. |
| NFI | Number of fields defined in the system |
| FNO [zk] | Paraxial F-number |
| NA [zk] | Numerical aperture in image space |
| NAO [zk] | Numerical aperture in object space |
| EPD [zk] | Entrance pupil diameter |
| APD [zk] | Exit pupil diameter ${ }^{1}$ |
| PUI | Intensity apodization across pupil |
| PUX | Apodization relative X-pupil coordinate at which PUI is reached |
| PUY | Apodization relative Y-pupil coordinate at which PUI is reached |
| Paraxial Data: | |
| EFL [zk] | Equivalent focal length, Y/Z-cross section, default |
| EFLX [zk] | Equivalent focal length, X/Z-cross section |
| PWR [zk] | Optical power $=1 / \mathrm{EFL}$ |
| MFL sk | Module focal length |
| BFL [wk] [zk] | Back focal length, if wk is absent, reference colour is used. |
| OAL [si..j] [zk] | Overall length between surface vertices si to sj |
| SYL [si..j] [zk] | Overall length between surface vertices si to $s j$. Without surface qualifier, first surface to image plane is returned. |
| SH1 [zk] | Position of front principal plane measured from vertex of first surface. |
| SH2 [zk] | Position of rear principal plane measured from vertex of last surface. |
| OAL [zk] | Overall length (= object-image distance for finite conjugates, respectively first surface to image for infinite object distance) |
| OID [zk] | Object to image distance |
| MAG [zk] | Magnification |
| RED [zk] | Reduction factor (=-MAG) |
| EPD [zk] | Entrance pupil diameter |
| SAP [zk] | Location of exit pupil from last surface |
| | continued on next page |

[^2]| continued from previous page | |
| :---: | :---: |
| SAPI [zk] | 1/SAP |
| SEP [zk] | Location of entrance pupil from first surface |
| PRD [zk] | Pupil relay distance (distance of entrance pupil to exit pupil) |
| PRDI [zk] | 1/PRD |
| UMY sk [zk] | Paraxial direction angle of the marginal aperture ray |
| UA sk [zk] | same as UMY |
| HMY sk [zk] | Paraxial height of the marginal aperture ray |
| HA sk [zk] | same as HMY |
| UCY sk [zk] | Paraxial direction angle of chief ray |
| UB sk [zk] | same as UCY |
| HCY sk [zk] | Paraxial height of chief ray |
| HB sk [zk] | same as HCY |
| Surface Data: | |
| so | Number of object surface, returns an integer value. Example: eva [so] |
| ss | Number of stop surface, returns an integer value. Example: eva [ss] |
| si | Number of image surface, returns an integer value. Example: eva [si] |
| THI sk [zk] | Thickness on surface sk, zoom position zk |
| THR sk [zk] | Reference thickness on surface sk |
| IMD [zk] | Image distance (THI si-1) at zoom position zk |
| IMC [zk] | Image clearance, the smaller distance (edge or axis) between surface i-1 and the image surface i. |
| IND sk wk | Index of refraction at surface sk, wavelength wk. |
| cuX sk [zk] | Curvature in X / Z plane |
| CUY sk [zk] | Curvature in Y/Z plane |
| RDX sk [zk] | Radius of curvature in X / Z plane |
| RDY sk [zk] | Radius of curvature in Y / Z plane |
| ADE sk [zk] | Tilt angle (in degree) around X -axis |
| BDE sk [zk] | Tilt angle (in degree) around Y-axis |
| CDE sk [zk] | Tilt angle (in degree) around Z-axis |
| XDE sk [zk] | X-decenter |
| YDE sk [zk] | Y-decenter |
| ZDE sk [zk] | Z-decenter |
| AADE sk [zk] | Tilt angle (in degree) of array cells around local X-axis |
| ABDE sk [zk] | Tilt angle (in degree) of array cells around local Y-axis |
| ACDE sk [zk] | Tilt angle (in degree) of array cells around local Z-axis |
| XSG sk [zk] | Global vertex X-coordinate of surface sk. Coordinates are always referred to the global system. |
| YSG sk [zk] | Global vertex Y-coordinate of surface sk. Coordinates are always referred to the global system. |
| ZSG sk [zk] | Global vertex Z-coordinate of surface sk. Coordinates are always referred to the global system. |

continued on next page

| continued from previous page | |
| :---: | :---: |
| XSC sk [zk] | Global vertex X-coordinate of surface sk. Coordinates are referred to the coordinate system defined by the GLO sk command. Compare with XSG command above. |
| YSC sk [zk] | Global vertex Y-coordinate of surface sk. Coordinates are referred to the coordinate system defined by the GLO sk command. Compare with YSG command above. |
| ZSC sk [zk] | Global vertex Z-coordinate of surface sk. Coordinates are referred to the coordinate system defined by the GLO sk command. Compare with ZSG command above. |
| CXG sk [zk] | global X-direction cosine of surface normal |
| CYG sk [zk] | global Y-direction cosine of surface normal |
| CZG sk [zk] | global Z-direction cosine of surface normal |
| A sk [zk] | $4^{t} h$ order aspheric constant |
| B sk [zk] | $6^{t} h$ order aspheric constant |
| C sk [zk] | $8^{t} h$ order aspheric constant |
| D sk [zk] | $10^{t} h$ order aspheric constant |
| E sk [zk] | $12^{t} h$ order aspheric constant |
| F sk [zk] | $14^{t} h$ order aspheric constant |
| G sk [zk] | $16^{t} h$ order aspheric constant |
| H sk [zk] | $18^{t} h$ order aspheric constant |
| K sk [zk] | Conic constant |
| SAG sk x_height y_height DEF | Surface sag at surface sk. x_height and y_height are the local coordinates at the tangent plane of surface sk. Defocus |
| Arrays: | |
| ARX sk | Array surface X-spacing |
| ARY sk | Array surface Y-spacing |
| ARXO sk | Array surface X-offset of entity of array channels |
| ARYO sk | Array surface Y-offset of entity of array channels |
| AMX sk | \pm limit for grid in X -direction |
| AMY sk | \pm limit for grid in Y-direction |
| AADE sk | α-tilt angle (in degree) of each array cell. |
| ABDE sk | β-tilt angle (in degree) of each array cell. |
| ACDE sk | γ-tilt angle (in degree) of each array cell. |
| Grating/Hologram: | |
| GRO sk | Grating order |
| GRX sk | Grating frequency X (grooves per mm) |
| GRY sk | Grating frequency Y (grooves per mm) |
| HWL sk | Hologram design wavelength (in $\mu \mathrm{m}$) |
| Materials Data: | |
| GLA sk [zk] | Returns string with glass name |
| GL1 sk [zk] | Returns string with glass name, equivalent to GLA |
| GL2 sk [zk] | Returns string with glass name on "right" side of surface |
| EXC sk [zk] | Linear expansion coefficient $\cdot 10^{6}$ |
| continued on next page | |

| continued from previous page | |
| :---: | :---: |
| DNO sk [zk] | Offset on refractive index |
| DVo sk [zk] | Offset on Abbe number (V-number) |
| GADE sk [zk] | Tilt of GRIN profile around X-axis |
| GBDE sk [zk] | Tilt of GRIN profile around Y-axis |
| GCDE sk [zk] | Tilt of GRIN profile around Z-axis |
| GXDE sk [zk] | X-decenter of GRIN profile |
| GYDE sk [zk] | Y-decenter of GRIN profile |
| ABBE sk | Abbe number at surface sk. |
| DNDT sk wk [TEMP PRE] | Absolute dndT at surface sk, wavelength wk. The absolute dndT is referred to vacuum (the default in $O p T a l i X$ if temperature calculations are concerned). Optional parameters are Temperature TEMP (in ${ }^{\circ} \mathrm{C}$) and pressure PRE (in mmHg). If not specified, TEMP defaults to $20^{\circ} \mathrm{C}$ and PRE to 760 mmHg . |
| ADNDT sk wk [TEMP PRE] | Absolute dndT at surface sk, wavelength wk. The absolute dndT is referred to vacuum. ADNDT is a complementary command to DNDT (see above). |
| RDNDT sk wk [TEMP PRE] | Relative dndT at surface sk, wavelength wk. RDNDT is referred to air. See also the relation between absolute dndT and relative dndT in section 13.2, page 222. |
| EXC sk | Linear expansion coefficient. Unit $=* 10^{6}$. at surface sk. |
| EXM sk | Linear expansion coefficient of mirror substrate at surface sk. Unit $=* 10^{6}$. |
| SPG sk | Specific gravity [g/ cm^{2}] at surface sk. |
| RHO sk | Specific gravity, alternative command to SPG, at surface sk. |
| Apertures: | |
| CIR sk pk [zk] | Circular aperture radius of surface sk, pupil number pk , zoom position zk |
| REX sk pk [zk] | Rectangular aperture, X-extension |
| REY sk pk [zk] | Rectangular aperture, Y-extension |
| ELX sk pk [zk] | Elliptical aperture, half X-axis |
| ELY sk pk [zk] | Elliptical aperture, half Y-axis |
| ADX sk pk [zk] | Aperture decenter $\mathrm{X}, \mathrm{pk}=$ pupil number |
| ADY sk pk [zk] | Aperture decenter $\mathrm{Y}, \mathrm{pk}=$ pupil number |
| ARO sk pk [zk] | Aperture rotation (in degree) |
| SD sk [fi..j] [zi..j] | Maximum semi-diameter on surface sk. In absence of field and zoom qualifiers, value is calculated at all fields and zoom positions. |
| WTA [zk] | Weight on aperture (used in optimization only) |
| Environmental Data: | |
| TEM sk [zk] | Temperature (in ${ }^{\circ} \mathrm{C}$) |
| PRE sk [zk] | Pressure (in mm Hg) |
| Ray Data: | |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| AOI sk fi zi wi [zk] rel_apeX rel_apeY | Angle of incidence of a ray at surface si, field $f i$, zoom position zi, wavelength wi. The values rel_apeX, rel_apeY are the relative coordinates in the entrance pupil. The result is in degree. Note that all parameters are obligatory. Example: aoi s3 f5 w1 $01<15$. |
| AOR sk fi zi wi [zk] rel_apeX rel_apeY | Angle of refraction (or reflection) of a ray with respect to the local surface normal. All parameters, surface sk, field $f i$, zoom position zi, wavelength wi are obligatory. The values rel_apex, rel_apey are the relative coordinates in the entrance pupil. The result is in degree. Example: aor s3 f5 w1 $01<15$. |
| AOE sk fi zi wi [zk] rel_apeX rel_apeY | Angle of exit of a ray with respect to the local surface normal. Note that this command is synonymous the the AOR command given above. All parameters, surface sk, field fi, zoom position zi, wavelength wi are obligatory. The values rel_apex, rel_apeY are the relative coordinates in the entrance pupil. The result is in degree. Example: aoe s3 f5 w1 $01<15$. |
| X sk wk fk rx ry [zk] [gk] | X-intersection coordinate of ray on surface sk, wavelength wk, field $£ k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| Y sk wk fk rx ry [zk] [gk] | Y-intersection coordinate of ray on surface $s k$, wavelength wk , field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| Z sk wk fk rx ry [zk] [gk] | Z-intersection coordinate of ray on surface $s k$, wavelength wk , field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| XGR wi..j fk [zk] | X-coordinate of spot gravity center on the image surface for wavelength range wi . . j , field $£ k$ |
| YGR wi..j fk [zk] | Y-coordinate of spot gravity center on the image surface for wavelength range wi. . j , field $£ k$ |
| ```CX sk wk fk rx ry [zk] [gk]``` | X-direction cosine of ray on surface $s k$, wavelength $w k$, field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| ```CY sk wk fk rx ry [zk] [gk]``` | Y-direction cosine of ray on surface $s k$, wavelength $w k$, field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| ```CZ sk wk fk rx ry [zk] [gk]``` | Z-direction cosine of ray on surface $s k$, wavelength $w k$, field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| CXG sk wk fk rx ry [zk] | Global X-direction cosine of ray on surface sk, wavelength wk, field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| ```CYG sk wk fk rx ry [zk]``` | Global Y-direction cosine of ray on surface sk, wavelength wk, field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| ```CZG sk wk fk rx ry [zk]``` | Global Z-direction cosine of ray on surface sk, wavelength wk, field $f k$, relative x-pupil $r x$, relative y-pupil $r y$ |
| $\begin{aligned} & \text { CXN sk wk fk rx ry } \\ & {[\mathrm{zk}]} \end{aligned}$ | X-direction cosine of surface normal on intersection of ray at surface $s k$, wavelength $w k$, field $f k$, relative x-pupil $r x$, relative y-pupil ry |
| CYN sk wk fk rx ry
 [zk] | Y-direction cosine of surface normal on intersection of ray at surface $s k$, wavelength $w k$, field $f k$, relative x-pupil $r x$, relative y-pupil ry |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| ```CZN sk wk fk rx ry [zk]```
 NRAYS wk fk [zk] | Z-direction cosine of surface normal on intersection of ray at surface $s k$, wavelength $w k$, field $f k$, relative x-pupil $r x$, relative y-pupil ry
 Number of rays traced at wavelength wk , field $£ \mathrm{k}$, and optional zoom position zk. |
| Polarization Data: | |
| POLX fk wk sk rel_apeX rel_apeY
 POLY fk wk sk rel_apeX rel_apey
 POLP fk wk sk rel_apeX rel_apey
 POLD fk wk sk rel_apex rel_apey | Polarization amplitude component X for a single ray at field fk , wavelength wk, surface sk.
 Polarization amplitude component Y for a single ray at field fk , wavelength wk , surface sk.
 Polarization phase (difference) for a single ray at field $£ k$, wavelength wk , surface sk. The polarization phase is given in radians. Degree of polarization for a single ray at field fk , wavelength wk, surface sk. |
| Tolerance/Sensitivity Data: | |
| $\begin{aligned} & \text { TSF [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on test-plate fit. Assumes that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLF or a description of test plate fit on page 405. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLF 2.0 (fringes) for calculating tolerance sensitivity TSF. |
| $\begin{aligned} & \text { TSI [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on surface irregularity. Assumes that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command IRR on page 401. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes IRR 0.4 (fringes) for calculating tolerance sensitivity TSI. |
| $\begin{aligned} & \text { TST [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on surface thickness (distance). Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLT on page 401. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLT 0.02 for calculating tolerance sensitivity TST. |
| $\begin{aligned} & \text { TSN [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on index of refraction. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLN, page 401, for defining index tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLN 0.001 for calculating tolerance sensitivity TSN. |
| $\begin{aligned} & \text { TSV [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on dispersion. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLN, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLV 0.008 (0.8%) for calculating tolerance sensitivity TSV. |
| | continued on next page |

| continued from previous page | | | |
|---|---|---|---|
| $\begin{aligned} & \hline \operatorname{TSX} \quad[\mathrm{fk} \mid \mathrm{fi} . \cdot j \\ & \mathrm{wk} \mid \mathrm{wi} . \mathrm{j}] \text { sk\|si..j } \end{aligned}$ | Tolerance sensitivity on X-decenter. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLX, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLX 0.02 (mm) for calculating tolerance sensitivity TSX. |
| ```TSY [fk\|fi..j wk|wi..j] sk|si..j``` | Tolerance sensitivity on Y-decenter. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLY, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLY 0.02 (mm) for calculating tolerance sensitivity TSY. |
| $\begin{aligned} & \text { TSZ [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on Z-decenter. A Z-decenter is equivalent to a thickness tolerance. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLZ, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLZ $0.05(\mathrm{~mm})$ for calculating tolerance sensitivity TSZ. |
| $\begin{aligned} & \text { TSA [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on tilt about X-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLA, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLA 5 (arcmin) for calculating tolerance sensitivity TSA. |
| $\begin{aligned} & \text { TSB [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on tilt about Y-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLB, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLB 5 (arcmin) for calculating tolerance sensitivity TSB. |
| $\begin{aligned} & \text { TSG [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on tilt about Z-axis. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command DLG, page 401, for defining dispersion tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes DLG 5 (arcmin) for calculating tolerance sensitivity TSG. |
| $\begin{aligned} & \text { TSH [fk\|fi..j } \\ & \text { wk\|wi..j] sk\|si..j } \end{aligned}$ | Tolerance sensitivity on index homogeneity. Requires that a tolerance has been defined on the corresponding surface in the tolerance editor. See the command HOM, page 401, for defining homogeneity tolerances. If a tolerance on this parameter has not been defined in the tolerance editor, the program assumes HOM $50\left(50 \cdot 10^{-6}\right)$ for calculating tolerance sensitivity TSH. |
| Geometric Analyses: | |
| SPD fk wk [zk] | Spot diameter (rms) |
| SPX fk wk [zk] | Spot diameter (rms), only X-direction |
| continued on next page | |

| continued from previous page | |
| :---: | :---: |
| SPY fk wk [zk] | Spot diameter (rms), only Y-direction |
| SPDPV fk wk [zk] | Spot diameter (PV) |
| SPXPV fk wk [zk] | Spot diameter (PV), in X-direction |
| SPYPV fk wk [zk] | Spot diameter (PV), in Y-direction |
| LAC fk [wi..j] [zk] | Lateral colour |
| LAX fk wk [zk] | Logitudinal aberration X |
| ape_relX ape_rely | |
| LAY fk wk [zk] | Logitudinal aberration Y |
| ape_relX ape_rely | |
| SSR [wi..j] [zi..j] | Secondary spectrum, weighted rms-value. |
| SPA [zk] | $3^{\text {rd }}$ order spherical aberration |
| COMA [zk] | $3^{\text {rd }}$ order coma |
| ASTI [zk] | $3^{\text {rd }}$ order astigmatism |
| PETZ [zk] | $3^{\text {rd }}$ order petzval sum (field curvature) |
| PTZ [zk] | synonymous to PETZ, $3^{\text {rd }}$ order petzval sum (field curvature), for Code V compatibility only. |
| DIST [zk] | $3^{\text {rd }}$ order distortion |
| DST [zk] | synonymous to DIST, $3^{\text {rd }}$ order distortion, for Code V compatibility only. |
| LCA [zk] | $3^{\text {rd }}$ order longitudinal colour |
| TCA [zk] | $3^{\text {rd }}$ order transversal colour |
| AX [zk] | synonymous to TCA, $3^{\text {rd }}$ order longitudinal colour, for Code V compatibility only. |
| DISX fk [zk] | Distortion, X-direction |
| DISY fk [zk] | Distortion, Y-direction |
| FDISX fk [zk] | F-theta distortion, X-direction |
| FDISY fk [zk] | F-theta distortion, Y-direction |
| VIG [fk] [zk] | Vignetting factor relative to field 1 . Values are returned between 0 (100% vignetting) and 1 (no vignetting). |
| ECG fk [wi..j] diam_x diam_y | Encircled energy (geometric) contained in image area $\mathrm{X}=$ diam_x, Y = diam_y |
| GMTFT [fk zk] | Tangential geometric MTF at field fk , zoom position zk . |
| GMTFS [fk zk] | Sagittal geometric MTF at field fk, zoom position zk. |
| GMTFA [fk zk] | Average geometric MTF at field fk, zoom position zk. GMTFA $=$ 0.5 (GMTFT + GMTFS) |
| ASTT fk wk rx ry [zk] | Tangential astigmatism along a single ray defined by wavelength $w k$, field $£ k$, relative x-pupil $r x$, relative y-pupil ry. Astigmatism is always measured at the image surface. If wk is omitted, the RMS value over all wavelengths is returned. |
| ASTS fk wk rx ry [zk] | Sagittal astigmatism along a single ray defined by wavelength wk, field $f k$, relative x-pupil $r x$, relative y-pupil ry. Astigmatism is always measured at the image surface. If wk is omitted, the RMS value over all wavelengths is returned. |

continued on next page

| continued from previous page | |
| :---: | :---: |
| ASTD fk wk rx ry [zk] | Astigmatic difference along a single ray defined by wavelength $w k$, field $£ k$, relative x-pupil $r x$, relative y-pupil ry. Astigmatism is always measured at the image surface. If wk is omitted, the RMS value over all wavelengths is returned. |
| Transmission Analyses: | |
| TRA fk wk sk zk pupil_X, pupil_Y
 TRAS fk wk sk zk pupil_X, pupil_Y
 TRAP fk wk sk zk pupil_X, pupil_Y | Mean (average) transmission along a single ray, defined at field fk , wavelength number wk , zoom position zk . The data pair (pupil_x, pupil_Y) defines the relative coordinates in the entrance aperture.
 S-pol transmission along a single ray, defined at field fk, wavelength number wk, zoom position zk . The data pair (pupilx, pupil_Y) defines the relative coordinates in the entrance aperture. P-pol transmission along a single ray, defined at field fk, wavelength number wk, zoom position zk . The data pair (pupilx, pupil_Y) defines the relative coordinates in the entrance aperture. |
| Diffraction Analyses: | |
| CEF [fk wk zk] | Fiber coupling efficiency |
| CEFDB [fk wk zk] | Fiber coupling efficiency in decibel |
| STREHL fk [wi..j] $[\mathrm{zk}]$ | Strehl ratio |
| DMD [fk\|fi..j
 wk\|wi..j] ape_x ape_y | Conrady D-d sum at field fk weighted over wavelengths wi..j. See also sect. 14.2.12. |
| MTF fk [wi..j] [zk] | Mean MTF $=0.5^{*}$ MTF(Sag+Tan). Equivalent to the MTFA command (see below). |
| MTFA fk [wi..j] [zk] | Average (mean) MTF $=0.5 * \mathrm{MTF}$ (Sag+Tan) |
| MTFS fk [wi..j] [zk] | Sagittal MTF |
| MTFT fk [wi..j] [zk] | Tangential MTF |
| WAV fk wk [zk] | Wavefront aberration (rms) |
| WAVPV fk wk [zk] | Wavefront aberration, peak-to-valley (PV) |
| WAVZ fk wk [zk] | Wavefront aberration (rms), with selected Zernike terms subtracted. Define Zernike terms by the ZWACT command, see page 147. |
| PSDX fk [zk]
 [threshold] | PSF width-x at intensity-threshold at field fk . |
| PSDY fk [zk]
 [threshold] | PSF width-y at intensity-threshold at field fk . |
| PSE fk [zk]
 [threshold] | Ellipticity of PSF, ratio of PSDX/PSDY at intensity-threshold at field $f k$. |
| ECE fk diam | encircled energy within diameter (diam) at field $£ \mathrm{k}$. |
| EQE fk diam | ensquared energy within diameter (diam) at field fk . |
| KEFS fk | Knife Edge Function (KEF) in the sagittal orientation at field $£ \mathrm{k}$. |
| KEFT fk | Knife Edge Function (KEF) in the tangential orientation at field fk. |
| Gaussian Beams: | |
| WRX [sk] | Gaussian beam waist radius X (in mm) at surface sk |
| WRY [sk] | Gaussian beam waist radius Y (in mm) at surface sk |
| ZWX [sk] | Location of Gaussian beam waist X relative to surface sk |
| ZWY [sk] | Location of Gaussian beam waist Y relative to surface sk continued on next page |

| continued from previous page | |
| :---: | :---: |
| RCX [sk] | Radius of X-curvature of Gaussian beam waist at surface sk |
| RCY [sk] | Radius of Y-curvature of Gaussian beam waist at surface sk |
| SRX [sk] | Spot size of Gaussian beam in X/Z-plane at surface sk |
| SRY [sk] | Spot size of Gaussian beam in Y/Z-plane at surface sk |
| GDX [sk] | Divergence of Gaussian beam in X/Z-plane at surface sk. Must have the Gaussian source parameters WRX, WRY, RCX, RCY properly set. |
| GDY [sk] | Divergence of Gaussian beam in Y/Z-plane at surface sk. Must have the Gaussian source parameters WRX, WRY, RCX, RCY properly set. |
| RRX [sk] | Rayleigh range of Gaussian beam in X/Z-plane at surface sk. |
| RRY [sk] | Rayleigh range of Gaussian beam in Y/Z-plane at surface sk. |
| Fiber Data: | |
| FSR [zk] | Source fiber mode field radius (in mm) |
| FSD [zk] | Source fiber far-field divergence (in rad) |
| FSA [zk] | Fiber source α-tilt in degree |
| FSB [zk] | Fiber source β-tilt in degree |
| FSN1 [zk] | Source fiber, index of refraction n_{1} of core material |
| FSN2 [zk] | Source fiber, index of refraction n_{2} of cladding material |
| FSCR [zk] | Source fiber, core radius in mm |
| FRR [zk] | Receiving fiber mode field radius (in mm) |
| FRD [zk] | Receiving fiber far-field divergence (in rad) |
| FRA [zk] | Receiving fiber α-tilt in degree |
| FRB [zk] | Receiving fiber β-tilt in degree |
| FRX [zk] | Receiving fiber x -offset (in mm) with respect to the chief ray |
| FRY [zk] | Receiving fiber y -offset (in mm) with respect to the chief ray |
| FRN1 [zk] | Receiving fiber, index of refraction n_{1} of core material |
| FRN2 [zk] | Receiving fiber, index of refraction n_{2} of cladding material |
| FRCR [zk] | Receiving fiber, core radius in mm |
| Illumination Source Data: | |
| SUSE sk 0\|1 | Use illumination source $\mathrm{k}(0=\mathrm{no}, 1=\mathrm{yes})$. Example, enabling source 2: suse s2 1 |
| SPWR sk pwr | Source power |
| SXEX sk x_extension | Source X-extension (full width) |
| SYEX sk y_extension | Source Y-extension (full width) |
| SXDE sk x_dec | Source X-decenter |
| SYDE sk Y_dec | Source Y-decenter |
| SZDE sk z_dec | Source Z-decenter |
| SADE sk alpha | Source tilt (α) about X-axis |
| SBDE sk beta | Source tilt (β) about Y-axis |
| SCDE sk gamma | Source tilt (γ) about Z-axis |
| SARAY sk analysis_rays | Source: Number of analysis rays |
| SPRAY sk plot_rays | Source: Number of plot rays |
| SGREF sk O\|G | Source reference: $\mathrm{O}=$ object, $\mathrm{G}=$ global |
| SDIVX sk x_div | Source divergence X (in degrees), full width |
| SDIVY sk Y_div | Source divergence Y (in degrees), full width |
| SOFA sk x_offs | Source emittance angular offset in Y direction (in degrees) continued on next page |

| continued from previous p | |
| :---: | :---: |
| SOFB sk y_offs | Source emittance angular offset in X direction (in degrees) |
| Illumination Analysis Data: | |
| RPWR | Return received power, including all activated sources |
| EPWR | Return emitted power, all activated sources |
| NILR | Return number of successfully received rays at target surface, including all active sources. |
| Miscellaneous Functions | |
| RAIS | Ray aiming maximum step relative to entrance pupil (default = 1). |
| RAIT | Ray aiming tolerance relative to entrance pupil (default $=0.001$). |
| TIT | Returns 80 character string containing lens title. |
| COM sk | Returns the comment string for surface sk |
| DAT | Returns 12 -character string with current date in the format DD MMMM JJJJ |
| TIM | Returns 8 -character string with current time in the format HH:MM:SS |
| POX [zk] | Plot offset X in paper units |
| POY [zk] | Plot offset Y in paper units |
| POZ [zk] | Plot offset Z in paper units |
| WEI [si..j] | Weight (in grams) |
| SPG [sk] | Specific gravity (in $\mathrm{g} / \mathrm{cm}^{3}$) |
| PLANCK wavel T | Calculate radiance of a black body source according to Planck's law. wavel is the wavelength in $\mu m, \mathrm{~T}$ is the temperature in Kelvin. |
| LADX [fk wk dlam] | Lateral dispersion in X-direction, given at the image surface. Preferably used in spectrometric systems. Calculates the spread of a wavelength interval dlam (in $\mu \mathrm{m}$) at the image surface. |
| | Example: ladx f 1 w 20.01 calculates the spatial extension (spread) of the wavelength interval $\Delta \lambda=0.01 \mu \mathrm{~m}$ in the image. The resulting unit is $\mu \mathrm{m} / \mathrm{mm}$. |
| LADY [fk wk dlam] | Lateral dispersion in Y-direction, given at the image surface. Preferably used in spectrometric systems. Calculates the spread of a wavelength interval dlam (in $\mu \mathrm{m}$) at the image surface. Example: lady f1 w2 0.01 calculates the spatial extension (spread) of the wavelength interval $\Delta \lambda=0.01 \mu \mathrm{~m}$ in the image. The resulting unit is $\mu \mathrm{m} / \mathrm{mm}$. |
| RAND [SEED num] | Random number. Optionally the seed can be set by "RAND SEED num", where num is any arbitrary number. |

28

Colour Names

This chapter describes names of predefined colours in $O p T a l i X$ to be used in most graphical output. Currently colours can be separately defined for fields, coatings and encircled energy geometric (ECG). In later versions this will also be possible for wavelengths and zoom positions.
Colours for various plot/analysis types are specified by the CLS command. For a detailed description see the individual sections on page 47 (fields), page 384 (coatings).
Note that colour settings are preserved for a specific optical design. On loading (restoring) a new design, colours are set to their default values unless user-defined colours are specified in the new file.

28.1 Predefined colours

Predefined colours are designated by names. The first three characters are significant in specifying colour names.

| | Short name | colour | RGB - value |
| :--- | :--- | :--- | :--- |
| \square | RED | red | $255,0,0$ |
| \square | GRE | green | $0,255,0$ |
| \square | BLU | blue | $0,0,255$ |
| \square | MAG | magenta | $255,0,255$ |
| \square | CYA | cyan | $0,255,255$ |
| \square | YEL | yellow | $255,255,0$ |
| \square | BLA | black | $0,0,0$ |
| \square | BRO | brown | $185,92,0$ |
| \square | ORA | orange | $255,128,0$ |
| \square | GRY | grey | $192,192,192$ |
| \square | VIO | violet | $192,128,255$ |
| \square | TUR | turquoise | $0,194,194$ |
| \square | SAL | salmon | $255,128,128$ |

28.2 Default Colours in Field Plots

The default sequence of colours for field is RED, GREEN, BLUE, MAGENTA, and CYAN. This sequence is repeated up to the last field for systems with more than 5 fields. Use the CLS FLD command (see page 47) to specify your own field colours.

28.3 Default Colours in Coating Analysis

Default colours used in coating analysis plots are RED GREEN BLUE.Use the CLS COA command (see page 384) to specify your own colours.

28.4 Default Colours in Encircled Energy Geometric (ECG) Analysis

Default colours used in encircled energy geometric (ECG) analysis are RED and GREEN.

Importing Lens and Coating Data

The following section describes how lens data from other design packages or from lens catalogues can be imported. Currently supported are optical design packages from CODE-V, ZEMAX, OSLO, MODAS, ATMOS, WinLens, as well as designs from standard catalogue lenses. It is, however, important to note that due to constant improvements in software development, only a subset of the individual design packages will be successfully translated. $O p$ TaliX attempts to recognize a maximum amount of commands and features stored in external lens design files.
Import is accomplished by the generic "IMP" command with optional parameters.

29.1 Import of CODE-V Sequential Files

The import of CODE-V sequential files is accomplished by:

| imp seq/codev
 file_spec | Import CODE-V sequential file from file_spec. Example:
 imp seq c:/codev/dblgauss.seq |
| :--- | :--- |

29.2 Import of ZEMAX Files

From the command line:

| | Import ZEMAX file from file_spec. The correct file
 extension. ZMX must be added
 file_spec |
| :--- | :--- |
| Example:
 imp zmx file c:/zmx_examples/dblgauss.zmx | |

From the menu, select
FILE / IMPORT / ZEMAX which opens a file selection box.

29.3 Import of OSLO Files

From the command line :

| imp osl[o] file | Import Oslo file from file_spec. The correct file extension . LEN
 file_spec |
| :--- | :--- |
| must be added
 Example:
 imp oslo file c:/oslo_examples/dblgauss.len | |

from the menu, select:
FILE / IMPORT / OSLO which opens a file selection box.

29.4 Import of MODAS Files

MODAS (Modern Optical Design and Analysis Software) is an amateur program, written by Ivan Krastev.

| imp mod[as]as | Import Modas file from file_spec. The correct file extension
 file file_spec |
| :--- | :--- |
| .dsg must be added. Example: | |
| imp modas file c:/modas_examples/cassegr.dsg | |

from the menu, select:
FILE / IMPORT / MODAS which opens a file selection box.

Note on aspheric surfaces: MODAS uses an additional quadratic term $A_{2} h^{2}$ to the aspheric definition in Eq. 8.1 (page 70). This term describes a parabola, which is equivalently modeled by the conic constant $K=-1$. Since MODAS only allows either a pure conic surface or a higher-order asphere, but not both simultaneously, a simple relation for converting coefficients can be established:

$$
\begin{equation*}
c=2 \cdot A_{2} \tag{29.1}
\end{equation*}
$$

Thus, on import MODAS aspheres, the conic constant K will be set to -1 (parabola) and the curvature is set to c. The inverse procedure is applied on export to MODAS.

29.5 Import of ATMOS Files

ATMOS is an amateur program, written by Massimo Riccardi, Italy.

| imp atm[os] file file_spec | Import Atmos file from file_spec. The correct file extension . atm must be added
 Example:
 imp atmos file c:/modas_examples/cassegr.atm |
| :---: | :---: |

from the menu, select:
FILE / IMPORT / ATMOS which opens a file selection box.

29.6 Import of WinLens Files

From the command line:

| imp winl[ens] file |
| :--- | :--- |
| file_spec |\quad| Import WinLens file from file_spec. The correct file exten- |
| :--- |
| sion.spd must be added |
| Example: |
| imp winl file c:/examples/dblgauss.spd |

From the menu, select
FILE / IMPORT / WinLens which opens a file selection box.

29.7 Import of Accos Files

From the command line:
\(\left.$$
\begin{array}{|l|l|}\hline \text { imp acc [os] } & \begin{array}{l}\text { Import lens system in Accos format. This command opens a di- } \\
\text { alog box for selecting optical designs from library files. Accos }\end{array}
$$

stores lenses in lens libraries of roughly 2 Mbyte each. Each\end{array}\right\}\)| library may contain 98 lenses, called lens library blocks, plus a |
| :--- |
| lens in working storage. Lenses have limits imposed in terms |
| of number of surfaces, clear apertures etc. |

From the menu, select
FILE / IMPORT / Accos which opens a file selection box.

29.8 Import of Sigma Files from Kidger-Optics

From the command line:

| imp sigma\|sigmapc file file_spec | Import Kidger-Optics Sigma file from file_spec. The following formats are supported
 Sigma-PC, which is identified by the file extension .DAT Sigma 2000, which is identified by file extension . LEN
 Examples:
 imp sigma file c:/examples/dblgauss.len
 imp sigmapc file c:/examples/dblgauss.dat |
| :---: | :---: |

From the menu, select
FILE / IMPORT / Kidger Optics / Sigma which opens a file selection box.

29.9 Import Coatings from 'The Essential MacLeod" Thin-Film Package

From the command line:

| imp macl file | Import coating design file in the "Essential MacLeod" format
 from file_spec.
 Example:
 imp macl file c:/ar_coat.dds |
| :--- | :--- |

From the menu, select
COATINGS / IMPORT / MacLeod which opens a file selection box.

29.10 Import Coatings from the "TFCalc" Thin-Film Package

From the command line:

| imp tfc file file_spec | Import coating design file in the "TFCalc" format from
 file_spec. Example:
 imp tfc file c:/ar_coat.dds |
| :--- | :--- |

From the menu, select
COATINGS / IMPORT / TFCalc which opens a file selection box.

29.11 Import Coatings from the "Optilayer" Thin-Film Package

From the command line:

| imp opti file
 file_spec | Import coating design file in the "Optilayer" format from
 file_spec.
 Example:
 imp opti file c:/ar_coat.ods |
| :--- | :--- |

From the menu, select
COATINGS / IMPORT / Optilayer which opens a file selection box.

29.12 Import from Lens Catalogs

OpTaliX has the capability to read and extract lens systems from lens catalogues of various manufacturers and distributers (e.g. Melles Griot, Newport, Linos, etc).
From the main menu, extract a particular lens from a catalogue by

FILE / IMPORT / Catalogues, or
FILE / Catalog Lenses

Figure 29.1: Dialog for selecting and importing lenses from vendor catalogs.

From the command line, extract a file from a catalogue by the command:

```
imp cat [cat_ident code_string] [sk]
```

The lens is identified by code_string in the catalogue described by cat_ident. If neither cat_ident nor code_no is specified at the command line, a dialog box is opened to select vendor and code number. If surface sk is provided, the system is inserted to the existing system before surface sk, otherwise a new system is built.
cat_ident is a short form of the vendor name, specify one of (only the first three respectively four characters are significant):

```
ARCH Archer OpTx
COHE Coherent Scientific
CORN Corning
CVI CVI-Laser
EAL Ealing
EDMU Edmund Optics
ESCO Esco
GELT Geltech
ISP ISP-Optics
JML JML
LPT LightPath Inc.
LINO Linos Photonics
MELL Melles Griot
NEWP Newport Corporation
NSG Nippon Sheet Company
OFR Optics for Research
OPTO OptoSigma
PHIL Philips
QUAN Quantum
ROLY Rolyn Optics
ROSS Ross Optical
SIGM Sigma-Koki, Japan
SPEC Special Optics
THOR ThorLabs
3M 3M Precision Optics
Examples:
imp cat melles lpx027
imp cat mell lpx027
imp cat! invokes a dialog box
imp cat linos 322286 s4!inserts Linos achromat before surface 4.
```


30

Exporting Lens Data

The following section describes how $\operatorname{OpTaliX}$ lens data can be exported to other optical design packages. It is important to note that due to constant improvements in software development, only a subset of the options respectively commands provided by the individual design packages can be successfully translated. However, OpTaliX attempts to recognize a maximum amount of commands and features provided by other packages. The capabilities of OpTaliX for converting features are constantly improved.
Export is accomplished by the generic "EXP" command with additional parameters.

30.1 Export to Code V

From the command line :

| exp seq file file_spec | Export to CODE-V sequential file. Example: exp seq
 c:/temp/dblgauss.seq
 wrl file_spec |
| :--- | :--- |
| Writes lens data to Code V sequential (.seq) file. | |

From the menu, select : FILE / EXPORT / CODE-V which opens a file selection box.

30.2 Export to ZEMAX

From the command line:

| exp zmx file file_spec | Export to Zemax file. The correct file extension . ZMX
 must be added
 Example:
 exp zmx file c:/temp/dblgauss. zmx |
| :--- | :--- |

From the menu, select FILE / EXPORT / ZEMAX which opens a file selection box.

30.3 Export to OSLO

From the command line :

| exp osl\|oslo file | |
| :--- | :--- |
| file_spec | Export to Oslo file. The correct file extension .LEN
 must be added
 Example:
 exp oslo file c:/temp/dblgauss.len |

All glasses used in the system are written to a private glass catalogue file in a format expected by OSLO. If required, the glasses contained in the file \optalix\temp\oslo_private.glc can be merged with the OSLO private catalogue using an ASCII text editor.

From the menu, select:
FILE / EXPORT / OSLO which opens a file selection box.
By default, $O p T a l i X$ also exports glass data to a separate file being compatible with the OSLO pri-
 useful for glasses not found in OSLO, for glasses with n, ν offsets and for exact transfer of fictitious glasses. These glasses may then copied/added to your OSLO private glass catalogue.

30.4 Export to ASAP

ASAP, optical modelling software, is a software package distributed by Breault Research Organization [5].

| exp asap file file_spec [RAY] | Export to ASAP. The correct file extension . INR must be added. The file specification (path + file name) must be enclosed in quotes if file_spec contains blank characters or other special characters $(-, \&)$. The optional parameter RAY exports ray sets corresponding to the field points defined in the system.
 Examples:
 exp asap fil c:/temp/dblgauss.inr
 exp asap file c:/temp/dblgauss.inr RAY ! exports rays as well
 exp asap fil 'c:/temp/my-dbl gauss.inr' ! contains special characters |
| :---: | :---: |

30.4.1 Exporting Special Surfaces to ASAP

Special surfaces which do not have an equivalent representation in ASAP must be modelled using the USERFUNC option. This requires definition of a user-function in the ASAP script.
If special surfaces exist in an optical system OpTaliX adds appropriate commands to the exported ASAP script (* . INR). For example, an anamorphic surface (AAS) would be exported as

```
$READ BICONIC_FUNC.INR
```

USERFUNC EXPLICIT 000 BICONIC_FUNC 0.031250 .0313130 .0030 .001 ,
$0.1 \mathrm{E}-060.00 .00 .00 .00 .00 .00 .0$
where the corresponding function definition is provided with OpTaliX and is found in the directory \$i\usersur \asap. With the example given above you may wish to copy the "BICONIC_FUNC.INR" file to your ASAP working directory.

30.5 Export to MODAS

MODAS (Modern Optical Design and Analysis Software) is an amateur program, written by Ivan Krastev. From the command line :

| | Export to Modas file format. The correct file extension
 exp mod\|modas file
 file_spec |
| :--- | :--- |
| Example:
 exp modas file c:/temp/cassegr.dsg | |

from the menu, select:
FILE / EXPORT / MODAS which opens a file selection box. See also the notes in section 29.4 on exporting aspheres.

30.6 Export to ATMOS

ATMOS is an amateur program, written by Massimo Riccardi. From the command line :

| exp atm\|atmos file | |
| :--- | :--- |
| file_spec | Export to Atmos file format. The correct file extension
 .atm must be added
 Example:
 exp atmos file c:/temp/cassegr.atm |

from the menu, select:
FILE / EXPORT / ATMOS which opens a file selection box.

30.7 Export of Wavefront to ABERRATOR

"Aberrator"[1] is a freeware program written by Cor Berrevoets, Netherlands, that generates startesting images in order to show the effects of aberrations. It computes the diffraction PSF from the exported wavefront and displays it as a gray-coded bitmap, in a similar way as obtained in OpTaliX via the PSF DF or PSF FF commands. At the command line enter :

| exp wav [fi wi] file |
| :--- | :--- |
| file_spec |\quad| Export wavefront to "Aberrator" file format. The correct |
| :--- |
| file extension.opd must be added |
| Example: |
| exp wav file c:/temp/wavefront.opd |

from the menu, select:
FILE / EXPORT / Wavefront to Aberrator which opens a file selection box.

30.8 Export to Persistence of Vision (POV)

"Persistence of Vision" (POV) is a freeware general rendering and animation software which may be used to create almost photo-realistic images of the optical design.
From the command line:

| | Export to Persistence of Vision (POV) file . The correct file
 extension ". POV" must be added. In absence of path infor-
 exp pov file file_spec
 [ray] |
| :--- | :--- |
| mation, the file will be stored in the current working directory.
 The optional parameter ray exports the user defined rays as
 defined by the SET FAN command.
 Example:
 exp pov file c:/pov_examples/dblgauss.pov | |

From the menu, select: FILE / EXPORT /POV which opens a file dialog box.

In order to write files in the POV-format, it is not required to have POV installed on the same machine. However, for testing purposes and to check whether the optical system has been successfully transferred, a working installation of POV is recommended. See also section 10.1, page 187 on how to interface OpTaliX with POV.
Note: A similar mechanism is used in the rendering option of the lens draw section (seeREN command). The major difference is that the renderer (POV) is directly called.

30.9 Export to IGES

Exchanges optical surface models as 3D geometry to other computer-aided design (CAD) programs in the IGES 5.3 (Initial Graphics Exchange Specification) format. Exported models may include trimmed surfaces, rays, apertures and lens edges. A pure wire-frame option is also available.

| exp igs [sur ray wir ape edg all] [si..j\|sk] [zk] [?] file file_spec | Export optical system to IGES. The correct file extension .igs must be added. IGES output is controlled by the optional parameters:
 sur export surfaces (=default)
 ray export rays as defined in the VIE option
 wir export a wire-frame model (similar to 3D lens view)
 ape export aperture bounds
 edg export lens edges
 all export all (surfaces + rays + edges + wire-frame)
 Absence of any option defaults to SUR, for all surfaces, at zoom position 1. Examples:
 exp igs sur ray file c:/temp/test.igs
 exp igs ape ? |
| :---: | :---: |

30.9.1 Illustration of IGES Export Options

This section illustrates the export options SUR, RAY and WIR. Note that the colour rendering may vary, depending on your preferred CAD system.

Figure 30.1: IGES export with wire frame only option (Command: 'exp igs wir')

Figure 30.2: IGES export with surface only option (Command: 'exp igs sur')

Figure 30.3: IGES export with surface and ray only options (Command: 'exp igs sur ray', alternatively use exp igs all)

30.9.2 Supported IGES Entities

| Entity Type Number | Description | Comment |
| :---: | :--- | :--- |
| 102 | Composite curve | |
| 106 | Copious data | Form number 12 |
| 108 | Plane | |
| 110 | Line | |
| 112 | Parametric spline curve | |
| 114 | Parametric spline surface | |
| 120 | Surface of revolution | |
| 124 | Transformation Matrix | |
| 128 | Parametric B-Spline surface | In preparation |
| 142 | Curve on parametric surface | |
| 144 | Trimmed parametric surface | |

30.9.3 IGES Export Limitations

OpTaliX tries to export as many construction features as possible. However, not all properties could be supported in the current version.

- Non-rotationally symmetric surfaces (such as cylinders, toroids or free-form surfaces) are represented by a grid of curves, instead of a continuous parametric surface representation as in rotationally symmetric surfaces.
- Only circular and rectangular surface apertures are supported. Elliptical and polygon apertures will be added in future releases.
- Export of edges is not supported for elliptical or polygon apertures, and for decentered circular apertures.

30.9.4 IGES Trouble Shooting

Converting CAD data is a complex process. The quality of the translation depends on the diligence and understanding of the people involved, on both sides of the exchange.
IGES is a standard almost 20 years old, now in its sixth revision. Its successor is known as STEP (Standard for Exchange of Product information). After release 5.1, IGES was supposed to metamorphose gracefully into STEP 1.0. But it hasn't worked out that way. There are simply too many active IGES users and too few STEP users to shut IGES down completely. This is also the reason why OpTaliX offers an IGES interface.
The major problem with IGES is that it mostly creates problems! At least it does not work perfectly, not for all people, and not all the time. A complete list of problems people encounter with 3D IGES files would fill a book, so let us identify the general categories of problems.

- The 'law' written into the IGES specification is subject to interpretation and it contains loopholes. Over the years, different brands of CAD companies have interpreted different parts of IGES in uniquely different ways, creating incompatibilities and "flavours".
- There is a large number of ways IGES data can be written. For example, users can export analytic surfaces such as cones and planes as spline surfaces before exporting. Some CAD systems would prefer the the analytic version, others the Spline representation. Also, a cubic spline may be presented as IGES entity 112 or 126 or even as a polyline of points (entity 106).
- Tolerances, accuracy, and resolution: The IGES problem this creates is when IGES files are moved between two CAD/CAM products using different accuracies. Moving a coarse toleranced IGES file to a fine toleranced system produces curves that don't close and surfaces that have gaps and overlaps. Moving a fine toleranced IGES to a coarse toleranced system loses detail for the opposite reason.
- Entity 108 (cubic spline) may not be supported by your preferred CAD system. This entity is often used (also by OpTaliX) for general (2D or non-rotationally symmetric) surfaces.
- Much trouble is caused with raw spline curve and surface geometry (entities 126 and 128).
- Pay special attention to trimmed surfaces (IGES entity 144). The trimming curves can be misplaced or are self intersecting.
- Be sure to look for curves or lines that extend beyond their required limits.
- In general, check if the entities written by OpTaliX (see section30.9.2, page 495) are suported (recognized) by your CAD system.

30.10 Export to Microsoft ${ }^{T M}$ Excel File

Certain output data can be exported to a format compatible with Microsoft Excer ${ }^{T M}$. This is not a general output switch (such that it would be available on any text output) because it is only available for a particular set of data which can be provided as gridded (or tabulated) data.

The ability to provide calculation data in Excel format is based on the installation of Microsoft's ODBC drivers. This requirement is fulfilled if Excel is installed on the target system. Alternatively, it is sufficient to install the "Microsoft Access Database Engine 2010 Redistributable" which may be downloaded from the Microsoft website free of charge, for example
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en\&id=13255.
Since export to Excel is based on the ODBC drivers, the export is also bound by the limitations inherent to the ODBC interface. These are namely,

- New data can only be added. It is not possible to address specific cells.
- Only data types NUMBER, DATETIME, TEXT, CURRENCY and LOGICAL are supported. It is not possible to transfer arithmetic equations or other formats.
- Text formatting (colour, font, etc.) is not possible.
- The maximum length of column names is limited to 63 characters.

Exported data from OpTaliX is found in a sheet labelled "Data" as shown in the figure below (Fig. 30.4):

Figure 30.4: Example export to Excel ${ }^{T M}$ from a zoom CAM calculation.

31

Examples Library

OpTaliX provides an extensive library of starting designs, comprising more than 500 designs from publications and patent literature. This also includes the complete libraries from Arthur Cox, Warren Smith, and from the Wiley "Handbook of Optical Design, Vol 4".
The example designs are stored during installation of OpTaliX in the folder
\$i\examples
In the program, the example files can be browsed from the command line

> | EXAMP | Invokes a dialog box for selecting various example designs. |
| :--- | :--- |

or from the main menu

Figure 31.1: Menu entry for selecting the Examples Library

A typical dialog box is shown in Fig. 31. Select the design category and the design file in the tree-view to the left. Pressing OK loads the selected design. CANCEL resumes to the previously loaded design.

Figure 31.2: Selecting an example design from the library

32

File Formats

All files used or created by $O p T a l i X$ are plain ASCII files which may be edited by any text editor.

32.1 OpTaliX Configuration File "optix.cfg"

The OpTaliX configuration file "optix.cfg" stores a number of settings (mainly path information) which are used during each session. The file must reside in the OpTaliX installation (home) directory. The information is stored in free-form ASCII format and thus, may be read and edited by any text editor.
All entries are separated by at least one blank, multiple blanks as separator are permitted. The exclamation character "!" is identified as comment.
Qualifiers and parameters are separated by the equal " = "character. The qualifiers and its corresponding parameters are:

| RENDER = path_string | Path to an external rendering program for generation of
 shaded perspective 3-dimensional views of the lens lay-
 out. To use this feature, the official version of the
 "Persistance of Vision" (POV) raytracer must be installed
 separately. |
| :--- | :--- |
| HTML = path+exe_string | Path to an external HTML browser. This path is mandatory
 to have access to the online help manual. This entry will be
 created during installation. Modify it if a different browser
 shall be used. |
| GLASSES = path_string | Path to glass catalogues. This entry is commented by default
 and should not be modified (except if you exactly know what
 you are doing). |
| COATINGS = path_string | Path to coatings files. |
| TEMP = path_string | Path to temporary working directory |
| MACRO = path_string | Path to macro files and user defined graphics definitions. |
| SAVDEFAULTONEXIT = int | Save the current system on program exit. int is an integer
 number. 0 = don't save, 1 = save. |
| SAVWINONEXIT = int | Save window settings (position, size) on program exit, 0=no,
 $1=y e s ~$ |
| TEXTFOREGR = int | Put text output window to foreground each time new output is
 generated, 0=no, l=yes |

An example of an $O p$ Tali X configuration file is:

```
! Optix configuration file
! Entries must be separated at least by one blank character
```

```
! Characters are case insensitive
! Path names containing blanks must be enclosed in quote character (")
!
HTML =
RENDER = "f:\pov31a\bin\pvengine.exe"
!
! Uncomment and edit the following lines only if you wish a
! different search path for glasses,coatings or temp.
!
! GLASSES = "e:\optix\GLASSES\"
! COATINGS = "e:\optix\coatings\"
! TEMP = "e:\optix\temp\"
```

As can be seen from the example above, some qualifiers (GLASSES, COATINGS, ..) are commented. The default paths are used instead (i.e. below the OpTaliX installation directory).

32.2 Lens Prescription Format ".otx"

The lens data are stored in standard unformatted ASCII file with the extension ". otx". In each line, the lens prescription parameters are identified by a keyword. All entries are separated at least by one blank, multiple blanks as separator are permitted. The exclamation character "!" is identified as comment.
The keywords and the possible (allowed) parameters are described in alphabetical order in the following table. The type of the variables is indicated by "int" for an integer value, "real val" for a real value and "char" for a character string.

| AAP int | ```Asymmetric aperture (for lens cross sectional plot only) int = 0: full surface aperture is plotted int = 1: only the section used by the light beam is plotted``` |
| :---: | :---: |
| ADE real_val | Surface tilt around X-axis, in degree |
| AFO int | Afocal switch, int $=1$: system is afocal. |
| APE int vall val2 val3 val4 val5 int2 int3 int4 | ```Aperture definition int \(=\) pupil number \((\) default \(=1)\) val1 \(=\) semi aperture in \(X\) val2 \(=\) semi aperture in \(Y\) val3 \(=\) X-offset of aperture from surface vertex val4 \(=\) Y-offset of aperture from surface vertex val5 \(=\) rotation angle (in degree) int2 = pupil type (1=circular, 2=rectangular, 3=elliptical, 4=polygon) int3 \(=\) logical operator \((0=\) base pupil, \(1=\) logical and, \(2=\) logical or) int4 \(=\) transmission properties (\(0=\) inside, \(1=\) obstruct, \(2=\) hole)``` |
| APEC int vall int2 int3 | ```Circular aperture int \(=\) pupil number \((\) default \(=1)\) val1 \(=\) semi aperture in Y int2 \(=\) logical operator \((0=\) base pupil, \(1=\) logical and, \(2=\) logical or) int3 \(=\) transmission properties (\(0=\) inside, \(1=\) obstruct, \(2=\) hole)``` |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| AFR real_val | Autofocus spatial frequency in line pairs. This is the spatial frequency, at which the MTF-autofocus is determined. |
| ASP vall val2 val7 | Aspheric coefficients, val1 $=$ conic constant val2 ... val7 = polynomial coefficients |
| ARX real_val | Array X-spacing of channels |
| ARY real_val | Array Y-spacing of channels |
| ARXO real_val | Array X-offset |
| ARYO real_val | Array Y-offset |
| AXG real_val | Tolerance: axial linear gradient |
| BDE real_val | Surface tilt around Y-axis, in degree |
| BIR valı ... vallı | Refractive index of birefringent material |
| CDE real_val | Surface tilt around Z-axis, in degree |
| COA string | File name of coating, attached to current surface |
| COM string | Comment per surface |
| CON string | Optimization constraints |
| CTV icoeff real_val | Coating thickness variation coefficient, icoeff is the coefficient number between 1 and 5 , real contains the coefficient. |
| CUX real_val | X-curvature |
| CUY real_val | Y-curvature |
| DEF real_val | Defocus of real image plane from paraxial focus |
| DLA real_val | Tolerance: alpha tilt (about X-axis) |
| DLB real_val | Tolerance: beta tilt (about Y-axis) |
| DLG real_val | Tolerance: gamma tilt (about Z-axis) |
| DLF real_val | Tolerance: Test plate fit in fringes |
| DLN real_val | Tolerance: index of refraction |
| DLR real_val | Tolerance: absolute radius in mm |
| DLT real_val | Tolerance: axial thickness in mm |
| DLV real_val | Tolerance: dispersion (Abbe number) in \% |
| DLX real_val | Tolerance: X-decenter |
| DLY real_val | Tolerance: Y-decenter |
| DLZ real_val | Tolerance: Z-decenter |
| DTR real_val | Tolerance: reference thickness in mm |
| DNO real_val | Δn - Offset |
| DVO real_val | $\Delta \nu$ - Offset |
| EPD real_val | Entrance pupil diameter |
| EXC real_val | Linear expansion coefficient in 10^{-6} units |
| FACT i_active1
 i_active2 ... | Field activation. A particular field point may be excluded from analysis, i.e. it is not active. i_active is an integer number ($0=$ inactive, $1=$ active) and counts from 1 to the maximum number of fields (defined by FLDX and FLDY) |
| FH int | Fixed aperture height, int $=0$: aperture does not limit/truncate light beam int $=1$: aperture defines/truncates light beam |
| FIBS string | Specify source fiber by product (e.g. by manufacturers type number). |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| FIBR string | Specify receiving fiber by product (e.g. by manufacturers type number). |
| FILE string | File name (optional) |
| FNO real_val | F-Number |
| FLDX vall ... vallı | Field coordinate in X . |
| FLDY vall ... vallı | Field coordinate in Y. |
| FLD int x_field y_field weight active | ```Alternative form of specifying field points. Use either FLDX/FLDY or FLD entry. int = field number x_field = X-field coordinate, meaning depends on FTYP y_field=Y-field coordinate, meaning depends on FTYP weight = field weight active \(=0 / 1\), defines whether field point is used in analysis.``` |
| FRES vall val2 | Fresnel parameter
 val1 $=$ X-tilt of fresnel facets
 val2 $=$ Y-tilt of fresnel facets |
| FRA alpha_tilt | Receiving fiber α-tilt in degree. |
| FRB beta_tilt | Receiving fiber β-tilt in degree. |
| FRD real_val | Far-field divergence of receiving fiber (in rad). |
| FRN1 real_val | Receiving fiber, index of refraction n_{1} of core material |
| FRN2 real_val | Receiving fiber, index of refraction n_{2} of cladding material |
| FRCR real_val | Receiving fiber, core radius in mm . |
| FRR mode_radius | Receiving fiber, mode-field radius in mm. |
| FRX x -offset | Receiving fiber, x -offset (in mm). |
| FRY y-offset | Receiving fiber, y-offset (in mm). |
| FSA alpha_tilt | Fiber source α-tilt in degree. |
| FSB beta_tilt | Fiber source β-tilt in degree. |
| FSD div.x div_y | Far-field fiber source divergence (in radians) in X- and Ydirection. |
| FSN1 real_val | Source fiber, index of refraction n_{1} of core material |
| FSN2 real_val | Source fiber, index of refraction n_{2} of cladding material |
| FSCR real_val | Source fiber, core radius in mm . |
| FSR rad_x rad_y | Fiber source radius in X- and Y-direction (in mm). |
| FTH f_thick | Fresnel thickness |
| FTYP int | Field type
 int $=1$: Field coordinates are defined by field angle
 int $=2$: fields are defined by object coordinates
 int $=3$: fields are defined by paraxial image coordinates
 int $=4$: fields are defined by real image coordinates |
| FWGT int1 ... int10 | Field weights |
| GIC vall ... val50 | Gradient index coefficients. The number of coefficients is defined by NGIC. |
| GIS real_val | Gradient index step, the integration distance in gradient index material |
| GIT string | Gradient index type (e.g. SEL, AXG, LPT, URN,...) |
| GLA string | Glass name (up to 10 characters) |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| GL1 string | Glass name, defines material left to surface (only applicable for NSS) |
| GL2 string | Glass name, defines material right to surface (only applicable for NSS) |
| GRO real_val | Grating order |
| GRX real_val | Grating constant in X-direction, applicable only for a straightline ruled grating |
| GRY real_val | Grating constant in Y-direction, applicable only for a straightline ruled grating |
| GTILT val1 ... val6 | Gradient profile tilt/decenter
 val1 ... val3: X, Y and Z decenter of gradient profile
 val4 \ldots val6 : α, β, γ - tilts around X -, Y -, and Z -axis respectively |
| GZO real_val | Gradient Z-Offset of profile definition from surface vertex (applicable only for axial profiles from LightPath). |
| HWL real_val | Hologram design wavelength, in microns |
| HCO icoeff real_val | Hologram coefficient, icoeff is the coefficient number between 1 and 28. |
| HOM real_val | Tolerance: index homogeneity |
| HOR order | Hologram diffraction order |
| HOT int | Hologram type, int = 0 for a straight-line ruled grating, 1 for a symmetrical phase function, 2 for an asymmetrical (2d) phase function |
| HX1 obj_source_x | X-coordinate of object point source for holographic surface. |
| HY1 obj_source_y | Y-coordinate of object point source for holographic surface. |
| HZ1 obj_source_z | Z-coordinate of object point source for holographic surface. |
| HX2 ref_source_x | X-coordinate of reference point source for holographic surface. |
| HY2 ref_source_y | Y-coordinate of reference point source for holographic surface. |
| HZ2 ref_source_y | Z-coordinate of reference point source for holographic surface. |
| IRR real_val | Tolerance: irregularity in fringes |
| KLDR | For internal use only, not required (controls plot appearance) |
| ```LINK int1 int2 int3 int4``` | Link(pickup) surface (curvature, thickness,tilt,material) |
| LMOD val1 ... val5 | $\begin{aligned} & \text { Lens module (ideal lens) } \\ & \text { val1 = focal length } \\ & \text { val2 ... val5 : not yet defined } \end{aligned}$ |
| M2 val | quality factor M^{2} |
| MFR real_val | Maximum spatial frequency (for MTF calculation) |
| MPRS string | Mode profile, source. "string" may be any of GAU for Gaussian mode profile, STE for step-index, FIL for user defined profile loaded from file. |
| MPRR string | Mode profile, receiver. "string" may be any of GAU for Gaussian mode profile, STE for step-index, FIL for user defined profile loaded from file. |
| MXH int | Maximum hits (of rays at a non-sequential surface). |
| NA real_val | Numerical aperture, in image space |
| NAO real_val | Numerical aperture, in object space |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| NGIC int | Number of GRIN-coefficients |
| NSS int | Non-sequential surface int $=0$: sequential, int $=1:$ NSS-surface |
| NTOF int | Number of tolerance functions. |
| OSP spectrum_name | Optical spectrum. The spectrum names are defined in the file osp.dat |
| PCO real_val | Partial dispersion P(C,s)-Offset |
| PGO real_val | Partial dispersion P(g,F)-Offset |
| PLSC | For internal use only. (Plot scaling) |
| POL int | Polarization switch int $=0$: polarization is ignored int $=1$: polarization is taken into account. |
| ```POL1 valx val_y val_ph``` | ```Polarization state of input wave 1 val_x = X-amplitude val_y = Y-amplitude val_ph \(=\) Phase``` |
| POL2 val_x val_y val_ph | Polarization state of input wave 2 val_x $=\mathrm{X}$-amplitude
 val_y $=\mathrm{Y}$-amplitude
 val_ph = Phase |
| PRI vall ... val11 | Private glass. val1 ... val11 are the indices of refraction at the wavelengths defined in WL. |
| PRE real_val | Pressure in mmHg |
| PUI real_val | Pupil intensity (to be used in combination with PUX, PUY). |
| PUX real_val | Relative X-coordinate (refered to entrance pupil radius) for PUI value |
| PUY real_val | Relative Y-coordinate (refered to entrance pupil radius) for PUI value |
| RAG real_val | Tolerance: radial quadratic gradient |
| ```RAY string vall ... val5``` | User defined ray coordinates at entrance pupil. string = ray type
 val1 $=\mathrm{X}$-coordinate of ray
 val2 $=\mathrm{Y}$-coordinate
 val3 \ldots val5 $=\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction cosines |
| RAIM int | Ray aiming method int $=0$: rays are aimed to paraxial entrance pupil (no iteration) int $=1$: rays are aimed to real stop, iteration is performed. int $=2$: telecentric ray aiming |
| RAIT real_val | Ray aiming tolerance. The tolerance (in mm) during ray iteration to the real stop surface. |
| RCX val | Radius of curvature of wavefront at object plane in x-direction |
| RCY val | Radius of curvature of wavefront at object plane in y -direction |
| REF int | Reference wavelength number |
| REM int string | Remarks, "int" is the surface number, "string" containes the remark text (up to 80 characters) |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| ```SREF iref vall ... val7``` | ```Surface reference iref: reference surface val1: reference thickness (THR) val2 ... val4: X,Y and Z decenter wrt. reference sur- face iref val5 ... val7: \(\alpha, \beta, \gamma\) - tilts around X-, Y-, and Z-axis respectively``` |
| SPLR icoeff rad
 z_deform | Radial spline deformation. icoeff is the running number of the deformation point, rad is the radial component, z_deform is the deformation (in mm). |
| SUR int | Surface identifier. Increments the surface counter. |
| SUT string | Surface type |
| STO | Surface is aperture stop |
| TEM real_val | Temperature in degree Celsius |
| TGR int | Transformation grid size |
| THI real_val | Thickness (axial separation) to next surface. |
| TILT val1 ... val6 | Surface tilt/decenter
 val1 ... val3: X, Y and Z decenter
 val4 \ldots val6 : α, β, γ - tilts around X -, Y -, and Z -axis respec-
 tively |
| TLM int | Tilt mode |
| TOLC fkn_tol string | fkn_tol = limit on tolerance criterium, string = Tolerance criterium string |
| TOCM int | Tolerance compensation method.
 int $=0$: no compensator
 int $=1$: back focus
 int $=2$: use setting in optimization. |
| TOPM int | Compute plus/minus tolerance sensitivity ($0=$ no, $1=$ yes). |
| TRA int | Transmission switch int $=0:$ transmission is ignored int $=1$: transmission is taken into account. |
| VERS real_val | Version number |
| VAR ... | Optimization variables |
| VARZ | Zoom variables for optimization |
| WL vall ... vall1 | Wavelengths in micron. |
| WRX val | Waist radius in X-direction, given in mm. |
| WRY val | Waist radius in Y-direction, given in mm. |
| WTW int1 ... int11 | Wavelength weight, integer numbers between 0 and 100 |
| XDE real_val | Surface X-Decenter |
| YDE real_val | Surface Y-Decenter |
| ZDE real_val | Surface Z-Decenter |
| ZOO | Zoom parameter string |
| zPOS int | Number of zoom positions |
| ZRN vall ... val40 | Zernike coefficients |
| ZWX val | Location of beam waist relative to object plane in x-direction |
| ZWY val | Location of beam waist relative to object plane in y -direction |

32.3 Multilayer File Format ".otc"

Multilayer coatings are typically stored in the directory \$i/coatings where \$i is the installation directory (i.e. where the $O p T a l i X$ executable resides). It is, however, possible to specify a different coatings directory by modification of the COATING entry in the "optix.cfg" file.
The coating prescription is stored in standard unformatted ASCII file with the extension ". OTC". In each line, the coating parameter is identified by a keyword. The keywords and the allowed parameters are described as follows:

| VERS | Version number of OpTaliX which created the coating file. |
| :---: | :---: |
| COM string | Comment string, enclosed in quotation marks, e.g. COM "AR-Coating for visible". The comment string may be up to 256 characters. |
| NLY real_val | Number of layers (excluding top and bottom medium (typically air and substrate) |
| LAM0 real_val | reference wavelength, in microns |
| LAM1 real_val | minimum wavelength, needed for plotting purposes only |
| LAM2 real_val | maximum wavelength, needed for plotting purposes only |
| TSMIN TSMAX | Minimum and maximum of transmission plot range. The parameter is between 0 and 1 . Required for plotting purposes only. |
| RSMIN RSMAX | Minimum and maximum of reflection plot range. The parameter is between 0 and 1 . Required for plotting purposes only. |
| ANGLE real_val | Incidence angle (in degree). Required for plotting purposes only. |
| PLOT_S int_val | Plot the S-component. $0=$ no, $1=$ yes. |
| PLOT_T int_val | Plot the T-component. $0=$ no, $1=$ yes. |
| PLOT_A int_val | Plot the A-component (average). $0=$ no, $1=$ yes. |
| LOG int_val | Select logarithmic display ($0=$ no, $1=$ yes). Use in conjunction with FLOOR. |
| FLOOR real_val | Floor for logarithmic display. For example FLOOR -3.0 defines 0.001 as the lowest value displayed in plots. |
| SHOWTARG int_val | Show refinement targets in transmission/reflection plots ($0=$ no, $1=y e s)$. |
| $\begin{aligned} & \text { PLOT_COL col1 col2 } \\ & \text { col3 } \end{aligned}$ | Defines colours of curves in transmission/reflection plots, for S, T- and Average components. The colour numbers are integer values and are calculated in a 24 -bit RGB colour space as red + green $256+$ blue $256 * * 2$. |
| LAY | Layer number. Increments the layer. Numbering starts with the incident medium (layer 1) and ends with the substrate (NLY + 2). |
| GLA | The layer "glass" (material name). A character string up to 64 characters is accepted. Blank characters and control characters (carriage return, end-of-file, tab, etc.) are not allowed. The glass name may be any of the standard catalogue glasses (e.g. BK7). If not specified, i.e. the glass name is empty (blank characters), the refractive index as defined in the IND command will be used instead. A glass (material) name is mandatory if dispersion shall be taken into account. |
| OTH | Optical thickness, in wavelength units defined at the reference wavelength LAMO. OTH is interpreted in the normal direction to the stratified layer. |
| | continued on next page |

| continued from previous page | |
| :--- | :--- |
| PTH | Physical thickness, in mm. This is an optional parameter, as the
 thickness of a layer is primarily defined by the optical thickness.
 Only in case optical thickness (OTH) is not specified in the in-
 put file, optical thickness is calculated from the physical thickness
 (PTH). |
| IND [layer_num] | Complex refractive index. This index will be used for all wave-
 lengths, that is, material dispersion effects are ignored unless a
 glass is specified for this layer. layer_num is optional, because
 the key word LAY alone will increment numbering of the layers.
 layer_num is only written for better readability of the coating
 prescription file (*.otc). |
| PICKUP i_mat i_thi | Picks material and/or thickness properties from a previous layer.
 i_mat is the layer number for material pickups, i_thi is the
 layer number for thickness pickups. |
| PFAC real_val | Packing factor describing layer density. A value between 0 and 1.
 Currently not used. |

Normally, thin-film layer materials are defined in the catalogue files coat.asc (for pre-defined catalogue materials) and coatp.asc (privately defined layer materials). The definition of layer materials may be embedded with the coating (multi-layer) prescription file *. otc. The syntax for describing layer material properties within the coating file is defined in the following table32.4:

Table 32.4: Embedding layer materials in coating files:

| BEGIN MATERIAL mat_name
 DATA lam $\mathrm{n} k$
 DATA lam $\mathrm{n} k$
 END MATERIAL | The environment BEGIN MATERIAL / END MATERIAL defines material properties as part of the coating prescription, i.e. material properties (n, k) are embedded in the the coating file ($* .0$ otc). The material name mat_name is a string of max. 64 characters wide. The DATA statement describes the triple ($1 \mathrm{am}, \mathrm{n}, \mathrm{k}$), where lam is the wavelength (in μm), and (n, k) is the the complex index of refraction. |
| :---: | :---: |

Example Coating File:

```
VERS = 2.82
COM = "Antireflection coating for visible range"
NLY = 4
LAMO = . 5460000
LAM1 = . 4000000
LAM2 = . 8000000
TSMAX = .0000000e+00
TSMIN = .0000000e+00
RSMAX = . 5000000e-01
RSMIN = .0000000e+00
ANGLE = .0000000e+00
PLOT_S = 1
PLOT_T = 1
PLOT_A = 1
```

```
LAY = 1
    GLA =
    OTH = 0.00000000e+00
    PTH = 0.00000000e+00
    IND = 1.0000000 0.00000000e+00
LAY = 2
    GLA = mgf2
    OTH = 0.24819737
    PTH = 0.98300005e-04
    IND = 1.3785938 0.00000000e+00
LAY = 3
    GLA =
    OTH = 0.50558242
    PTH = 0.12960001e-03
    IND = 2.1300000 0.00000000e+00
LAY = 4
    GLA =
    OTH = 0.20545055
    PTH = 0.68400003e-04
    IND = 1.6400000 0.00000000e+00
!
BEGIN MATERIAL NewMat
    DATA 0.45 1.50 0.0001
    DATA 0.55 1.48 0.0002
    DATA 0.65 1.46 0.0003
END MATERIAL
```

Note:
Keywords and parameters may be separated by an equal sign "=". The separator for multiple parameters in a single line can be a comma "," or at least one blank character. OpTaliX correctly interprets formats like:

```
IND 1.521 0.0do
IND = 1.521 0.0do
IND = 1.521,0.0d0
```


32.4 Zernike Deformation File Format ".zrn"

Reading Zernike coefficients from a file is rather straightforward. The coefficients are stored in a free formatted ASCII file where each line contains the number of the coefficient and the coefficient itself:
coeff_no coefficient
The entries are separated by at least one blank, multiple blanks as separator are permitted. The exclamation character "!" is identified as comment. An example of a valid Zernike coefficient file is

```
! Zernike coefficients at surface 1
            ! here follows more descriptive text
10.0003
3 1.743E-5
14 0.1 ! this is coefficient no. 14
    16 -2.345d-12
! end of Zernickes
```

Coefficients for different surfaces must be stored in different files. The standard file naming convention is the 8.3 DOS standard. Longer file names must be enclosed in parenthesis, e.g.

```
"this is my file.txt"
```


32.5 Radial Spline Deformation File Format

Reading radial Spline deformation coefficients from a file is rather straightforward. The coefficients are stored in a free formatted ASCII file where each line contains two real numbers:
radial_distance deformation
where :
radial_distance is the distance in radial direction of the sample point,
deformation is the deformation at the sample point with respect to the base surface.
The entries are all separated by at least one blank, multiple blanks as separator are permitted. The exclamation character '"!" is identified as comment. As an example, a valid Spline deformation file is

```
! Spline deformation at surface 1
    ! here follows more descriptive text
1.234 0.0003
3.5 1.743E-5
4.56 0.1 ! deformation is +0.1mm at 4.56mm radial height
    5.9-2.345d-12
! end of deformations
```

Coefficients for different surfaces must be stored in different files. The standard file naming convention is the 8.3 DOS standard. Longer file names must be enclosed in parenthesis, e.g.

```
"this is my file.txt"
```


32.6 Test Plate File Format ".tpl"

Test plate lists (TPL) are stored in unformatted ASCII files. Each test plate radius is stored in a single line which contains four entries:

```
plate_ID RADIUS MAX_DIAM CVCX
```

where:

| PLATE_ID | A unique identification string |
| :--- | :--- |
| RADIUS | Radius of curvature (in mm) |
| MAX_DIAM | Maximum test plate diameter |
| | Availability of test plate: |
| CVCX | $-1=$ only concave radius available |
| | $0=$ convex and concave radius available |
| | $1=$ only convex radius available |

All entries are separated by at least one blank character. Comment lines in a TPL file begin with an "!" (exclamation mark). Each entry is separated by at least one blank character. Tabs are allowed and are interpreted as a single blank character. There is no limit on the number of comment lines.

The first lines of a valid test plate file are:

```
! My Company Inc.
!
10000-1 1.00000 1.96 0
14330-1 1.43220 2.81 0
15679-1 1.56800 3.07 0
20833-1 2.08320 4.08 0
21288-1 2.12880 4.17 0
```


32.7 Glass Catalogue File Format ".csv"

Optical glasses from vendor catalogues are stored in standard ASCII files which can be read and modified by any text editor that handles ASCII files properly, such as NOTEPAD. We explicitly discourage use of Windows-Word or any similar word processor for editing glass catalogues.
Data for each glass type are stored in a single line where the parameters are separated by commas ",". Note that this file format is compatible with Microsoft Excel CSV files. Glass catalogue data can easily be imported into Excel, manipulated, and subsequently written to a file with extension ".csv". The first line is obligatory and must contain the string "!GLASSV3" as the first characters. The rest of the line is not significant.
The second line is obligatory and may contain any arbitrary text. Note that the first and second line are not used in reading glass data.
The third line and all subsequent line lines contain glass parameters, one line for each glass type.
The glass catalogue file is ended by an empty line followed by a carriage return (CR) and line feed (LF) character.

Example file:

```
! GLASSV3
```

!Manufact., Name ,EqName , Code ,B1 ,B2
SCHOTT N BAF3
SCHOTT ,N-BAF4 ,S-BAM4 , 606437, 1.42056328E+00, 1.02721269E-01, ...
,S-BAM3 , 583466, 1.34859634E+00, 1.07644240E-01, ...
SCHOTT ,N-BAF10 ,S-BAH10 , 670471, 1.5851495E+00, 1.4355939E-01, ...
SCHOTT ,N-BAF51 ,N-BAF51 , 652450, 1.51503623E+00, 1.53621958E-01, ...
SCHOTT ,N-BAF52 ,N-BAF52 , 609466, 1.43903433E+00, 9.67046052E-02,
SCHOTT ,N-BAK1 , S-BAL11 , 573576, 1.1236566E+00, 3.0927685E-01,
SCHOTT ,N-BAK2 ,S-BAL12 , 540597, 1.0166215E+00, 3.1990305E-01, ...
SCHOTT ,N-BAK4 ,S-BAL14 , 569560, 1.28834642E+00, 1.32817724E-01,
SCHOTT ,N-BALF4 ,H-E-BALF4 , 580539, 1.31004128E+00, 1.42038259E-01,
SCHOTT ,N-BALF5 , , 547536, 1.28385965E+00, 7.19300942E-02, ...

The sequence of glass parameters in each line is as follows:

| Data type | Description | | |
| :--- | :--- | :---: | :---: |
| continued on next page | | | |

| continued from previous page | |
| :---: | :---: |
| Manufacturer | Manufacturer's name. The first three characters are significant. |
| Glass Name | Glass type name as defined by manufacturer. Limited to 64 characters. |
| Equivalent name | Name of equivalent glass from alternative manufacturer. Limited to 64 characters. |
| Code | MIL code as described in sect. ... A six-digit number. |
| C1 | First dispersion coefficient. The meaning of the coefficient is given by the dispersion formula, as shown in sect. 13.1 and the equation type shown below . |
| C2 | Second Dispersion coefficient |
| C3 | Third Dispersion coefficient |
| C4 | $4^{\text {th }}$ Dispersion coefficient |
| C5 | $5^{\text {th }}$ First Dispersion coefficient |
| C6 | $6^{\text {th }}$ First Dispersion coefficient |
| C7 | $7^{\text {th }}$ First Dispersion coefficient |
| C8 | $8^{t h}$ First Dispersion coefficient |
| C9 | $9^{t h}$ First Dispersion coefficient |
| C10 | $10^{\text {th }}$ First Dispersion coefficient |
| Equation type | ```Integer number, describing type of dispersion equation. \(0=\) old Schott equation (eq. 13.1), \(1=\) Sellmeier equation (eq. 13.2) \(2=\) Herzberger equation (eq. 13.8) \(3=\) Nikon equation (simple) \(4=\) Hartmann equation (eq. 13.9) \(5=\) Air (eq. 13.18-13.8) \(6=\) Sweatt diffractive high index model \(7=\) not used \(8=\) not used \(9=\) Nikon equation (Extended 3), eq. 13.7 \(10=\) Extended Sellmeier (Sellmeier 3) eq. 13.3 \(11=\) Nitrogen \(12=\) Cauchy (eq. 13.10) \(13=\) Vitron infrared eq. \(14=\) Conrady equation (eq. 13.11) \(15=\) Handbook of Optics 1 (eq. 13.12) \(16=\) Handbook of Optics 2 (eq. 13.13) 17 = Sellmeier2 \(18=\) Reduced Sellmeier (Sellmeier 4) eq. 13.6 \(19=\) Sellmeier 5 (eq. 13.4)``` |
| Lambda_min | minimum wavelength supported by the dispersion equation. |
| Lambda_max | maximum wavelength supported by the dispersion equation. |
| Availability (Lv) | Glass availability. $1=$ highest melt frequency, $6=$ lowest melt frequency, $0=$ unknown. |
| D0 | dn/dT coefficient 1 |
| D1 | dn/dT coefficient 2 |
| D2 | dn/dT coefficient 3 |
| E0 | dn/dT coefficient 4 |
| E1 | dn/dT coefficient 5 |
| | continued on next page |

| continued from previous page | |
| :---: | :---: |
| LTK | dn/dT coefficient $6,\left(\lambda_{T K}\right)$ |
| DRT | thickness for internal transmission ("Reintransmission") data, (mm) |
| τ_{2500} | internal transmission at 2500 nm , at DRT |
| τ_{2325} | internal transmission at 2325 nm , at DRT |
| τ_{1970} | internal transmission at 1970nm, at DRT |
| τ_{1530} | internal transmission at 1530nm, at DRT |
| τ_{1060} | internal transmission at 1060 nm , at DRT |
| τ_{700} | internal transmission at 700 nm , at DRT |
| τ_{660} | internal transmission at 660 nm , at DRT |
| τ_{620} | internal transmission at 620 nm , at DRT |
| τ_{580} | internal transmission at 580 nm , at DRT |
| τ_{546} | internal transmission at 546 nm , at DRT |
| τ_{500} | internal transmission at 500 nm , at DRT |
| τ_{460} | internal transmission at 460 nm , at DRT |
| τ_{436} | internal transmission at 436 nm , at DRT |
| τ_{420} | internal transmission at 420 nm , at DRT |
| τ_{404} | internal transmission at 404nm, at DRT |
| τ_{400} | internal transmission at 400 nm , at DRT |
| τ_{390} | internal transmission at 390 nm , at DRT |
| τ_{380} | internal transmission at 380 nm , at DRT |
| τ_{370} | internal transmission at 370 nm , at DRT |
| τ_{365} | internal transmission at 365 nm , at DRT |
| τ_{350} | internal transmission at 350 nm , at DRT |
| τ_{334} | internal transmission at 334 nm , at DRT |
| τ_{320} | internal transmission at 320 nm , at DRT |
| τ_{310} | internal transmission at 310 nm , at DRT |
| τ_{300} | internal transmission at 300 nm , at DRT |
| τ_{290} | internal transmission at 290 nm , at DRT |
| τ_{280} | internal transmission at 280 nm , at DRT |
| τ_{270} | internal transmission at 270 nm , at DRT |
| τ_{260} | internal transmission at 260 nm , at DRT |
| τ_{250} | internal transmission at 250 nm , at DRT |
| no data | intentionally left blank |
| no data | intentionally left blank |
| Chemical constants (CC) | |
| α_{1} | Linear constant of thermal expansion (CTE), $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| α_{2} | Linear constant of thermal expansion (CTE), $+20^{\circ} \mathrm{C}$ to $+300^{\circ} \mathrm{C}$ |
| ρ | Specific density ($\mathrm{g} / \mathrm{cm}^{3}$) |
| RelPrice | Relative price ($\mathrm{BK7}=1.0$). |

32.8 Melt Glass File Format ".ind"

Pairs of wavelength and measured refractive index are stored in a standard ASCII-file with extension ". ind" (required). Each pair is stored in a separate line. Wavelengths must be given in $\mu \mathrm{m}$. All entries are separated by at least one blank, multiple blanks as separator are permitted. The exclamation character "!" is identified as comment. A typical example of a melt data file is

```
! wavel. index
    0.435800 1.825150
    0.480000 1.816510
    0.486100 1.815500
    0.546100 1.807510
    0.587600 1.803390
    0.643800 1.799020
    0.656300 1.786080
!
! Data for Schott Lasfn30, batch no. 123456-1
```


32.9 GRIN Dispersion Coefficients File Format

Dispersion data for gradient index (GRIN) materials are stored in the file grindisp.asc in the GLASSES directory. Dispersion coefficients are assigned a name, which can be used by the GDISP command to associate that dispersion characteristics to a surface.

The grindisp.asc file contains blocks of 10 lines each. The file format has the following structure:

| min_wavelength
 ref_wavelength | | | max_wavelength |
| :---: | :---: | :---: | :---: |
| K_max L_max | | | |
| K11 | K12 | K13 | K1K_max |
| K21 | K22 | K23 | K2K_max |
| K31 | K32 | K33 | K3K_max |
| L11 | L12 | L13 | L1L_max |
| L21 | L22 | L23 | L2L_max |
| L31 | L32 | L33 | L3L_max |

Multiple materials may be defined by adding blocks of 10 lines one after the other. Blank lines between the blocks are not permitted.
Note that dispersion coefficients defined by a dispersion name require the glass name GRIN on a surface. Predefined gradient index materials will ignore user defined dispersion coefficients. Currently only profiles from LightPath (LPT) and the general URN (University of Rochester) profile accept these coefficients.

Sample grindisp.asc file containing two dispersion profiles "GLAK" and "GSF":

```
GLAK
0.365 0.725
0.58756
4 1
0.00522664 0.0206983-0.00450304 0.006873
0.0472841 0.0429402 -0.00724884 -0.0445419
0.988601 0.057962 0.0941671 0.152672
0.0421634
0.0368588
110
GSF
0.38 2.2
0.58756
6
-0.0683636 -0.0323639 -0.0286748 -0.0169163 0.00256909 0.0174719
-0.00109783 0.0334663 0.0388098 0.0370413 0.017429 -0.0405421
0.931075-0.0306245-0.0392756-0.0423487-0.0256629 0.0437821
0.00498103 0.000410271 2.44E-05
0.082168 0.0343531-0.0337717
110 0.000285988 0.000362547
```


32.10 GRIN Catalogue Glasses File Format (grin.asc)

Index profiles and dispersion of predefined gradient index (GRIN) glasses are stored in the file \$i\glasses\grin.asc. The file format is plain ASCII. All data items are stored in free-format, each item is separated by at least one blank character. Multiple blanks have no effect.
Warning and Disclaimer: The data in grin.asc have been carefully compiled by Optenso to ensure validity and correctness of the results. Modification of this file is NOT recommended. If a user alters data in this file, he is doing this at his own risk. In case of improper data, the program may crash or hang or produce incorrect results.
The first line in grin.asc is a comment line and is ignored. Each subsequent line contains index profile and dispersion coefficients of an individual GRIN material. The first 12 data items in each line are common for all GRIN materials and have the following meaning:

| Item No. | Description |
| :---: | :--- |
| 1 | GRIN type. |
| 2 | Material name |
| 3 | Equivalent name |
| 4 | Equation type |
| 5 | Number of $K_{i j}$ coefficients |
| 6 | Number of $L_{i j}$ coefficients |
| 7 | Reference wavelength, in microns |
| 8 | Minimum wavelength (in $\mu \mathrm{m}$) |
| 9 | Maximum wavelength (in $\mu \mathrm{m}$) |
| 10 | not used |
| 11 | Specific gravity, in $\mathrm{g} / \mathrm{cm}^{3}$ |
| 12 | Linear coefficient of thermal expansion (CTE) |
| $13-70$ | Profile and dispersion coefficients (see below) |

Data items numbered 13 and higher store a stream of profile and dispersion coefficients. Profile coefficients are stored first, followed by the dispersion coefficients. Since number and definition of coefficients vary among GRIN types, there is no fixed location for a specific coefficient. For example, the SELFOC profile is described by 2 coefficients (n and \sqrt{A}) whereas the LightPath profile uses 11 coefficients.
Hence, the SEL profile coefficients are stored on places 13-14 (that is $12+1$ and $12+2$), followed by SEL dispersion coefficients, which start at item number 15.
Likewise, the LPT profile coefficients are stored at item numbers 13-23. LPT dispersion coefficients start at item number 24.

32.11 INT File Format ".int"

Interferometric deformations are stored in ASCII files with the extension ".int". INT files describe gridded surface deformations, wavefront perturbations, intensity apodizing filters, radial deformations or Zernike polynomial coefficients. OpTaliX supports a subset of these options: surface deformations, wavefront perturbations and intensity apodizing filters can be specified as two-dimensional (gridded) data.
INT files consist of a series of records, each of up to 80 characters followed by a carriage return. Each file consists of three major sections:

1. Title. This is a single record (80 characters) with descriptive information. It must NOT start with "!".
2. Parameters. A single record containing codes and data for interpreting the subsequently following data. The syntax for rectangular (gridded) data is:
```
GRD x_size Y_size SUR|WFR|FIL WVL wavelength SSZ scale_size
[NDA no_data_value]
```

The meaning of each entry is given as follows:
GRD x_size Y_size: The qualifier "GRD" is required for gridded data. xsize and Y_size are the number of grid points in X - and Y -directions.

SUR: Specifies surface deformation.
WFR: Specifies wavefront perturbation.
FIL: Specifies intensity apodization filter.
SSZ scale_size: Defines the value of input data corresponding to one wave of deformation.

WVL wavelength: Wavelength in microns at which the interferogram was measured.
NDA no_data_value : Value of the input data which will be interpreted as missing data. Rays are blocked in these areas.
3. Data. Values for grid data are integers in the range -32768 to 32768 . For each record, 10 values are entered, using enough records to enter all data. The number of entered values must match the product x_size•y_size.

Example of grid format:

32.12 PSF File Format

Intensity distributions resulting from PSF calculations may be written to plain ASCII files. The files consist of a square matrix of data arranged in N columns and N rows. N is strictly dependent from NRD (number of rays across diameter) and is calculated by
$\mathrm{N}=4 * \mathrm{NRD}$
That is, calculating PSF using a grid of 32×32 rays in the entrance pupil yields a 128×128 matrix describing the PSF at the image surface. Hence, the file written consists of a matrix of 128 columns and 128 rows.

The ASCII-file only contains PSF-intensity data. No headers or control commands are written. An excerpt of the data structure is given below:

| 0.0027 | 0.0047 | 0.0061 | 0.0069 | 0.0072 | 0.0072 | 0.0072 | 0.0069 | 0.0061 | 0.0047 | 0.0027 | 0.0010 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0067 | 0.0079 | 0.0078 | 0.0071 | 0.0064 | 0.0061 | 0.0064 | 0.0071 | 0.0078 | 0.0079 | 0.0067 | 0.0043 |
| 0.0073 | 0.0059 | 0.0041 | 0.0030 | 0.0026 | 0.0026 | 0.0026 | 0.0030 | 0.0041 | 0.0059 | 0.0073 | 0.0071 |
| 0.0040 | 0.0028 | 0.0038 | 0.0065 | 0.0091 | 0.0102 | 0.0091 | 0.0065 | 0.0038 | 0.0028 | 0.0040 | 0.0061 |
| 0.0035 | 0.0083 | 0.0161 | 0.0238 | 0.0290 | 0.0308 | 0.0290 | 0.0238 | 0.0161 | 0.0083 | 0.0035 | 0.0032 |
| 0.0119 | 0.0235 | 0.0336 | 0.0394 | 0.0417 | 0.0423 | 0.0417 | 0.0394 | 0.0336 | 0.0235 | 0.0119 | 0.0041 |
| 0.0259 | 0.0363 | 0.0387 | 0.0369 | 0.0358 | 0.0357 | 0.0358 | 0.0369 | 0.0387 | 0.0363 | 0.0259 | 0.0119 |
| 0.0363 | 0.0371 | 0.0335 | 0.0401 | 0.0565 | 0.0655 | 0.0565 | 0.0402 | 0.0335 | 0.0371 | 0.0363 | 0.0235 |
| 0.0387 | 0.0335 | 0.0491 | 0.1088 | 0.1872 | 0.2240 | 0.1872 | 0.1088 | 0.0491 | 0.0335 | 0.0387 | 0.0336 |
| 0.0369 | 0.0401 | 0.1088 | 0.2684 | 0.4501 | 0.5313 | 0.4501 | 0.2684 | 0.1088 | 0.0402 | 0.0369 | 0.0394 |
| 0.0358 | 0.0565 | 0.1872 | 0.4501 | 0.7338 | 0.8579 | 0.7338 | 0.4502 | 0.1872 | 0.0565 | 0.0358 | 0.0417 |
| 0.0357 | 0.0655 | 0.2240 | 0.5313 | 0.8579 | 1.0000 | 0.8580 | 0.5314 | 0.2240 | 0.0655 | 0.0357 | 0.0423 |
| 0.0358 | 0.0565 | 0.1872 | 0.4501 | 0.7338 | 0.8579 | 0.7338 | 0.4502 | 0.1872 | 0.0565 | 0.0358 | 0.0417 |
| 0.0369 | 0.0401 | 0.1088 | 0.2684 | 0.4501 | 0.5313 | 0.4501 | 0.2684 | 0.1088 | 0.0402 | 0.0369 | 0.0394 |
| 0.0387 | 0.0335 | 0.0491 | 0.1088 | 0.1872 | 0.2240 | 0.1872 | 0.1088 | 0.0491 | 0.0335 | 0.0387 | 0.0336 |
| 0.0363 | 0.0371 | 0.0335 | 0.0401 | 0.0565 | 0.0655 | 0.0565 | 0.0402 | 0.0335 | 0.0371 | 0.0363 | 0.0235 |
| 0.0259 | 0.0363 | 0.0387 | 0.0369 | 0.0358 | 0.0357 | 0.0358 | 0.0369 | 0.0387 | 0.0363 | 0.0259 | 0.0119 |
| 0.0119 | 0.0235 | 0.0336 | 0.0394 | 0.0417 | 0.0423 | 0.0417 | 0.0394 | 0.0336 | 0.0235 | 0.0119 | 0.0041 |
| 0.0035 | 0.0083 | 0.0161 | 0.0238 | 0.0290 | 0.0308 | 0.0290 | 0.0238 | 0.0161 | 0.0083 | 0.0035 | 0.0032 |
| 0.0040 | 0.0028 | 0.0038 | 0.0065 | 0.0091 | 0.0102 | 0.0091 | 0.0065 | 0.0038 | 0.0028 | 0.0040 | 0.0061 |

32.13 Ray File Format

This section describes the file format for ray sources, that is, volume sources defined by a collection of rays. Rays may be written to a file using one of the following commands:

RAYLOG
write (log) ray trace data on a specific surface to a file (ASCII only).

VIE SRC
The source viewer also allows export of ray data in ASCII or binary format.

32.13.1 General Ray Format

Ray data are written as coordinate triples ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), direction cosine triples ($\mathrm{CX}, \mathrm{CY}, \mathrm{CZ}$), the associated ray intensities I_{s}, I_{p} in the S- and P-planes, and the current wavelength (in micrometers) at which the ray is traced. (Int):

$$
\begin{array}{ll}
\mathrm{X}, \mathrm{Y}, \mathrm{Z} & \text { XYZ-coordinates of the ray impinging at surface sk } \\
\mathrm{CX}, \mathrm{CY}, \mathrm{CZ} & \text { Direction cosines of the rays impinging at surface sk } \\
\text { Int_p } & \text { Relative ray intensity in P-plane } \\
\text { Int_s } & \text { Relative ray intensity in S-plane } \\
\text { Lam } & \text { Ray wavelength in micrometers. }
\end{array}
$$

Ray data (X,Y,Z,CX,CY,CZ,Int_p,Int_s,Lam) are written as single lines, one line per ray. Data are formatted column-wise, separated by blanks, tabs or commas.

32.13.2 Ray Data in ASCII Format

Ray data stored in ASCII files should have the preferred file extensions "*.txt" or "*. dat". The first few lines of a ray source file defined in ASCII format, including one header line, is given below (number of digits reduced in print):

| X | Y | Z | CX | CY | CZ | Int_p | Int_s | Lam |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.000 | 0.000 | 0.000 | 0.000 | $0.000 \mathrm{E}+00$ | 1.000 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -1.067 | 0.000 | 0.000 | $0.300 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -1.029 | 0.000 | 0.000 | $0.228 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.9899 | 0.000 | 0.000 | $0.123 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.9499 | 0.000 | 0.000 | $0.211 \mathrm{E}-05$ | 1.000 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.9086 | 0.000 | 0.000 | $-0.610 \mathrm{E}-05$ | 1.000 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.8659 | 0.000 | 0.000 | $-0.115 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.8217 | 0.000 | 0.000 | $-0.143 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.7763 | 0.000 | 0.000 | $-0.146 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.7295 | 0.000 | 0.000 | $-0.132 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.6817 | 0.000 | 0.000 | $-0.106 \mathrm{E}-04$ | 0.999 | 1.000 | 1.000 | 1.02400 |
| 0.000 | -0.6328 | 0.000 | 0.000 | $-0.748 \mathrm{E}-05$ | 1.000 | 1.000 | 1.000 | 1.02400 |

An arbitrary number of header lines may precede the data lines. In ASCII files, the first character in a header line must be an exclamation mark "!". The numerical values in each line must be separated by at least a single blank character (ASCII decimal value 32), a horizontal tab character (ASCII decimal value 9) or the may be comma separated (ASCII decimal number 44). Multiple space/tab characters are allowed. This implies that the ray data need not be formatted. The only necessary information between data items are blank, tab or comma separators.

32.13.3 Ray Data in Binary Format

Binary files generally allow significantly smaller file sizes, however, they are dependent on the operating system. Ray data in binary files are always stored in single precision accuracy and are similar to ASAP binary source files (*. dis extension). A header line of 140 bytes is obligatory and precedes the data lines.
The preferred file extension for binary source files is " $*$. dis", however, any other extension is allowed if the user is aware about the file encoding (binary or ASCII).

| Parameter | Bytes | Description |
| :--- | :---: | :--- |
| Header | 140 | Header line preceding the data lines. The header accepts arbitrary
 data, including blanks. |
| X | 8 | X-coordinate of ray with respect to reference system. |
| Y | 8 | Y-coordinate of ray with respect to reference system. |
| Z | 8 | Z-coordinate of ray with respect to reference system. |
| CX | 8 | Direction cosine of the ray in X-direction |
| CY | 8 | Direction cosine of the ray in Y-direction |
| CZ | 8 | Direction cosine of the ray in Z-direction |
| Int | 8 | Ray intensity |

Note that the ASCII and binary file formats of ray data are different in contents. The ASCII format writes the S- and P-intensities plus the ray wavelength, whereas in the binary format only the mean ray intensity is written. Compatibility with the ASAP ray format was the driving factor.
The following FORTRAN code is a template to write (respectively read) ray data in the OpTaliX binary format.

```
! Declarations:
```

 real :: dx,dy,dz,dcx,dcy,dcz,di
 character (len=140) :: header
 integer : : nrays, iunit = 12
 ! Open unit:
open(iunit, file=filename, access='SEQUENTIAL', \&
form='BINARY', status='UNKNOWN', action='WRITE')
! Write header:
header = 'OpTalix ray data'
write(iunit,'(A)') header ! 140 bytes for header
! Write ray data:
do k = 1, nrays
write(iunit, err=600) dx,dy,dz,dcx,dcy,dcz,di
enddo
! Close unit:
600 close(iunit)

Bibliography

[1] Aberrator: http://www.aberrator.astronomy.net/
[2] J.A. Arnaud, "Hamiltonian Theory of Beam Mode Propagation", Progress in Optics, Vol.11, E. Wolf Ed. (Amsterdam 1973)
[3] M.Berek, "Grundlagen der praktischen Optik", Walter de Gruyter \& Co. , Berlin 1970, Nachdruck der 1.Auflage 1930
[4] M.Born, E.Wolf, "Principles of Optics", $6^{t h}$ edition, Pergamon Press
[5] Breault Research Organization, http://www.breault.com/
[6] E.Oran Brigham. "FFT, Schnelle Fouriertransformation", Oldenburg Verlag, München,Wien 1982
[7] H. A. Buchdahl, 'Many-color correction of thin doublets", Applied Optics, Vol. 24, No. 12, June 1985
[8] Cargille Laboratories Inc., 55 Commerce Rd., Cedar Groove, N.J. 07009, USA
[9] A.E. Conrady, Mon. Not. Royal astr. Soc., 64 (1904) 182
[10] J.E. Dennis Jr., R.B. Schnabel, ’Numerical Methods for Unconstrained Optimization and Nonlinear Equations", Prentice-Hall, Englewood Cliffs, New Jersey (1983)
[11] Donald P. Feder, "Automatic optical design", Appl. Opt., Vol.2, No.12, Dec. 1963, pp. 1209
[12] W.G.Driscoll, W.Vaughan, "Handbook of Optics" Mc.Graw Hill, 1978, ISBN 0-07-047710-8
[13] A. Ghatak, K. Thyagarajan, "Optical Electronics", Cambridge University Press, 1989, ISBN 0 512306434
[14] P.E. Gill, W.Murray, M.A. Sanders and M.H. Wright, '"Model building and practical aspects of nonlinear programming", Computational Mathematical Programming (edited by K. Schittkowski), NATO ASI series, 15, Springer-Verlag, Berlin, Germany (1985)
[15] D. Gloge, "Weakly Guiding Fibers", Appl.Opt., Vol.10, No.10, Oct.1971, pp.2252-2258
[16] D. S. Grey, "The inclusion of tolerance sensitivities in the merit function for lens optimization", SPIE Vol. 147, Computer-Aided Optical Design (1978).
[17] J.W. Goodman, 'Introduction to Fourier Optics", McGraw-Hill, New York, (1988), $2^{\text {nd }}$ edition
[18] H.Haferkorn. "Optik, Physikalisch technische Grundlagen und Anwendungen". Harri Deutsch, Thun, Frankfurt/M. 1981
[19] H.Haferkorn, "Bewertung optischer Systeme", VEB Deutscher Verlag der Wissenschaften, Berlin 1986, ISBN 3-326-00000-6
[20] R.Herloski, S.Marshall, R.Antos, "Gaussian beam ray-equivalent modeling and optical design", Appl.Opt. 22, No.8, pp. 1168-1174, April 1983
[21] J.L.Houghton, US Patent 2,350,112 (30.May 1944)
[22] R.A. Hull, "Transmission of light through a pile of parallel plates", Proc.Phys.Soc., 574-575 (1936)
[23] M.Isshiki et.al., "Lens Design: Global optimization of both performance and tolerance sensitivity", SPIE, Vol. 6342, International Optical Design Conference 2006
[24] M.J. Kidger, "Intermediate Optical Design", SPIE Press monograph, PM 134, ISBN 0-8194-5217-3
[25] T.Kita et.al., Appl.Opt., Vol. 22, No.4, pp. 512
[26] W.A. Kleinhans, "Aberrations of curved zone plates and Fresnel lenses" Appl. Opt. 16, pp. 1701-1704, (1977)
[27] H.W. Kogelnik, T.Li, Appl.Opt. 5, 1550 (1966)
[28] F. Kohlrauch, "Praktische Physik", 1968, Vol.1, p. 408.
[29] M. Laikin, "Lens Design", $3^{\text {rd }}$ edition, Marcel Dekker Inc., (2001)
[30] K. Levenberg, "A method for the solution of certain problems in least squares", Quarterly of Applied Mathematics, 2, 164-168
[31] R.J.Lurie, "Anastigmatic Catadioptric Telescopes", Journal of the optical society of America (JOSA), Vol.65(3), 1975, p261-266,
[32] H.A. Macleod, "Thin-film optical filters", $2^{\text {nd }}$ Ed., Adam Hilger Ltd., Bristol ISBN 0-85274-784-5
[33] D.Malacara, "Diffraction Performance Calculations in Lens Design", SPIE, Vol.1354, June 1990, pp.2-14
[34] D.Malacara, "Handbook of Lens Design", Marcel Deccer, Inc., (1994), ISBN 0-8247-9225-4
[35] D.Marquardt, "An algorithm for least-squares estimation of nonlinear parameters" SIAM Journal on Applied Mathematics, 11, 431-441
[36] M.Mansuripur, "Classical Optics and its Applications", Cambridge University Press, (2002), ISBN 0521800935
[37] R. I. Mercado, "Design of apochromats and superachromats", SPIE Critical Review Vol. CR41, Lens Design, ed. Warren J.Smith (Jan 1992).
[38] R.C.Millard, G.Seaver, "An index of refraction algorithm for seawater over temperature, pressure, salinity, density and wavelength", Deep-Sea Research, Vol. 37, No.12, pp.1909-1926, (1990)
[39] NSG Website, www.nsgeurope.com/technical.shtml
[40] OpsiraGmbH, Leibnitzstr. 20, D-88250 Weingarten, Germany, http://www.opsira.de
[41] Matthew P. Rimmer, "Ray tracing in inhomogeneous media", SPIE Proc. 399, p.339, (1983)
[42] Matthew P. Rimmer, "Relative illumination calculations", SPIE Proc. 655, p.99, (1986)
[43] M.J.D. Powell, "A fast algorithm for nonlinearly constrained optimization calculations", Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics (edited by G.A. Watson), 630, pp.144-157, Springer-Verlag, Berlin, Germany
[44] Radiant Vision Systems, http://www.radiantvisionsystems.com
[45] J.L. Rayces, L.Lebich, "Modeling of diffractive optical elements for optical design", SPIE Vol. 2000, pp. 43, 0-8194-1249-X/93
[46] P.N.Robb, R.I.Mercado, "Calculation of refractive indices using Buchdahl's chromatic coordinate", Appl.Optics, Vol.22, No.8, April 1983, pp. 1198
[47] J.B.Scarborough, "Numerical Mathematical Analysis", Johns Hopkins U.P., Baltimore, 1966; Chap.13, Article 116.
[48] SCHOTT Glaswerke, "Dispersionsformel fuer die Temperaturkoeffizienten der Brechzahlen von Glaesern". Technische Information Nr. 19 (4/1988) der Schott Glaswerke, Postfach 2480, D6500 Mainz.
[49] A.Sharma, D.V.Kumar, A.K.Ghatak, "'Tracing rays through graded-index media: a new method", Applied Optics, Vol.21, No. 6, March 1982
[50] A.E. Siegman, Proc. SPIE 1224, 2, 1990
[51] Gordon H. Spencer, "A flexible automatic lens correction procedure", Appl. Opt., Vol.2, No.12, Dec. 1963, pp. 1257
[52] W.C. Sweatt, "Describing holographic optical elements as lenses" J.Opt.Soc.Am. 67, pp.803808, 1977
[53] W.C. Sweatt, "Mathematical equivalence between a holographic optical element and an ultrahigh index lens" J.Opt.Soc.Am. 69, No.3, pp.486-487, 1979
[54] Y.Tamagawa, S.Wakabayashi, T.Tajime, "New design method for athermalized optical systems", SPIE, Vol. 1752 (1992)
[55] Y. Tamagawa et.al., "Multilens system design with an athermal chart", Appl.Opt., Vol. 33, No. 34, pp. 8009, Dec. 1994
[56] Y. Tamagawa, T. Tajime, "Expansion of an athermal chart into a multilens system with thick lenses spaced apart", Opt. Eng. 35(10), pp. 3001, Oct. 1996
[57] R.E. Wagner, W. J. Tomlinson, "Coupling efficiency of optics in single-mode fiber components", Appl.Optics, Vol.21, pp. 2671-2688 (1982)
[58] W.T.Welford, "A vector raytracing equation for hologram lenses of arbitrary shape". Optics Communications, Vol.14, No. 3, July 1975, p. 322
[59] E.Waluschka, "Polarization Ray Trace", Optical Engineering, Feb. 1989, Vol.28, No. 2
[60] J.Y.Wang, D.E.Silva, "Wave-front interpretation with Zernike polynomials", Applied Optics, Vol. 19(9), pp. 1510-1518, May 1980
[61] R.N. Wilson, "Reflecting Telescope Optics I", Springer Verlag Berlin-Heidelberg 1996, ISBN 3-540-58964-3
[62] T.R.M.Sales, G.M.Morris, "Diffractive-refractive behaviour of kinoform lenses", Appl.Opt., Vol.36, No.1, January 1997, pp. 253
[63] G.W.Forbes, "Shape specification for axially symmetric optical surfaces", OSA, Vol.15, No.8, April 2007, Optics Express 5218
[64] G.W.Forbes, "Robust and fast computation for the polynomials of optics", OSA, Vol.18, No.12, June 2010, Optics Express 13851
[65] C.K. Carniglia, "Accounting for the phase of an optical coating in an optical system", OSA, Opticsinfobase
[66] MacLeod: Optical Thin Films, www.thinfilmcenter.com
[67] Masaki Isshiki, "Global optimization with escape function". Proc. SPIE 3482, International Optical Design Conference 1998, Kona, HI, USA.

Index

Symbols\$c, coating directory21
$\$ \mathrm{~g}$, glass directory 21
\$i, installation directory 21
\$t, temporary directory 21

* 21
21
; 21, 35
>... 446
?. 21
GRO grating order 86
\#include 459
A
A $4^{\text {th }}$ order aspheric 65
AADE, array cell α-tilt 134
AAP 186
AAS, anamorphic surface 77
ABBE, Abbe number 475
Abbe number 221
ABDE, array cell β-tilt 134
Aberrationsfan curves240, 241
longitudinal, plot 240
longitudinal, single ray 240
optical path difference, plot 240
spot diagram 241
third order 249
transverse 240, 241
transverse, plot 240
ACDE, array cell γ-tilt 134
ADE, x-tilt 108, 197
ADNDT 475
ADX 165
ADY 165
AF autofocus 197
AFO, afocal 44
Afocal 44, 60
maximum frequency 197, 269AFR197, 269
AIM 240
AIR 218
Air 234, 397
ALG, alternative glass 199
Alternative glasses (list) 179
AMX, array max-X 134
AMY 106
AMY, array max-Y 134
Anamorphic asphere 75
Angle of incidence 202
Angle of refraction 202
AOE, angle of exit 358, 476
AOI, angle of incidence 358, 476
AOR, angle of refraction/reflection 358, 476
$\mathrm{AP}, 4^{\text {th }}$ order anamorphic coeff. 77
APD, exit pupil diameter 472
Aperture
EPD (entrance pupil diam.) 51
NAO (num. aperture, object) 52
NA (num. aperture) 52
NA (num.aperture) 294
circular 52, 164
elliptical 52, 164
fixed 169
hole 164, 168
obstructing 164
polygon 52, 167
from file 167
rectangular 52, 164
surface 164
surface editor 170
system 50, 52
type, shape 165
aplanatic 90
APO2 435
APO3 436
Apochromat 435
three-glass 436
two-glass 435
Apodization 53, 142, 243, 271
analysis 243
filter 142 403
AXG, tolerance on axial gradient
AXG, tolerance on axial gradient
APT, aperture type, shape 165
AR, $4^{\text {th }}$ order aspheric coeff. 77
ARH, array hexagonal arrangement 134
ARO 165
$A R R$, array 134
Array surface/element 68, 133
ARX, array x-spacing 134
ARXO, array x-offset 134
ARY, array y-spacing 134
ARYO, array y-offset 134
ASD, aspheric deformation, radial 417
ASD2, aspheric deformation, 2D 417
ASF, astigmatic focus shift 48
ASO, astigmatic source orientation 48
ASP 69
ASP 65
Asphere 67, 69
anamorphic 75, 77
axicon 83
biconic 75
conic section 71
cylinder 70, 77
Eccentricity, numerical 71
Ellipse 72
even power polynomial 70
Hyperbola 71
odd power polynomial 71, 73
Q-type 79
toroidal 78
type 69
XY polynomial 74
Y-toroid 70
Aspheric deformation 416, 420
as 2 D surface deformation 419
in radial direction 417
ASTD, astigmatic difference on a ray 480
ASTI 360
Astigmatic objects 47
ASTS, sagittal astigmatism on a ray 479
ASTT, tangential astigmatism on a ray 479
ATH3 434
Athermal glass selection 433
Athermal Map 432
ATT, attach coating 332, 382, 384, 387
ATY, asphere type 69
ATY, asphere type 77
Auto-correlation 270
Autofocus 197, 409
AVG 335
Axicon 83
B
B $6^{\text {th }}$ order aspheric 65
Back focal length 237
BAS, CAM list parameter offset value 428
BDE, y-tilt 108, 197
BEA Gaussian beam analysis 286
Beam propagation 317
BEN
compound tilts 112
BEN, bend surface 110, 111
BFL 55, 237, 357
Biconic see Anamorphic asphere
Biocular analysis 265
convergence 266
dipvergence 266
divergence 266
BLD blaze depth 86
BLN, number of levels 87
BLT, blaze type 87
BMP, Windows Bitmap format 444
BMPX, bitmap pixel size, horizontal 444, 445
BMPY, bitmap pixel size, vertical 444, 445
$\mathrm{BP}, 6^{\text {th }}$ order anamorphic coeff. 77
$B P R$, beam propagation 323
$\mathrm{BR}, 6^{\text {th }}$ order aspheric coeff. 77
C
C $8^{\text {th }}$ order aspheric 65
CAD Export 494
CAM 426
CAM, calculate CAM table 427
Cartesian oval 82
Catalog lens import 488
Cauchy dispersion formula 220
CCI, colour contribution index 337
CDE, z-tilt 108, 197
CEF, coupling efficiency 290
CEFDB, coupling efficiency in decibel 290
CGM, Computer Graphics Metafile 444
Characteristics matrix 394
CIND, gradient index surface coating indices203CIR165
CIY, curvature increment 66
Clipboard 444, 446
CLOSE 463
CLS
clear screen 213
coating plot colour 384
field plot colour 47
COA 384
COA coating 382
Coating 331
attach to surface 387
calculating 393
coating orientation (on surface) 173
configuration 381
default coating 387
default colours 484
editing 381
export performance data 393
Group delay 384
Group delay dispersion 384
index profile 393
material editor 392
new 386
optimal index at GRIN surfaces 203
optimization 390, 392
phase change 382
phase change introduced on optical path 388plot colour384
reference wavelength 382
reflectivity 394
shorthand entry 386
thickness variation 388
non-symmetrical 390
radial 388
transmissivity 394
Coatings
colours in plots 384
coherent 317
Colour
384
coatings
47
fields
252, 253
longitudinal483
Colour contribution index 337
COM 56
COMA 360Commandfunctions39
lens database items 40, 454
line 35, 471
operating system 214
parameters 35
rules 41
Comments 171
surface 171
CON conic constant 65
Concatenation 458
Configuration data 44
Conrady D-d aberration 283, 480
Conrady dispersion formula 221
Contrast 362
CONVAGF, convert AGF glasscat. 223
Conversion
Hologram coefficients 421
COO
coating orientation 173
Coordinate system 29
global 29
object 29
Coordinatesdefinition29
Euler angles 30
global 181
tilt angles 30
COP, COPY 171, 194
Coupling efficiency 197, 290
$\mathrm{CP}, 8^{\text {th }}$ order anamorphic coeff. 77
CPI curvature pick-up 65
$\mathrm{CR}, 8^{\text {th }}$ order aspheric coeff. 77
CREF
CREF, coating reference wavelength 382
CTV, coating thickness variation 389
CUX, x-curvature 65, 78
CUY, y-curvature 65, 78
CX 358
CXG 474
CXG, global X-direction cosine of surface normal476
CXN 359
CXN, X-direction cosine at ray intersection point 476
CYN 359
CZN 359
CY 358
CYG 474
CYG, global Y-direction cosine of surface normal476
CYL, cylinder 70, 77
Cylinder surface 77
CYN, Y-direction cosine at ray intersection point 476
CZ 359
CZG 474
CZG, global Z-direction cosine of surface normal 476
CZN, Z-direction cosine at ray intersection point477
D
D $10^{\text {th }}$ order aspheric 65
Damped-least-squares 345
DAR, decent. and return 110,111
DAT, date 213
Database item. see Lens database items
DEF 54, 197
DEF 55
Default coating 332, 387
Default file 27
DEFC, default constraints enable/disable 355
Defocus 54
DEL
APE, aperture 165
COA, coating 384
EPD, (Entrance pupil diam.) 51
FNO, (F-number) 51
MUL, delete multilayer coating 382
NAO, (num. aperture object) 52
NA, (num. aperture) 52
NSS 100
PRE, pressure 400
SOL, solve 106
TEM, temperature 399
TOL, surface tolerance items 401
VIG 60
plot rays 189
RED, delete reduction ratio 107
zoom position 194
DEL, layer 384
DEL, surface 172
Delete
384
coating
384
layer 384
pickup 103
surface 172
zoom position 194
DEZ, dezoom 192
191, 192Diffractionblaze depth88, 421
diagonal field PSF 274
efficiency 93, 95
Encircled energy 281
extended object 276
grating 90
grid field PSF 275
hologram 89
hologram radial zones 420, 421
inside optical systems 317
interferogram 284
Knife edge function 280
MTF 268
PSF 271
PSF diameter 274
PSF ellipticity 274
Strehl ratio 281
X/Y cross sections of PSF 276
DIM 43
Dispersion 218, 219, 235
Abbe number 221
offset 218, 235
partial 221, 227
plot 432
partial dispersion offset 236
primary 221
Dispersion, Nikon Formula 220
Display
interferometric deformation 144
DIST 360
Distortion 245
afocal 245
F-Theta 245
grid 247
plot 246
DISX 246, 360
DISY 246, 360
DLA, tolerance on X-tilt 404
DLB, tolerance on Y-tilt 404
DLF, tolerance on test-plate fit 402
DLG, tolerance on Z-tilt 404
DLN, tolerance on index of refraction 403
DLR, tolerance on radius 403
DLT, tolerance on axial thickness 402
DLV, tolerance on dispersion 403
DLX, tolerance on lateral X-displacement 403
DLY, tolerance on lateral Y-displacement 403
DLZ, tolerance on longitudinal Z-displacement 404
DMD, Conrady weighted D-d difference 283, 480
dn/dT 222
DNDT 398
DNDT 178, 222, 399, 475
DNDTC 399
DNO, index offset 219, 235
DO construct, in macros 464
DOE, diffractive optical element . see Hologram,90
DP, $10^{\text {th }}$ order anamorphic coeff 77
DPI distance pick-up 65
DR, $10^{\text {th }}$ order aspheric coeff 77
Drawing, element 423
DTR, tolerance on reference thickness 402
DVO, dispersion offset 218, 235
DVOM, dispersion offset model 235
DXF, Data eXchange Format from AutoCAD444
E
E $12^{\text {th }}$ order aspheric 65
ECE, encircled energy, diffraction based 281
ECG, encircled energy, geometric 262
ECHO command line 213
EDG
aperture option 165
edge drawing 187
edge spread function 280
Edge thickness 421
EDICNF, configuration44
EDI 45, 48
BPR, beam propagation parameter 323
CCFG, coating configuration 382
CMAT, edit coating (thin-film) materia 392
CNF, configuration 306
COA, coating 382
CTV, coating thickness variation 389
FLD, field 44, 45
GLP, glass polygon 365
LAM, (wavelength) 48
LAM, wavelength 44
LDR 187
MAC, macro file 451
OPT, optimization operating parameters 3 37
SUR, surface editor 64
TOL, surface tolerance items 401
VAR, variables/targets 349
ZOO, zoom 44, 192
ZRN, zernike coefficients 148
CAM, edit cam 428
COA, coating editor 381
PREF, program preferences 23
SUR, surface editor 64
UDS, user-defined or SPS surface 74
UDS, user-defined or XYP surface 75
EDI, zoom 192, 193
Editor
coatings 381
macro 451
multilayer seecoatings 381
redo 64
surface 63
undo 64
EFL 237, 357
EIMD, extended object/image,diffraction based 277ELE, element drawing424
Element Drawing 423
Ellipse
at major axis 72
at minor axis 72
ELX 164
ELY 164
Encircled Energy
diffraction 281
geometric 262
END, terminate PRV environment 226
ENDDO, in macros 464, 465
ENDWHILE, in macros 465
Ensquared Energydiffraction281
Entrance pupil 237
Environmental analysis 397
EPD 51, 472
EPS, Encapsulated Postscript 444
EPWR, illumination emitted power 311
EPX, include pupil distortion in ray aiming 57
EQE, ensquared energy, diffraction based 281
ERRF, optimization error (merit) function 367
ET, edge thickness 107, 359, 42
Euler angles 30, 113, 182
EVA, evaluate 458
Even power polynomial asphere 70
Example Library 499
EXC, expansion coefficient 399
EXC, linear expansion coefficient 475

FDISX

246, 360Excel496
export 2D-aspherization data420
export CAM (zoom position) data. 427
export ghost analysis data 255
export illumination analysis data 311
export PSF data 274 274
export transmission data 334
EXI, exit from program 20
Exit from OpTaliX 20
Exit pupil 237
Exit pupil, reciprocal 238
EXM, first surface mirror expansion coefficient 399
EXM, mirror substrate, linear expansion coeffi-
cient 475
EXP, export lens file. 491-493
Expansion coefficient 475
Export
Aberrator 493
ASAP 492
USERFUNC. 492
Atmos 493
coating performance 384
coating performance data 393
Code V 491
Excel 427, 496
graphics 445
IGES 494
lens prescription 491
Modas 493
Oslo 491
POV-Ray 493
PSF-data 274
Zemax 491
EXR 398, 400
Extended object 276
F
F $14^{\text {th }}$ order aspheric 65
F-number 51
FACT, field activation 46
FAN 240
Fan curves 240, 241
FANL 240
Fast Fourier Transform (FFT) 319
FCOMP, film compose 387

FDISY 246, 360
FFT 272, 278
FHY. 170
Fiber. 68, 131
coupling efficiency 290
display modes 297
graded-index 296
mode profile 295
multi-mode 295
normalized frequency 295
single-mode 295
step-index 296
tapered 68, 131-133
Fictitious glasses 198, 227
FIE, field aberrations 247
Field
FTYP (field type) 46
FWGT (field weight) 46
XAN 45
XIM 46
XOB 45
XRI 46
YAN 45
YIM 46
YOB 45
YRI 46
aberrations (FIE option) 247
activation 46
plot colour 47
Field points 44
FIL see INT-file
File formats 501
interferometric deformation (.int) 516
radial spline (.spl) 511
coating (.otc) 508
configuration 27, 501
glass catalogues (.csv) 512
GRIN catalogue glasses 516
GRIN dispersion data 515
lens data (.otx) 502
melt data (.ind) 514
PSF 517
ray data 519
test plates (.tpl) 511
Zernike (.zrn) 510
FILENAME, file name 213
FILEPATH, file path 213
Files
user generated files 27
Filter (intensity apodization) 142
FIO, first order ray trace 248
G
FIR, first order analysis 248
FIR, first order properties 237
First order 248, 249
ray trace 248
system data 248
FLO, fiber location. 291
FNO 51
Focal length 237
FOO 415
Footprints 415
FOPT, coating (film) optimization 384
FOPT, thin film optimization 392
FORTRAN 453
Fourier Transform 294, 317-319
FRA 291
FRB 291
FRCR 292
FRD 291
Fresnel 68, 335
number 293
reflection losses 335
Fresnel surface 96
FRMM 292
FRN1 292
FRN2 292
FRR 290
FRX 291
FRY 291
FSA 290
FSB 290
FSCR 292
FSD 290
FSMM 292
FSN1 292
FSN2 292
FSR 290
FSYM, film symbol 387
FTAR, coating (film) targets 384
FTH, fresnel thickness 96
FTYP, field type 46
Function user-defined 464
Functions 183
in optimization 354
intrinsic 39, 452
FWGT 46
G $16^{\text {th }}$ order aspheric 65
GADE, gradient x-tilt 110, 121
Gaussian Beams 286
Gaussian beams 317
GBDE, gradient y-tilt 110, 121
GCAT, glass catalogue 431
GCAT, glass catalogue view/edit 438
GCDE, gradient z-tilt 110, 121
GDISP, gradient index dispersion name 121 515
GDX, Gaussian divergence X 288
GDY, Gaussian divergence Y 288
Gels 233
General lens data 44
GHO, ghost analysis 254
GHO, ghost image analysis 254
Ghost images 253
GHP, ghost paraxial 255
GHS, ghost spot 255
GIC gradient index profile coefficient 121
GIS gradient index step 121
GIT gradient index type 121
GL1 218
GL2 218
GLA, glass name 119, 218, 222, 227, 384
Glass
GL1 100
GL2 100
SWEATT 88
alternative glasses 179, 199
apochromatic selection 435
athermal glass selection 433
athermal map 432
bulk absorption 331
catalogs 431
catalogue 200, 219, 222, 227, 431, 438
dndT 475
fictitious 198, 227
filter 231
gradient index 232
Infra-red 228
manager 431
map 431
melt glass 439
MIL-number 227
new 439
optimization 363
plastics 228
polygon, used in optimization 363
private 224
radiation resistant 231
Sellmeier coefficients 439
special 227
temperature coefficient of refractive index475view, edit438
Glass catalogs 431
Glasses 217
GLB, global reference 117
GLO global 181
Global
coordinates listing 181
coordinates/references 116
matrices 181
ray coordinates 238
surface coordinates 181, 473
Global surface coordinates 181
GLP, glass polygon 365
GMTFA, MTF, geometric, average 261, 479
GMTFS, MTF, geometric, sagittal 261, 479
GMTFT, MTF, geometric, tangential. 261, 479
GNRD 262
GOH, GO esc.Fkn. height 376
GOMXS, GO max solutions 376
Goos-Hanchen effect 98
GOPT, Global optimization 376
GOT, GO esc.Fkn. distance tol. 376
GOV, Global opt. viewer 376
GOW, GO esc.Fkn. width 376
GPSF, geometric PSF 261
GRA 444
Gradient index 119, 232
AXG 122, 126
GLC 122, 125
GRC 126
GRT 122, 125
LPT 122, 126
LUN 122, 127
MAX 122, 127
SEL 122, 124
SPG122, 127
UDG 128
URN 122, 127
coating indices 203
Gradient Lens Corp 232
Grintech 232
LightPath 232
NSG 232
profile 437
step length 122
tilt of profile 115
user-defined 128
Gradient Lens Corp. 232
Graphics
clipboard. 444, 446
export 445
file formats 444
output device 444
printing, plotting 444
user-defined 204
Grating 67
conversion of coefficients (VLS-grating) . 92
straight-line ruled 90
variable line spacing 91
Gravity 475
center of 200
specific 200
Gravity center 242
GRD ee INT-file
grin.asc 516
Grintech 232
GRO grating order 66
Group delay 384
Group delay dispersion 384
GRX, grating frequency X 66, 86, 91
GRY, grating frequency Y 66, 86, 91
GSC global surf. coord's. 181
GSM global surface matrix 181, 182
GZO gradient z-offset 121
H
H $18^{\text {th }}$ order aspheric 65
Handbook of Optics 1 dispersion formula 221
Handbook of Optics 2 dispersion formula 221
Hartmann dispersion formula 220
HCi 85
HCO, hologram coefficients 85
HCY 106
HCY 238, 360
Herzberger dispersion formula 220
HMX 106
HMY 106
нMY 238, 360
HOE, holographic optical element 84, 90
HOL . see Aperture
Hologram 84
asymmetric phase function 87
blaze depth 421
Diffraction efficiency 95
radial zones 420, 421
Sweatt model 88
symmetric phase function 87
two-point hologram 89
HOM, tolerance on index homogeneity 403
HOR, hologram order 66, 85, 91
HOT, hologram type 85
HPGL, Hewlett Packard Graphics Language 444
HPH, hologram phase 420
HPH, hologram phase 87
HPHN, hologram phase numeric 420
HPHN, hologram phase numeric 87
HV1, hologram real/virtual beam 86
HV2, hologram real/virtual beam 86
HWL, hologram design wavelength 85
HX1, object point source X of HOE 87
HX2, reference point source X of HOE 87
HY1, object point source Y of HOE 87
HY2, reference point source Y of HOE 87
HZ1, object point source Z of HOE 87
HZ2, reference point source Z of HOE 87
HZO, hologram zones on radial symmetric pro
files 420
HZO, hologram radial zones 87
I
IBZ, block rays at zero intensity 144
IC, intersection direction 70
IC, intersection direction 82
Ideal lens see Lens module (ideal lens)
IFG 284
IFO, increment in focus 242
IFR, increment in frequency 269
IGES 494
export limitations 495
supported entities 495
trouble shooting 496
ILL
EXP, write irradiance to file 311
FIL, write irradiance to file 311
ILL, illumination analysis 305, 310
Illumination 301
aiming to entrance pupil. 308
analysis 310
bitmap sources 307
emitted power (database item EPWR) 311
flat sources 307
Gaussian source 307
received number of rays (database item NILR) 311
received power (database item RPWR) 311
relative 336
source 301
source display in lens layout plot 306
target surface 310
volume (real) sources 308
Illumination source 301
ILN, store interferometric deformation/filter data as link 140
Image
diffraction analysis 268
diffraction MTF 268
extended object 276
geometric analysis 237
point spread function (PSF) 271
Image surface 174
IMC, image clearance 357, 473
IMD 55
IMD, image distance 357, 473
IMG, image surface 174
IMP
import Oslo file 485
import Accos file 487
import ATMOS file 486
import catalog lens 488
import Kidger file 487
import MacLeod coating design 487
import MODAS file 486
import Optilayer coating design 488
import TFCalc coating design 487
import WinLens file 486
import Zemax file 485
Import 485
Accos 487
Atmos 486
catalog lens 488
Code V 485
MacLeod coating design 487
Modas 486
Optilayer coating design 488
Oslo 485
Sigma-PC, Sigma 2000 487
TFCalc coating design 487
WinLens 486
Zemax 485
IMPR, improvement factor 376
IMY 106
INC, stepping increment 427
Incidence angle 202
IND 218, 383
IND, direct index specification 226
IND, index of refractionin macros or LDI226, 473
Index of refraction
Cauchy formula 220
Conrady formula 221
Extended Sellmeier formula 219
Handbook of Optics 1 formula 221
Handbook of Optics 2 formula 221
Hartmann formula 220
Herzberger formula 220
layer 383
Nikon dispersion formula 220
offsets 235
old Schott formula 219
reduced Sellmeier formula 220
Sellmeier formula 219
Index profile (of coatings) 393
INE 218
Infinity values 67
INPUT variables in macros 461
INR 146
INS, insert 171, 194, 384
Insertlayer384
surface 171
zoom position 194
Insertion loss 293
INT, interferometric deformation 138
INT-file 54, 516
INT2P, two-path interferogram 285
Intensity
in exit pupil 243
Interferogram 284
dual-path 284
Interferometric deformation 138
Interferometric deformation, display 144
INV
COA, coating 382
INV, invert 198
Invert
surface 172
Invert system 198
INX, 2-dim deformation x-offset 139
INY, 2-dim deformation y-offset 139
Light pipe 68, 131
LightPath 232
LIM, maximum of stepped separation or parame-
ter 427
Liquids 233
LIS 35, 171, 177, 384
MUL, multilayer coating 382
SOL solves 106
TPL, test plates 423
ALG, alternative glasses 177, 179

IRR, tolerance on irregularity 402
Irradiance
relative 336
IRX, 2-dim deformation x-extension 139
IRY, 2-dim deformation y-extension 139
ISF, deformation scale factor 139
ISO element drawing 423
K
K. 65
KEFH , high level of knife edge function 280
KEFL, low/high levels of knife edge function 280KEFS, knife edge function sagittal, diffractionbased280
KEFT, knife edge function tangential, diffractionbased280
Kinoform 93
Knife edge function 280
KX, X-conic constant. 77
KY, Y-conic constant 77
,
L L
LAC 253, 360
LAX, longitudinal aberration X 240
LAY, longitudinal aberration Y
LAY, longitudinal aberration Y 240 240
LCA.
LCA. 360 360
LD. see VIE
LDS
LDS 185 185
LEN
LEN 43 43
EN
EN
Lens database item 40, 471
variables 471
Lens layout plot
illumination source 306
Lens module (ideal lens) 67, 163
LFC, list user-defined functions 183, 464402E

[^3]ALL 177
APE, apertures 177
CAM, cam parameter 177, 428
CNF, configuration 177
COM, surface comments 177
DNDT, dn/dT 177
EXC, linear expansion coefficient 177
GLA, glass names 178
IND, refractive indices 178
MUL, multilayer 178
OPT, optimization 178
OSP, optical spectrum 178
PAR, paraxial system data 178
PIK, pick up 178
PIK, pickup 103
RAY. 178
REM, remarks 178
TOL, tolerances 178
TPL, test plate fitting 178
List 177
alternative glasses 179
coating prescription data 384
global coordinates and matrices 181
global surface coordinates 181
global surface matrix 181
lens prescription data 177
pickups 103
user defined functions 183
user defined variables 182
List, standard output 180
Log ray data 214, 519
LVR, list user-defined variables 182, 459
M
M2, quality factor M^{2} 288
MacLeod coating package 487
Macro 206, 451, 471
\#include 459
arithmetic expressions 39, 452
CLOSE statement 462
comments 468
concatenation 458
control statements 464
DO construct 464
Editor 451
evaluate 458
file inclusion 459
format statement in variables 457
formatted output 454, 455
functions
list 183
IF construct 466
INPUT statement 460
intrinsic functions 452
lens database items 40, 454
list functions 183
list variables 182
logical line continuation 468
logical line separation 468
mathematical functions 452
OPEN statement 461
parameter 452
print 454
random number 452
read 457
return 468
run. 452
SELECT statement 463
user-defined functions 464
Variables 457
variables 459
list 182
WHILE construct 465
MAE, minimum air edge thickness 355
MAG 357
Magnification 44
MAN multi-layer analysis 383
MAN, export coating performance. 393
Manufacturing
aspheric deformation 416
CAM calculation 426
edge thickness 421
footprint analysis 415
hologram phase 420
ISO element drawing 423
test plate fitting 422
Marker
in spot diagrams 242
Materials 217, 227, 439
air 234
gels 233
gradient index 232
Infra-red 228
infrared 227
liquids 233
plastics 228
radiation resistant 231
thin-film (coating) 392

269, 360Matrixsurface tilts and decenters114
MAXAOI, maximum angle of incidence 202
MAXFLD, max. number of fields 44
MAXFLD, set maximum field points 44
Maximum incidence angles 202
MAXSRC, maximum allowable sources 301
MELT 440
Melt glass 439
data sheet. 439
Merit-function see Optimization, seeOptimization
MFL, module focal length 67, 163
MFR 269
MFRA, maximum frequency in autofocus calcula- tions. 197, 269
MFRD 269
MFRF 269
MHT maximum heights 170
MIL-number 227
Mirror 67
Substrate expansion coefficient, EXM 475
surface type 67
transmission analysis 332
MMF, multi-mode field 292
MNA, minimum air center thickness 355
MNC, min cycles 376
MNE, minimum edge thickness 355
MNT, minimum center thickness 355
MOD 163
Modulation transfer function 197, 270, 280, 282,368
diffraction based 268
geometric 260
Module see Lens module (ideal lens)
MOV move 172
MPI material pick-up 65
MPR, mode profile 291
MRD, module reduction ratio 163
MTF. see Modulation transfer function
diffraction based 268
geometric 260, 261
increment in frequency, IFR 268
maximum frequency, MFR 268
MTF
in autofocus 197
MTF2D, 2-dimensional MTF 269
MTFA 268, 360
MTFT. 269, 360
Multi-configuration. 191
MXA, minimum angle of incidence. 355
MXC, max cycles . 376
MXG, max. GRIN iterations 122
MXн.. . . . 100
МХн, maximum hits . 66
MXT, maximum center thickness 355

NA... . 52
NAO . 52
NAX, new axis . 110-112
NDA see INT-file
new lens . 43
NFLD, number of fields in use. 44
NFNC, partial dispersion plot 432
NILR, illumination received number of rays. 311
NNU... . . 432
Non-sequential . 99
MXH maximum hits 100
absorbing. 102
converting . 100
coordinate system . 101
entrance port.............................. . . 102
exit port.................................... . 102
general notes............................... . . 102
glasses 101
ray transfer . 101
surface type 68, 100
NOR, "no-raytrace" surface 65, 118
NRAYS, number of rays traced 477
NRD.. . . 52, 278
NSG 232
NSS, non-sequential. 67, 100
NWL, no. of wavelengths 4949

0
OAL . 238, 358
OBD, object distance . 238
Object
extended 276
Objects . 44
OBS.................................... see Aperture
Odd power polynomial asphere 71, 73
OERR, optimization error limit 376
Offset
dispersion 235
partial dispersion 236
OID 238
OMN, omni-directional min/max angles 57
Omni-directional beams 58
OOS 238
OPD . see Optical Path Difference
OPD, optical path difference 283
OPDFAN 241
OPDW, optical path difference in waves 283
OPEN 462
Operands 350
Operating System 214
Operating system commands 214
OPL 359
OPT, optimization 345, 367
Optical Path Difference . 138, 142, 277, 279, 282
Optical spectrum 49
Optical transfer function 270
Optilayer coating package 488
Optimization 345, 409
coating 390
contrast vs. resolution 362
damped-least-squares 345
default constraints 354
description of output 372
error limit 376
fractional improvement 376
glasses 363
global opt. example 377
Global optimization 376
GO esc.fkn. distance tol. 376
GO esc.fkn. height 376
GO esc.fkn. width 376
GO max solutions 376
GO viewer 376
include targets from file 352
lens database items 353
Levenberg-Marquardt (LM) 346
maximum number of cycles 376
merit-function 345, 350
minimum number of cycles 376
parameters 375
ray grid 376
run coating optimization 392
targets 350, 391, 471
terminating 374, 376
undo 375
user-defined constraints 354
variables 349, 391
weight on aperture 362
weighted constraints 356
weights 355
optix.cfg 27
ORB, Orbscan II deformation 139
Orbscan Topography System 143
ORGR, optimization ray grid 376
OSP, optical spectrum 49
OTF see Optical transfer function
OTH, optical thickness of layer 384
OUT 444, 446
P
PA1, PA2 339
parabasal 30
paraxial 30, 54, 237, 248, 249, 317
PATH 359
Path
optical 101
PCO, $P_{C, s}$ offset 219, 236
PCX, Paintbrush graphics format 444
Perfect lens see Lens module (ideal lens)
PETZ 360
PGO, $P_{g, F}$ offset 219, 236
Photopic 50
Physical optics 317
Rayleigh range 322, 325
angular spectrum 317
converting field to rays 320
coupling efficiency 328
Fresnel approximation 319
operator 319
propagation control 321
propagation through optical interface 320
PTP, plane-to-plane 318, 322
STW, sphere-to-waist 319, 322
talbot imaging 327
WTS, waist-to-sphere 319, 322
Pickup 102
delete 103
group pickup 103, 104
individual pickup 103, 105
listing pickups 105
pickup and solves 105
PIK 103
PIM 54
PIM 106
Pinhole 317
PLANCK 49
PLANCK 482
Planck 49
PLG, polygon aperture 165
PLO
DIG247
CTV 389
PLO 246
DIG 247
DISX 246
DISY 246
FDISX 247
FDISY 246
INT 139
LAC 253
SSP 252
STREHL 281
WAV 283
ZRN 145
interferometric data 144
Plot colourscoatings384
fields 47
Plot rays 188
Plotting 443
PMA, pupil intensity map 244
PMI, light pipe mirror 132
PNG, Portable Network Graphics format 444
POF
52
POF, pupil oversize factor
Point spread functiondiffraction based271
file format 517
geometric 261
patch size 271
write to file 273, 274
POL, turn on/off polarization analysis 389
POL 339
APE, polarization across aperture 339
ELL, polarization ellipses 339
LAM, polarization vs. wavelength 339
Polarization 332, 339
coherency matrix 340
degree of 342
electric vectors 340
input polarization state 340
phase change on TIR 342
ray tracing 339
Stokes vectors 342
total internal reflection 342
POLD, degree of polarization 477
POLP, polarization phase 477
POLRAY, trace polarization ray 340
POLSTATE 339
POLX, polarization amplitude X 477
POLY, polarization amplitude Y 477
Polygon aperture 167
from file 167
POR 339
POS, zoom pos. 192
POV "Persistence of Vision" 493
POX, POY, POZ, plot offsets 187, 192
PPOS, plot zoom position 187
PRD 238
PRDI 238
PRE, pressure 400
Preferences see Program preferences
Principal planes 237
Printing 443
Private glass 224
Cauchy coefficients 225
Hartmann coefficients 225
Laurent coefficients 224
Sellmeier coefficients 224
Wavelength-index data pairs 224
PRN, printer device 444
Program preferences 23
Propagation. 317
ProSource ${ }^{T M}$ 308
PRSI, trace polarization ray 340
PRV, start private glass 225
PSF
patch size see Point spread function
PSF 273
PTH, physical thickness of layer 384
PUI 53
Pupil intensity map 243
Pupil relay distance 238
Pupils
entrance 237
exit 237
exit pupil 238
pupil relay distance 238
pupil relay distance, reciprocal 238
PUX 53
PUY 53
PWL, private wavelength 225
Q
Q-type asphere 79
QSM, Gaussian smoothing diameter 264
QST, quadrant step size 264
QUA, quadrant detector analysis 264
Quadrant detector analysis 263
QUIT, quit program. See also EXI 20
Quit see Exit
R
RAD, radial geometric energy 262
Radial Energy 262
Radiant Imaging ${ }^{T M}$ 308
RAG, tolerance on radial quadratic gradient. 403
RAIM, ray aiming method 56
RAIO, ray aiming option 57
RAIS, ray aiming max. step 56
RAIT, ray aiming tolerance 56
RAND, radom number 482
Random number 452
RAW2 INT, convert raw data to INT format 139
Ray
definition 31
file format 519
global coordinates output 238
intersection plot 243
logging to file 214, 519
number of rays traced 477
polarization ray 339
single 238
Ray aiming
56
mode
56, 58
omni-directional
56, 57
paraxial 56, 58
telecentric 56, 58
of single ray 240
option 57
tolerance 56
wavelength dependence 57
Ray intersection plot 243
Ray source 301
Ray source viewer 309
RAYCX 189
RAYCY 189
Rayleigh range 288, 289, 322, 325
RAYLOG, ray logging 214
Rays
grid in entrance pupil 52
number of rays traced 477
Raytrace
paraxial 110
RAYX 189
RAYY 189
RCX 286
RCY 286
RDM radius mode 43
RDNDT 475
RDX, x-radius of curv 65, 78
RDY, y-radius of curv 66, 78, 357
REC 165
RED, reduction ratio 107
REDO, redo a parameter change 64
Reduction ratio 107
REF surface reference 117
References 116
REFL, reflecting 66, 218
Reflection 331
losses 335
REFR, refracting 66, 218
REG make regular glass 199
REM 56
Remarks 56
REN, render 186, 494
RES
COA, coating 382
RES, restore 43, 382
Resolution 362
Restore 382
coating 382
Restore lens data 43
REV, revert tilt and order 113
Reverse see Invert
REX 164
REY 164
RHO, specific gravity 475
RIM 240
RIRR, relative irradiance 336
RMD, refractive/refractive mode 66, 97, 218
RPWR, illumination received power 311
RSI, trace single ray, relative pupil coords. 239
RSP, single ray plot 186
RUN (execute macro) 452
RUN, execute macro 452
S
S. 65, 67
S? 38
SADE, source alpha-tilt 303
SAG, surface sag 204
SAP, Exit pupil location 237, 357, 472
SAPI 238
SARAY, source analysis rays 304
SAV
OSP, optical spectrum 49
SAV, save 43
COA, coating 382
Save 382
coating 382
Save lens data 43
SBDE, source beta-tilt 303
SCA scale 198
Scale system 198
Scaling 198
SCDE, source gamma-tilt 303
SCO, special surface coefficient 80
SCO, special coefficients $74,75,80,82$
SCO, special surface coefficient 70, 82
SCOS, source cosine power factor 304
Scotopic 50
SD, max. semi-diameter 475
SDIVX, source divergence X 304
SDIVY, source divergence Y 304
Secondary spectrum 252
Seidel aberrations 249
SELECT 463
Sellmeier 439
Sellmeier dispersion formula 219
Sellmeier dispersion, extended 219
Sellmeier dispersion, reduced 220
Sensitivity
on tolerances 369, 411
tolerances in optimization 369
SEP, Entrance pupil location 237, 473
SET
FAN 188
MAG, magnification 44
MHT maximum heights 170
RAY 188
VIG, vignetting 60

SETUP
ACR, achromatic doublet 209
LURIE, Lurie-Houghton telescope 210
SLE, lens of best form 209
TEL 210
Setup
achromatic doublet 209
analytical 208
lens of best form 209
Lurie-Houghton 209
reflecting telescope 210
SGREF, source global reference 303
SH1, Front principal plane position 472
SH1, first (front) principal plane 238
SH2, Rear principal plane position 472
SH2, second (rear) principal plane 238
SIN, trace single ray, absolute pupil coords. 238
Single layer $M_{g} F_{2}$ 332, 387
SLB 56
SLID, slider control 212
Slider controls 211
SOFA, source angular offset alpha 304
SOFB, source angular offset beta. 304
SOL solve 106
Solves 106
AMY 106
HCY 106
HMX 106
HMY 106
IMY 106
UCY 106
UMX 106
UMY, angle solve 106
ET 107
delete 106
in zoom systems 195
Source 301, 307, 308
coordinate system 301
coordinates 305
defined by rays 308
emittance characteristics 306
flat source 307
Gaussian profile 307
in lens layout plot 306
Lambertian 304
ray aiming 308
ray file formats 519
transform source (ray) data 310
viewer. 309
SPHA 360
SPD 359
SPD, spot diameter (rms) 478
SPDPV, spot diameter (PV) 479
Specific gravity 475
Spectrum
optical 49
SPG, specific gravity 67, 200, 475
SPH 65
spherochromatism 284
SPL load spline coeff's. 137
Spline
radial 136
SPLN number of spline points 137
SPLR, radial spline 136, 137
SPLZ, spline deformation 136, 137
SPMS, spot marker size 242
SPO 35, 194, 197, 241
RIS, ray intersection 243
Spot
diagram 241
gravity center (centroid) 242
marker size 242
rms 241
SPR 241
SPRAY, illumination plot rays 304
SPS, Qbfs asphere 80
SPS, Qcon asphere 82
SPS, special surface 70
SPWR, source power 303
SPX 197, 359
SPX, spot diameter (rms) in X 478
SPXPV, spot diameter (PV) in X 479
SPY 197, 360
SPY, spot diameter (rms) in Y 479
SPYPV, spot diameter (PV) in Y 479
SRC
PWR, source emitted power 303
REF, illum.source reference 303
TYPE, source type 302
USE, use source 302
SRC
ADE, source X-tilt 303
AOFFS, source angular offset alpha 304
ARAY, number of rays per source 304
BDE, source Y-tilt 303
BOFFS, source angular offset beta 304
CDE, source Z-tilt 303
COS, cosine power 304
DIVX, source divergence X 304
DIVY, source divergence Y 304
LIS, list (illumination) sources 304
NXI, X-image cells 311
NYI, Y-image cells 311
PRAY, number of plot rays 304
WAV, source wavelength number 304
XDE, source X-decenter 303
XEXT, source X -extension 303
YDE, source Y-decenter 303
YEXT, source Y-extension 303
ZDE, source Z-decenter 303
SRC, source definition 301
SRX, Gaussian spot size X 288
SRY, Gaussian spot size Y 288
SSP 252
SSR 252
SSZ see INT-file
Start OpTaliX
from DOS windows 20
from program group 19
from Windows Explorer 19
Starting designs 499
Statistics 412
STE, linear stepping parameter 427
STO stop surface 65
STREHL 281
Strehl ratio 281
SUR see INT-file
Surface
"no-raytrace" 118
ADE x-tilt 108
BDE y-tilt 108
BEN bend 110, 111
CDE z-tilt 108
DAR, decent. and return 110, 111
GADE gradient x -tilt 110
GBDE gradient y-tilt 110
GCDE gradient z-tilt 110
GLB, global reference 117
NAX new axis 110
NAX, new axis 111
REF surface reference 117
REV revert tilts and order 113
THR thickness reference 117
TLM tilt mode 110-112
TLT group tilt 110
XDE x-decenter 108
YDE y-decenter 109
ZDE z-decenter 109
2-dimensional deformation 68
aperture 164
array 68, 133
array cell 133
asphere 65, 67
axicon 83
biconic see Anamorphic asphere
comments 56, 171
compound tilts on BENd surface 112
conic 65
copy 172
curvature 66, 78
curvature increment 66
cylinder 65, 66, 78
decentered 67
deformation 136, 138
delete 172
diffractive 84
editor 63
filter, intensity 142
fixed aperture 169
fresnel 68, 96
global referencing 116
gradient index 68, 119
grating 66, 67, 91
grating frequency 66
hologram 84
hologram order 66
holographic 68
image surface 174
intensity apodization 142
interferometric deformation 138
invert 172
label (comment) 56
lens module 67
maximum hits 66
mirror 67
module 67
move 172
no-raytrace 65
non-sequential 66, 68, 99
pick-up 65
pickup 102
PIK pickup 103
pointer 37
qualifiers 35
radius of curv. 66
reference thickness 66
reflecting 66
refracting 66
sag 203
shorthand entry 65, 67
special qualifiers 36
sphere 65, 67
spline 136
spline deformation, radial 68
step index fiber 68, 131
stop 65
thickness 66
tilt of GRIN media 115
tilt sequence 113
tilted 67, 108
TIR 66, 68
total internal reflection (TIR) 96
transformation matrix 110, 114
two-dimensional deformation 138
type 65, 67
undo-redo 64
user-defined 68, 155
Zernike 68
Zernike surface/phase deformation 145
Surface editor 74, 75
Surface qualifier 36
SUSE, use illum. source 302
SUT, surface type 65, 67, 120
SVG, Scalable Vector Graphics format 444
SWAV, source wavelength number 304
Sweatt model 88
SXDE, source X-decenter 303
SXEX, source X-extension 303
SYEX, source Y-extension 303
SYDE, source Y-decenter 303
SYL, system length 238, 357
SYM, tolerance on aspheric symmetrical irregu-
larity 402
SYS, operating system command 214
System aperture 50
SZDE, source Z-decenter 303
T
T terminal device (screen) 444
Talbot imaging 327
TAR (targets) 345
Targets 350
TCA 360
Telecentric beams 58
Telescope 60, 209
Cassegrain 211
Gregory 211
Lurie-Houghton 209
Ritchey-Chretien 211
TEM, temperature 399
Test plates 422
adding 423
file format 511
fitting 423
listing 423
manufacturers 430
TFCalc coating package 487
TGR, transformation grid 292
THI, axial thickness 67, 357
Thin film Coating
Third order aberrations 249
THM, mirror thickness 66, 67, 200, 426
THO, third order analysis 250
THR, reference thickness 66, 117
Tilt sequence 30, 110, 113
Tilts
bend 112
decenter and return 100, 111
new axis 112
TIM, time 213
TIN, thickness increment 66
TIR, total internal reflection 66, 97
TIT 56
Title 56
TLM, tilt mode 110-112
TLT group tilt 110
TMAT, transformation matrix 110
TMAT, transformation matrix 115
TOL
INV, inverse tolerances 412
SEN, sensitivity analysis 409
TOLC, tolerance criterion 408
Tolerance sensitivity. 369, 411
Tolerancing 401
Beta distribution 413
compensators 408
back focus 409
optimization settings 409
default tolerances 405
editor 404
Gaussian distribution 413
inverse 401, 412
Monte Carlo 401, 412
optimize sensitivity 369, 411
performance criteria 408
RSS 411
sensitivity 401, 409
optimize 411
statistical 412
Statistical distributions 412
tolerance items 401
Tools
surface sag 203
achromatic doublet analytical setup 209
analytical setup 208
Cassegrain analytical setup 211
convert fictitious glasses to real glasses 198
invert system 198
lens of best form 209
Lurie-Houghton analytical setup 209
optimal index at GRIN surfaces 203
reflecting telescope analytical setup 210
Ritchey-Chretien analytical setup 211
scaling 198
slider controls 211
user defined graphics 204
weight and volume 200
Toroidal surface 78
Total internal reflection 96, 342
TPF, tilt pick-up factor 65
TPI tilt pick-up 65
TPL, test plate fitting 423
TRA, average transmission along a ray 334
TRA Y/N, enable/disable transmission analysis 334
TRA. 335
FLD, versus field 334
LAM, versus wavelength 334
NUM, numerical output 334
SUR, versus surface 334
TRA, average transmission along a ray 480
TRA, transmission 334
Transform source ray data 310
Transformation matrix 114
of surfaces 181
Transmission 331
aperture averaged 335
cement 332
chief ray based 333
colour contribution index 337
default coating 332
diffraction efficiency 93
enable/disable transmission analysis 334
TRAP, P-pol transmission along a ray 334
TRAP, P-pol transmission along a ray 480
TRAS, S-pol transmission along a ray 334
TRAS, S-pol transmission along a ray 480
TRR, transmission of predefined rays 334 UGR, user-defined graphics 204, 299
TSAUMX106
Tolerance sensitivity on tilt about X-axis362, UMY 106
371, 478
TSB
Tolerance sensitivity on tilt about Y-axis362,
371, 478
TSEQ, tilt sequence
110,114
TSF
Tolerance sensitivity on test plate fit . . . 361,
370, 477
TSG
Tolerance sensitivity on tilt about Z-axis362, 371, 478
TSH
Tolerance sensitivity on index homogeneity362, 372, 478
TSITolerance sensitivity on surface irregularity 361, 370, 477
TSN
Tolerance sensitivity on refractive index 361 ,370, 477
Tolerance sensitivity on radius change .362 ,372
TST
Tolerance sensitivity on thickness 361, 370,477
TSV
Tolerance sensitivity on dispersion 361, 371,477
TSX
Tolerance sensitivity on X-decenter361,371, 478TSYTolerance sensitivity on Y-decenter361, 371,478
TSZ
Tolerance sensitivity on Z-decenter362, 371,478
U
UCO, user-defined coefficients 155
UCY 106
UCY 238, 360
UDG, user-defined gradient 128
UDS, user-defined surface 155
UMY
UMY 238, 360
UNDO
OPT 367
UNDO, undo a parameter change 64
User-definedconstraints (in optimization)354
functions 354, 464
in ASAP 492
gradient index 128
graphics 24, 204, 299
functions 207
variables 206
surface 155
variables 354, 459
V
Vacuum 234, 397
VAR, variables 345
VAR, variables (in optimization) 348
Variable line spacing (VLS) grating 91
Variables $182,345,349$
in lens database items 471
in macros 459
in optimization 354
in qualifiers 36, 471
VARZ, zoom variables (in optimization) 348
VIE
SRC, source defined by rays 309
VIE, lens layout plot 185Viewerray source309
Vignetting 60, 336
SET VIG 60
analysis 259
plot 260
VIGP, vignetting plot 260
VLS grating 87, 92
VLX 60
VLY 60
Volume 200
VPT, viewpoint. 185
VUX 60
VUY 60
W
WAV 197, 360
WAV, wavefront aberration rms 283
WAV, wavefront (rms) 480
Wavefront Aberration 282
Wavefront, perturbation 141
Wavelength 48
weight 49
Waves 317
WAVPV, wavefront (PV) 480
WAVZ 283
WDX, fiber wedge angle in X 292
WDX, waist distance X-plane, function 288
WDY, fiber wedge angle in Y 292
WDY, waist distance Y-plane, function 288
WEI, lens weight 200
Weight, of lens 200
WFR see INT-file
WHILE construct, in macros 465
WL 48
wMF, Windows Metafile Format 444
WRL, write lens in Code V sequential format.43,491
WRX, waist radius x 286
WRY, waist radius y 286
WT, weight on error function 355
WTA, weight on aperture 363
WTC, weighted constraint 356
WTF 46
WTW 49
WVL see INT-file
WZRN, Zernike wavefront 145
WZRN, wavefront Zernike 148
X
X358
XAN, x-field angle 44
XDE 473
XDE x-decenter 108
XGR, spot gravity center X 242
XIM, x-image 44
XOB, x-object 44
XRI, real image height 46
XSC 359, 474
XSG 359
XSG, global surface vertex coordinate 473
XY polynomial asphere 74
Y
Y. 358
YAN, y-field angle 44
YDE 473
YDE y-decenter 109
YGR, spot gravity center Y 242
YIM, y-image 44
YOB, y-object 44
YRI, real image height 46
YSC 359, 474
YSG 359
YSG, global surface vertex coordinate 473
YTO toric surface 65
YTO, Y-toroid 70
Z
Z 358
ZACT, Zernike activation 145
ZDE 473
ZDE z-decenter 109
ZED, text based zoom editor 195
ZED, zoom editor text based 192
Zernike
definition 149
Extended Fringe set 151
Fringe set 150
phase deformation 145
phase surface 154
Standard set 152
surface 68
surface deformation 145
ZFE, Extended Fringe Zernike set 145
ZFR, Fringe Zernike set 145
ZOO 191
Zoom 191
copy position 194
delete position 194
dezoom 191
editor
spreadsheet 193
text based 195
insert position 194
number of positions 191, 192
solves 195
ZRN, Standard Zernike set 145
ZRN, Zernike surface 145
ZSC 359, 474
ZSG. 359
ZSG, global surface vertex coordinate 473
ZWACT, Zernike wavefront activation 147
ZWACT, Zernike wavefront activation 145
ZWX 286
ZWY 286

[^0]: ${ }^{1}$ Only 3×4 matrices are needed to fully describe surface tilt and decenters. In $O p T a l i X$ these matrices are extended to 4×4 matrices. This is a marginal overhead but greatly simplifies matrix operations in a form suited for computers.

[^1]: ${ }^{1}$ Note that the \& character continues lines only in macro files. It has a different meaning in the command line, where it invokes option dialog boxes for commands.

[^2]: ${ }^{1}$ APD is derived from the German word 'Austrittspupillendurchmesser' $=$ exit pupil diameter.

[^3]:

